Einführung in die Statistik

Ähnliche Dokumente
Stochastik für die Naturwissenschaften

Statistische Methoden

Stochastik für die Naturwissenschaften

Einführung in die Mathematische Epidemiologie

Stochastik für die Naturwissenschaften

Angewandte Stochastik

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften

7.2 Moment und Varianz

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariablen [random variable]

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

1. Grundbegri e der Stochastik

Stochastik für die Naturwissenschaften

Zufallsvariablen. f(x) dx = 1. Die stetige Zufallsvariable X wird also durch seine Dichtefunktion beschrieben. P(c < X < d) =

4. Verteilungen von Funktionen von Zufallsvariablen

Wichtige Definitionen und Aussagen

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Einführung in die Statistik Kapitel 5: n (Konvergenz, LLN, CLT)

Biostatistik, Winter 2011/12

Wirtschaftsmathematik

Varianz und Kovarianz

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

70 Wichtige kontinuierliche Verteilungen

Einführung in Quantitative Methoden

Chi-Quadrat-Verteilung

Beziehungen zwischen Verteilungen

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2 Zufallsvariable, Verteilungen, Erwartungswert

Fit for Abi & Study Stochastik

2 Aufgaben aus [Teschl, Band 2]

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Willkommen zur Vorlesung Statistik (Master)

Zusammenfassung PVK Statistik

Wahrscheinlichkeitsrechnung und Statistik

1.4 Stichproben aus einer Normalverteilung

Teil IV. Diskrete Verteilungen. Woche 3: Verteilungen. Diskrete Zufallsvariablen Wiederholung. Lernziele

Die Varianz (Streuung) Definition

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

Stochastik und Statistik für Ingenieure Vorlesung 4

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Prüfungsvorbereitungskurs Höhere Mathematik 3

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

FORMELSAMMLUNG STATISTIK B

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Wahrscheinlichkeit und Statistik: Zusammenfassung

Kapitel VII - Funktion und Transformation von Zufallsvariablen

7.5 Erwartungswert, Varianz

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Finanzmathematische Modelle und Simulation

5 Binomial- und Poissonverteilung

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15

Biostatistik, Sommer 2017

Kapitel VII. Einige spezielle stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Stetige Verteilungen Rechteckverteilung

1. Grundbegri e der Stochastik

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

5. Stichproben und Statistiken

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie

Spezielle stetige Verteilungen

TU DORTMUND Sommersemester 2018

3 Grundlagen statistischer Tests (Kap. 8 IS)

Statistische Methoden in den Umweltwissenschaften

5 Erwartungswerte, Varianzen und Kovarianzen

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

SozialwissenschaftlerInnen II

Statistik für Informatiker, SS Verteilungen mit Dichte

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

Vorlesung 7a. Der Zentrale Grenzwertsatz

Wahrscheinlichkeitsverteilungen

10 Transformation von Zufallsvariablen

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] =

Stetige Verteilungen, Unabhängigkeit & ZGS

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

Wahrscheinlichkeitstheorie

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

(8 + 2 Punkte) = = 0.75

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

3 Stetige Zufallsvariablen

Nachklausur zur Vorlesung

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

8. Stetige Zufallsvariablen

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Transkript:

Einführung in die Statistik Dr. C.J. Luchsinger 4 Ausgewählte Verteilungen * diskret: Bernoulli, Binomial, Geometrisch, Negativ-Binomial, Poisson * stetig: Uniform, (Negativ-)Exponential, Gamma, Normal, Cauchy, χ, F, t * Wertebereich, Verteilung (Wahrscheinlichkeitsfunktionen / Dichten), E, V, R-Befehl, Einsatz Es gibt bekanntlich viele Verteilungen. Also gäbe es auch viele Erwartungswerte und Varianzen etc. zu berechnen. Wir präsentieren hier viele Resultate, welche wir aus Zeitgründen nicht alle nachprüfen. Man beachte, dass sowohl bei diskreten wie auch bei stetigen Zufallsgrössen die Wahrscheinlichkeitsfunktionen resp. Dichten fast immer nach dem gleichen Schema aufgebaut sind: Normierungskonstante mal informativer Teil, zum Beispiel πσ e (x µ) σ. Viele der nachfolgenden Resultate sind bereits bekannt und werden hier nur kompakt zusammengefasst, sodass wir relativ rasch voranschreiten werden; bitte zu Hause in Ruhe durchlesen. Es kommen auch Verteilungen vor, welchen wir bis jetzt noch nicht begegnet sind. Wir werden diese Teile in unterer Zusammenfassung nochmals repetieren, sobald wir auf diese Verteilungen stossen; es ist also nicht gravierend, wenn man einzelne Teile (noch) nicht versteht. Die StudentInnen sollten von Kapitel 4 wissen, wie Wahrscheinlichkeitsfunktionen oder Dichten der wichtigsten Verteilungen aussehen. Wir werden dies in Kapitel 6 (Ablehnungsbereiche) intensiv brauchen. 7

4. Bemerkung zu den R-Befehlen Wir werden immer nur den Stamm des Befehls in R angeben. Davor kann man dann d (z.b. dnorm(0) für Dichtefunktion beim Punkt 0 einer N (0, )-Zufallsgrösse) setzen. p gibt die Verteilungsfunktion, q die Quantilfunktion ( bis wo muss ich gehen, dass 40 % der Verteilung hinter mir liegen? ) und r gibt dann eine Stichprobe. Lesen Sie dazu auch Kapitel im Dalgaard und führen Sie dazu die Befehle in R aus (im Lam ist es Sektion 9..). > dnorm(0) []0.398943 > pnorm(0) []0.5 > qnorm(0.5) []0 (vgl. ein Schritt weiter oben) > qnorm(0.95) [].644854 (das berühmte.64 aus der Statistik) > qnorm(0.975) [].959964 (das berühmte.96 aus der Statistik) 7

4. Diskrete Verteilungen 4.. Bernoulli Be(p) X kann Werte annehmen: 0 und (alternativ auch und +, siehe z.b. Aufgabe auf Blatt 7). P [X = ] = p (Erfolg) und P [X = 0] = p (Misserfolg). E[X] = p und V [X] = p( p). R-Befehl: binom mit n =. Mit 0 k haben wir P [X = k] = p k ( p) k. 4.. Binomial Bin(n,p); Krengel :.4 Seien X i, i n, n iid Be(p)-Zufallsgrössen. Sei Y := n i= X i. Dann hat Y per Definitionem die Binomialverteilung mit Parametern n und p; Bin(n,p). E[Y ] = np (Aufgabe auf Blatt 6) und V [Y ] = np( p) (Bemerkung zu Lemma 3.8), R-Befehl: binom. 0 k n: P [Y = k] = ( ) n p k ( p) n k. k Einsatz: Anzahl Erfolge (k) bei n unabhängigen Versuchen mit Erfolgswahrscheinlichkeit p. 4..3 Geometrisch Ge(p); Krengel :.4 Seien wieder X i, i, iid Be(p)-Zufallsgrössen. Wir interessieren uns für den Zeitpunkt des ersten Erfolgs: Z := min{i X i = }. Z ist eine Zufallsgrösse auf den natürlichen Zahlen ohne die Null. Z hat per Definitionem eine geometrische Verteilung Ge(p) mit Parameter p. Es gilt: E[Z] = /p und V [Z] = ( p)/p, R-Befehl: geom. P [Z = k] = p( p) k. Die Ge(p) hat die für die angewandte Stochastik zentral wichtige Eigenschaft, dass sie die einzige diskrete Zufallsgrösse ist, welche gedächtnislos ist: mit n > m > 0 gilt hier (vgl. Aufgabenblatt 9) P [Z > n Z > m] = P [Z > (n m)]. 73

Gegeben, es hat schon m = 000 Würfe ohne 6 (=Erfolg) gegeben, wie gross ist die Wahrscheinlichkeit, dass es sogar insgesamt mindestens n = 004 Würfe ohne 6 geben wird? Also dies ist nur noch von der Differenz n m = 4 abhängig. Wie lange es bereits keine 6 gegeben hat, ist egal! Es sei noch erwähnt, dass die geometrische Verteilung in gewissen Lehrbüchern so definiert wird, dass man die Anzahl Misserfolge bis zum ersten Erfolg zählt. Dann nimmt die Ge(p) Werte auf den natürlichen Zahlen inklusive die 0 an. Die Resultate sind analog aber leicht komplizierter - das selbe gilt auch für eine alternative Definition der NB(n,p) nachfolgend. 4..4 Negativ Binomial NB(n,p); Krengel :.4 Seien Z i, i n, n iid Ge(p)-Zufallsgrössen. Sei W := n i= Z i. Dann hat W per Definitionem die Negativ-Binomialverteilung mit Parametern n und p; NB(n,p). Die NB(n,p)-Verteilung beschreibt die Zeit, bis es n Erfolge gegeben hat. E[W ] = n/p (folgt aus Linearität des Erwartungswerts und 4..3) und V [W ] = n( p)/p (folgt aus Lemma 3.8 b) und 4..3), R-Befehl: nbinom. w n P [W = w] = ( ) w p n ( p) w n. n 4..5 Poisson Po(λ); Krengel 5: 5.4 Die Motivation für die Poissonverteilung folgt in der Vorlesung Angewandte Stochastik. Eine Zufallsgrösse V ist poissonsch, wenn Sie Werte auf den natürlichen Zahlen inklusive 0 annimmt und zwar mit folgenden Wahrscheinlichkeiten: λ λv P [V = v] = e v!. Es gilt: E[V ] = V [V ] = λ (Beispiel 3 in 3. und Bemerkung 3 zu Lemma 3.7), R-Befehl: pois. 74

4.3 Stetige Verteilungen 4.3. Uniform U[a, b]; Krengel 0: 0. Die einfachste stetige Verteilung ist die Uniform-Verteilung: Eine Zufallsgrösse U ist per Definitionem auf dem Intervall [a, b] uniform verteilt, wenn U folgende Dichtefunktion hat: f(u) = (b a), wobei dann natürlich a u b zu gelten hat. Ausserhalb von [a, b] ist die Dichte gleich null. Es gilt E[U] = (a + b)/ (. Beispiel von 3.) und V [U] = (b a) / (Beispiel 6 in 3.), R-Befehl: unif. 4.3. (Negativ-) Exponential Exp(λ); Krengel 0: 0. Eine Zufallsgrösse X mit Dichtefunktion f(x) = λe λx, x 0, heisst exponentialverteilt mit Parameter λ; Exp(λ). Die gleiche Wahl des Parameters wie bei der Poissonverteilung ist nicht zufällig! Es gilt E[X] = /λ und V [X] = /λ (Aufgabenblatt 6), R-Befehl: exp. Modell für: radioaktiver Zerfall, wann geht eine Glühbirne kaputt?, Zwischenzeit bei der Ankunft von KundInnen in einem Geschäft und vieles mehr; mehr dazu in der Vorlesung Angewandte Stochastik. Die Exp(λ) hat die für die angewandte Stochastik zentral wichtige Eigenschaft, dass sie die einzige stetige Zufallsgrösse ist, welche gedächtnislos ist: mit t > s > 0 gilt hier (vgl. Aufgabenblatt 9) P [X > t X > s] = P [X > (t s)]. Gegeben, es hat schon s = 000 Sekunden keinen Atomzerfall gegeben, wie gross ist die Wahrscheinlichkeit, dass es sogar insgesamt mindestens t = 004 Sekunden keinen Atomzerfall geben wird? Also dies ist nur noch von der Differenz t s = 4 Sekunden abhängig. Wie lange es bereits keinen Atomzerfall gegeben hat, ist egal! 75

4.3.3 Gamma(n, λ); Krengel 4: Anhang Seien X i, i n, n iid Exp(λ)-Zufallsgrössen. Sei Y := n i= X i. Dann hat Y per Definitionem die Gammaverteilung mit Parametern n und λ; Gamma(n,λ). E[Y ] = n/λ (folgt aus Linearität des Erwartungswerts und 4.3.) und V [Y ] = n/λ (folgt aus Lemma 3.8 b) und 4.3.), R-Befehl: gamma. f(y) = yn e λy λ n, y 0. Γ(n) Mit n = wird dies in der Tat zu einer Exponentialverteilung. In Anbetracht von 4.3. ist das ein Modell für wann zerfällt das n-te Atom?, geht die n-te Glühbirne kaputt, kommt der n-te Kunde. In der Statistik hat man mit der Gamma-Verteilung auch ein relativ flexibles Modell, um Einkommensverteilungen zu modellieren ( frei wählbare Parameter n, λ). 4.3.4 Normal N(µ, σ ), auch Gauss-, Glocken-, Bell-, Forrest Gump-Verteilung; Krengel 0: 0. und 5: 5.; Tabelle II hinten Wegen des zentralen Grenzwertsatzes ist die Normalverteilung sehr wichtig: Mit Dichtefunktion f(x) = πσ e (x µ) σ, x R, gilt E[X] = µ (Beispiel 4 in 3.) und V [X] = σ (Beispiel 8 in 3.), R-Befehl: norm. ACHTUNG: FÜR DIE FOLGENDEN BEIDEN RESULTATE SETZEN WIR NORMAL- VERTEILUNG VORAUS!. Z-Transform [Beweis auf Übungsblatt 9]: Wenn X eine N (µ, σ )-Verteilung hat, dann hat X µ σ (Z Transform) eine N (0, )-Verteilung (welche in Büchern und Libraries von Statistik-Paketen abgelegt ist). N (0, ) nennen wir Standard-Normalverteilung. 76

Sei X eine N (0, 4)-Zufallsgrösse. Formen Sie P [X > 3] soweit um, dass Sie den Wert in einer Tabelle ablesen können.. Approximative Formeln für beliebige σ > 0: sei X eine N (0, σ )-Zufallsgrösse. Dann gelten P [ X > σ] = 3 und P [ X > σ] =5%. Allgemein: Eine Normalverteilung hat etwa /3 ihrer Wahrscheinlichkeit innerhalb Standardabweichung vom Mittelwert entfernt (genauer, siehe Tabelle: %) und sogar 95 % ihrer Wahrscheinlichkeit innerhalb von Standardabweichungen vom Mittelwert entfernt: 77

4.3.5 Cauchy Wir haben in Aufgabenblatt 5 die Cauchy-Verteilung in einem physikalischen Experiment erhalten. Gleichzeitig ist sie die t -Verteilung (siehe 4.3.8 weiter unten). Neben diesen praktischen Anwendungen ist sie für die Theorie der Statistik und Wahrscheinlichkeitsrechnung gut als Verteilung mit viel Gewicht in den Enden (Langschwänzigkeit, heavy tails) im Vergleich zur Normalverteilung. Es gilt insbesondere E[ X ] =, wie man aus unterer Dichte sofort sieht: f(x) = d π(d + (x m) ), x R. Dabei ist m der Median und d ein Skalenparameter. Die Varianz existiert auch nicht (Grund z.b. Aufgabe in Honours-Programm auf Blatt 7). R-Befehl: cauchy. 4.3.6 χ ; Krengel 4: 4.; Tabelle III hinten Diese Verteilung ist in der Statistik zentral wichtig und verdankt ihre Existenz weitgehend dem zentralen Grenzwertsatz (Kapitel 5), insbesondere, dass man in Modellen der Datenanalyse Fehlerterme normalverteilt modelliert. Wenn (X i ) n i= iid N (0, )-verteilt sind, dann ist i= χ n-verteilt (sprich Chiquadrat mit n Freiheitsgraden (degree of freedom, df)). Wenn (Y i ) n i= iid N (µ, σ )-verteilt sind, dann hat wegen der Z-Transformation (Y i µ) X i σ i= die χ n-verteilung. Ein wenig überraschend: Mit S := (Y i Y ), i= wo Y := n i= Y i/n, hat S /σ die χ n -Verteilung. Eine Bauernregel sagt: ein df geht verloren, pro Parameter, den man schätzt (hier µ wird mit Y geschätzt). Wenn wir mit 78

3.3 vergleichen, sieht man, dass S /n sich offenbar als Schätzer für σ aufdrängt (falls σ unbekannt); mehr dazu in Kapitel 7. Die Dichte der χ n-verteilung ist E[χ n] = n; V [χ n] = n. f(x) := xn/ e x/, x 0. (Monster I) Γ(n/)n/ Wenn man die χ n-verteilung mit der Gamma-Verteilung vergleicht, sieht man, dass jede zweite χ n-verteilung eine Gamma-Verteilung mit Parameter λ = 0.5 ist, wenn man n erhöht. R-Befehl: chisq. 4.3.7 F; Krengel 4: 4.; Tabelle IV hinten Seien U und V zwei unabhängige, χ m-, bzw. χ n-verteilte Zufallsgrössen. Dann ist der Ausdruck W := U/m V/n F -verteilt mit Parametern m, n: F m,n. Diese Zufallsgrössen kommen in der Statistik vor, wenn man testen will, ob die Varianzen von unabhängigen Stichproben gleich sind oder nicht (in viel komplexeren statistischen Untersuchungen kommt F m,n auch (relativ unerwartet) vor). f(w) = Γ[(m + n)/](m/n)m/ Γ(m/)Γ(n/) w m/, w 0, (Monster II) ( + mw/n) (m+n)/ ist die Dichtefunktion von W. Es gilt E[W ] = n/(n ) (falls n > ), V [W ] = [n (m + n )]/[m(n ) (n 4)]. R-Befehl: f. 4.3.8 t; Krengel 4: 4.; Tabelle I hinten Sei Y eine N (0, )-Zufallsgrösse und Z eine χ n-zufallsgrösse; Y unabhängig von Z. T n := Y Z/n ist dann fast N (0, )-verteilt, aber nicht genau, die genaue Verteilung ist Student-t-Verteilung mit n df. Die Dichte der t n -Verteilung ist f(x) = Γ[(n + )/], x R. (Monster III) πnγ(n/) ( + x /n)(n+)/ 79

Es gilt E[t n ] = 0 (falls n > und falls n = existiert der Erwartungswert nicht), V [t n ] = n/(n ) sobald n >. R-Befehl: t. Man sieht sofort, dass F,n = t n. Des weiteren: sind X, X zwei iid N (0, )-Zufallsgrössen, so ist X /X ebenfalls t - (und damit Cauchy-) verteilt. t = N (0, ). Da wir in diesem Skript keine Bilder/Graphiken haben, sollte jeder StudentIn sich eine Stunde Zeit nehmen, und in R bei obigen Verteilungen die Wahrscheinlichkeitsfunktionen bzw. Dichten anschauen. Variieren Sie dabei E, V. Lesen Sie dazu in Dalgaard Kapitel. Weiter ist hier ein Besuch der Online-Demos zu Verteilungen - ein Muss (Link auf der Homepage der Vorlesung), also www.fernuni-hagen.de/neuestatistik/applets/index.htm sehr empfohlen! 80

4.4 Zusammenhänge bei Verteilungen I: von unabhängigen Zufallsgrössen 4.4. Theoretische Grundlagen; Krengel :.3 Wir werden uns in diesem Teil mit folgender Frage auseinandersetzen: Wenn X und Y zwei unabhängige Zufallsgrössen sind, wie ist dann X + Y verteilt? 4.4.. Diskreter Fall Wir benützen im ersten Schritt die FTW aus Kapitel und danach die Unabhängigkeit von X und Y : P [X + Y = a] = P [X + Y = a Y = i]p [Y = i] i = i := i = i P [X + i = a Y = i]p [Y = i] P [X + i = a, Y = i] P [Y = i] P [Y = i] P [X + i = a]p [Y = i] P [Y = i] P [Y = i] = i P [X + i = a]p [Y = i] = i P [X = a i]p [Y = i]. Auf Blatt 9 ist dazu eine Aufgabe zu lösen. 4.4.. Stetiger Fall Wir benutzen hier den Satz von Fubini, welcher erst im dritten Semester bereitgestellt wird (Vertauschung der Integrationsreihenfolge). P [X + Y a] := = = = a y a a a f X,Y (x, y)dxdy f X,Y (x y, y)dxdy f X,Y (x y, y)dydx f X (x y)f Y (y)dydx. Also ist f X(a y)f Y (y)dy die Dichte von X + Y an der Stelle a. 8

Als Beispiel geben wir jetzt die Summe von unabhängigen normalverteilten Zufallsgrössen an, welche nicht die gleiche Verteilung haben müssen. Sei X N (µ, σ) verteilt und Y N (µ, σ) verteilt, X Y. Wir wollen zeigen, dass X + Y eine N (µ + µ, σ + σ) Verteilung hat (durch Induktion haben wir sofort das analoge Resultat für endliche Summen). Man mache sich bitte klar, dass wegen der Linearität des Erwartungswertes und Lemma 3.8 b) der neue Mittelwert µ + µ und die Varianz σ + σ sein müssen. Wir müssen nur noch zeigen, dass X + Y normalverteilt ist.. Wir wollen zuerst zeigen, dass wir obda µ = µ = 0 setzen dürfen: X := X µ ist N (0, σ ) verteilt und Y := Y µ ist N (0, σ ) verteilt. Wenn wir gezeigt haben, dass X + Y eine N (0, σ + σ ) Verteilung besitzt, so hat X + Y eine N (µ + µ, σ + σ ) Verteilung. Also können wir gleich obda voraussetzen, dass µ = µ = 0.. Die Dichte h(a) von X + Y muss also sein: h(a) = πσ σ e [ (a y) Hausaufgabe: nachrechnen, dass gilt: [ (a y) σ + y σ σ = + σ σ y σ σ σ σ + σ Wir definieren jetzt: Dann gilt: und damit z(y) := σ ] + y σ dy. σ + σ σ y a. σ σ σ σ + σ dz dy = σ + σ σ σ dy = dzσ σ. σ + σ ] a + a σ +. σ Die Substitution ergibt damit h(a) = e π σ + σ a σ +σ π e z dz. 3. Auf Aufgabenblatt 9 ist dazu eine Simulation zu machen. 8

4.4. Summen von Binomial, Geometrisch, Poisson, Exponential, Normal Die Summanden in den folgenden Summen müssen immer unabhängig sein. Wenn nicht anders erwähnt, fordern wir auch die gleiche Verteilung. Mit kompakten Formeln wie Be(p) = Bin(n, p) weiter unten ist eigentlich gemeint: Seien X,..., X n iid Be(p)-verteilt. Dann hat Y := n X i eine Bin(n,p)-Verteilung. * Summe von Bernoulli ist Binomial Be(p) = Bin(n, p) * Grosser Bruder hiervon: Summe von Binomial ist Binomial (p muss immer gleich sein!) Bin(n i, p) = Bin( n i, p) * Summe von Geometrisch ist Negativ Binomial Ge(p) = NB(n, p) * Summe von Poisson ist Poisson (Summanden müssen nicht mal identisch verteilt sein) P o(λ i ) = P o( λ i ) i= i= * Summe von Exponential ist Gamma Exp(λ) = Gamma(n, λ) * Summe von Normal ist Normal (Summanden müssen nicht mal identisch verteilt sein); vgl. 4.4... N (µ i, σi ) = N ( µ i, σi ) i= i= i= * Weitere Summen (z.b. von X ) kommen bei den Definitionen von χ, F und t-verteilungen vor. 83