Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode

Ähnliche Dokumente
Versuchsprotokoll E11 Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode

ε 0 = Normalpotential Potentiometrie

Der ph-wert ist als der negative dekadische Logarithmus der Wasserstoffionenkonzentration

Versuchsprotokoll E15 Potentiometrische Titration einer Chlorid/Iodid-Lösung

Physikalische Chemie Praktikum. Elektrochemie: Elektromotorische Kraft und potentiometrische Titration

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Die ph-abhängigkeit des Redoxpotentials

Praxis & Theorie der ph-messtechnik. sauer neutral alkalisch ph Milch

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

E1: Bestimmung der Dissoziationskonstante einer schwachen Säure durch Messung der elektrischen Leitfähigkeit der Elektrolytlösung

Elektrodenpotenziale und Galvanische Ketten

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie)

AnC I Protokoll: 2.2 Potenziometrische Titration von Essigsäure mit NaOH-Lösung! SS Analytische Chemie I. Versuchsprotokoll

8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II)

Versuch PC A E3. Ladungstransport in Elektrolytlösungen. Aufgabenstellung

Seminar zum Praktikum Quantitative Analyse

Versuchsprotokoll E11 Potentiometrische Messungen mit der Glasund

Da eine Elektrolyse unter Anlegen einer äußeren Spannung erzwungen, d.h. mit G > 0, abläuft, ist der Zusammenhang zwischen G und U 0 nach

Einführung in die Elektrochemie

Säure-Base-Titrationen

Dissoziationskonstante

Analytische Chemie. B. Sc. Chemieingenieurwesen. 02. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

G1 pk S -Wert Bestimmung der Essigsäure

Elektrodenpotenziale und Galvanische Ketten

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf.

Instrumentelle Bestimmungsverfahren 137

Elektrochemie II: Potentiometrie

Lerninhalte CHEMIE 12 - MuG erstellt von der Fachschaft Chemie

Säuren und Basen. Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O H 3 O + + OH -

Bestimmung der pks-werte von Glycin und Histidin durch potentiometrische Titration

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 2,

Wasserstoff-Referenz-Elektrode US Patent: HydroFlex. Bedienungsanleitung

ph - Messung mit der Glaselektrode: Bestimmung der pks-werte von Kohlensäure aus der ph-titrationskurve

Standard. VII. Potentiometrie, Elektrogravimetrie, Konduktometrie. Seminar zum Praktikum

Modul: Allgemeine Chemie

Vorlesung Analytische Chemie I

Zusammenfassung vom

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID

Physikalisches Praktikum I

Alle Ströme, die nicht durch die Elektrodenreaktion eines Analyten hervorgerufen werden

7. Chemische Reaktionen

Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen. Temperaturabhängigkeit der EMK

EinFaCh 1. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie.

Beispiele zu Neutralisationsreaktionen

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1

Anorganisch-chemisches Praktikum für Human- und Molekularbiologen

TU Clausthal Stand: Institut für Physikalische Chemie Praktikum C Cyclovoltammetrie Seite 1/10

Chemisches Grundpraktikum für Ingenieure. 2. Praktikumstag. Andreas Rammo

ZERSETZUNGSSPANNUNG ÜBERSPANNUNG

7. Tag: Säuren und Basen

Arbeitskreis Bestimmung des Gehalts und der pks-werte F 06 Kappenberg der Phosphorsäure Seite 1 / 6. Prinzip:

Christian-Ernst-Gymnasium

Protokoll 2. Labor für Physikalische Chemie. Modul IV. Säure-Base-Reaktion. Versuch Neutralisation, Gehaltsbestimmungen und Titrationskurven

[H3O+] [A-] [M+] - [Y-] >> [HA] [OH-] [Y - ] = Menge an M + (Base) welche zur Neutralisation der starkesäure gebraucht wurde!

Universität des Saarlandes - Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum. Elektrochemie

Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m.

Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008

Elektrische Leitfähigkeit

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen. Elektrolytische Dissoziation. AB(aq)

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 6

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

Grundpraktikum Physikalische Chemie

Potentiometrie. Grundlagen und Auswertung potentiometrischer Messungen. Potentiometrische Bestimmung absoluter Konzentrationen: Geräte:

Elektrolyte. (aus: Goldenberg, SOL)

Es soll eine schriftliche Ausarbeitung abgegeben werden (1 Exemplar pro Gruppe).

Teil 2. Puffersysteme. Puffersysteme. Puffersysteme. MTA-Schule

Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH)

3. Säure-Base-Beziehungen

AnC I Protokoll: 7.1 Synthese und Charakterisierung von Tetraamminkupfer(II)-sulfat! SS Analytische Chemie I.

Säuren und Basen. Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17.

Unterrichtsvorhaben Q1 Grundkurs Chemie

Versuchsprotokoll. Konduktometrie

Ergänzende Informationen zum Praktikum

Fragen zum Analytischen Grundpraktikum für Chemiker/LAK

Praktische Einführung in die Chemie Integriertes Praktikum:

Dissoziation, ph-wert und Puffer

Anorganisch-Chemisches Praktikum für Physiker:

Redoxtitrationen. Redox-Reaktionen Oxidation und Reduktion

Elektrolytische Leitfähigkeit

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Identifizierung des Farbstoffes in blauen M&Ms durch Dünnschichtchromatographie

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

Kleines Wasserlexikon

6.1 Elektrodenpotenzial und elektromotorische Kraft

Elektrochemie und Sauerstoffmessung mit LDO. Der ph-wert

Mehrprotonige Säuren; als Beispiel Cola

Versuchsprotokoll: Neutralisationsenthalpie

Was ist eine Titration?

(Atommassen: Ca = 40, O = 16, H = 1;

Inhalt der Vorlesung PC2 WS2013_14

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

Der ph - Wert. Theoretische Grundlagen, Berechnungen und praktische Messung

Membran- und Donnanpotentiale. (Zusammenfassung)

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr

FRAGEN ZUR ANALYTISCHEN GRUNDVORLESUNG 2: TEIL 1: ELEKTROCHEMISCHE ANALYSENVERFAHREN

Wasser. Flora und Fauna. Wichtigste chemische Verbindung in Lebewesen. Menschen benötigt mindestens 1kg H 2 O pro Tag

Elektrolytische Dissoziation. Quelle: LH

Modul: Allgemeine Chemie

Versuch 8 Konzentrations- und Temperaturabhängigkeit der Zersetzungsspannung

Technische Universität München. Brennstoffzelle. Roland Fuchsberger

Transkript:

Versuch E 11 Potentiometrische p-messungen mit der Wasserstoffelektrode und der Glaselektrode 1. Zielstellung Der unbekannte p-wert einer Elektrolytlösung ist durch potentiometrische Bestimmung des Gleichgewichtselektrodenpotentials der Wasserstoffelektrode zu bestimmen. Ferner ist der pk- Wert einer unbekannten schwachen Säure mittels Glaselektrode durch potentiometrische Titration nach Aufnahme einer Potential-p-Eichkurve zu ermitteln.. Grundlagen Unter den verschiedenen Verfahren zur p-ermittlung zeichnen sich die potentiometrischen Methoden besonders aus. Sie beruhen auf Potentialmessungen an einer wasserstoffsensitiven Elektrode [Platin-Wasserstoffelektrode (a) oder Glaselektrode (b)], deren Potential von der Wasserstoffionenaktivität der angrenzenden Elektrolytlösung abhängt. Im Falle (a) bestimmt man die Gleichgewichtszellspannung EZ,eq einer Zelle (Gl.1), g / gcl(s) / KCl(aq,sa) // + (aq) (a + = x) / (g) )/ Pt (1) die aus einer p-sensitiven Wasserstoffelektrode (Arbeitselektrode) und einer p-inerten Referenzelektrode mit konstantem Potential [z.b. g/gcl(s)/kcl(aq,sa)] besteht (Gl.). EZ,eq = E( + //Pt) - E(SCE) + EDIF [SCE: gesättigte Kalomelelektrode] () Durch den Aufbau einer solchen Zelle sind in der Regel Elektrodenräume mit unterschiedlichen Elektrolyten miteinander ionisch verbunden, sodass zusätzlich ein schwer bestimmbares Diffusionspotential EDIF auftritt (Zelle mit Überführung). [Eine exakte p-bestimmung als Einzelionenaktivität nach Definition (Gl.3) p = - lg a + (3) würde die Kenntnis eines individuellen Aktivitätskoeffizienten voraussetzen, z.b. die des Wasserstoffions an einer Referenzwasserstoffelektrode oder die des Gegenions in Zellen ohne Überführung mit Einzelelektrolyt (Abschätzung im Debye-ückel-Gebiet)]. Man führt deshalb praktische Messungen entweder auf Basis von p - Konventionen mittels Standardpuffern durch (oder bestimmt deren p-wert mittels eines einheitlichen Messverfahrens mit konstanter Bezugselektrode im Debye-ückel-Gebiet) bzw. vernachlässigt gänzlich den Einfluss des Diffusionspotentials E DIF (Diffusionsgalvanispannung). Letzteres ist

Versuch E 11 z.b. gerechtfertigt, wenn die Konzentration des verwendeten Elektrolyten der Bezugselektrode (bestehend aus Ionen gleicher Beweglichkeit K +, Cl - ) relativ groß gegenüber der Konzentration der wasserstoffionenhaltigen Versuchslösung ist. In diesem Falle lässt sich das Gleichgewichtselektrodenpotential der Wasserstoffelektrode vereinfacht aus der gemessenen Zellspannung ermitteln (Gl.4), E ( + //Pt) = EZ, eq + E (SCE) (4) woraus unter Beachtung der Messbedingungen der p-wert berechnet werden kann (Gl. 5-7). Die Ergebnisse sind nicht streng thermodynamisch exakt, genügen aber häufig den Anforderungen der Praxis. (a) Wasserstoffelektrode Die p-sensitive Elektrode + (aq)/ (g) / Pt ist eine Wasserstoffelektrode, an der die Redoxreaktion + + e - abläuft. Es genügt im Allgemeinen bei Gasreaktionen, wenn anstelle der Fugazität mit dem Partialdruck des an der Elektrodenreaktion beteiligten Gases gerechnet wird. Für das Gleichgewichtselektrodenpotential ergibt sich somit (Gl.5) E ( / / Pt) E ø RT F a ln p (5) ø mit E 0 bei allen Temperaturen (gemäß Definition für die Standardwasserstoffelektrode). Für p 1bar folgt z.b. (Gl.6) ø E( / /Pt) E ln a RT F E( / /Pt) F und p (6),303 RT und für p 1bar und T = 98,15 K ergibt sich E ( / /Pt) 59,17 mv p (7) (b) Glaselektrode Messungen mit der Glaselektrode werden auf Basis von Eichpufferlösungen mit bekannten p- Werten durchgeführt. Die Glaselektrode zählt zu den Ionenelektroden, bei denen ausschließlich Ionen die Phasengrenzen durchqueren. Bei dieser Elektrode stehen die + -Ionen beider Phasengrenzschichten (Quellschichten Qi und Q a ) der Glasmembran im Austauschgleichgewicht mit den + -Ionen der jeweils angrenzenden Elektrolytlösungen innen (i) und außen (a)

Versuch E 11 3 + (Q) i bzw.a + (aq) Lösung i bzw. a (8) Nur unter der Bedingung a + (Q,i) = a + (Q,a) arbeitet die Elektrode in einem breiten Messbereich gemäß der Nernstschen Gleichung. Eine Glaselektrodenzelle hat z.b. folgenden Aufbau: B(i) Ag/AgCl/Cl - (sa) // Lösung (i) p=7,0 /Q i /Glas/Q a / Lösung (a) p x // Cl - (sa)/agcl/ag (9) B(a) B(i) B(a) Lösung (i) Qi Glas Qa Lösung (a) φ i,q φ a,q φ i E Glas φ a + + p(i) p(a) Durch die Pufferwirkung des Silikats in der Quellschicht und die Symmetrie der Zelle kompensieren sich meist weitgehend die Galvanispannungen beider Quellschicht/Membran- Grenzflächen, sodass sich für die Zellspannung bei 5 C und idealem Nernst-Verhalten ergibt: Eeq, Glas = i - a a = 0,05917 V (p i - p a ). (10) In der Praxis addiert sich zu Eeq, Glas noch ein Asymmetriepotential EAs, welches durch geringe Unterschiede zwischen den Aktivitäten der Wasserstoffionen in den Quellschichten Q i und Q a bedingt ist. Ist die Bedingung a + (Q,i) = a + (Q,a) im Falle der Verwendung von zu stark sauren oder zu stark alkalischen Messlösungen auch näherungsweise nicht mehr erfüllt, resultieren Säure- oder Alkalifehler, die die Steilheit S der Glaselektrode reduzieren.

Versuch E 11 4 Steilheit S; Nernstfaktor NF : S = -E/p NF =,303 RT/F (11) In der Praxis werden Glaselektrodensysteme verwendet, die sich von dem bisher diskutierten Typ in Ausführung und Art unterscheiden können (p-wert des inneren Elektrolyten und Wahl der inneren Ableitelektrode, Einstabmesskette). Die sehr dünne sich ständig unter destilliertem Wasser befindende Glasmembrankugel ist innen mit einem (chloridhaltigen) Standardpuffer (z.b. p = 7,0) gefüllt, in den meist eine Silber/Silberchlorid-Elektrode eintaucht (innere Bezugselektrode B i ). In Kombination mit einer typgleichen Ag/AgCl-Bezugselektrode im äußeren Elektrolyten (B a ) ist eine solche Glaselektrodenzelle symmetrisch, weil dadurch ein zusätzlicher Potentialunterschied zwischen innerer und äußerer Ableitelektrode vermieden wird. Als praktische Anwendung der p-wert-messung soll im Folgenden auf die Bestimmung von Dissoziationskonstanten von schwachen Säuren mittels potentiometrischer Titration eingegangen werden. Titriert man eine schwache Säure mit einer starken Base, so verschiebt sich das Dissoziationsgleichgewicht A + O 3O + + A - (1) mit voranschreitender Neutralisation ständig weiter von links nach rechts, bis der Wendepunkt der Titrationskurve erreicht ist. Bei konstanter Aktivität des Wassers aw gilt für die Dissoziationskonstante der schwachen Säure K a a.a A A bzw. lg K + = lg a + + lg (ca - a - ) lg (ca A) (13,14) Mit ilfe des pk-wertes (pk = -lg Ka + ) folgt in verdünnten Lösungen ( 1) pk = p - lg(ca - /ca) (15) Diese Beziehung sagt aus, dass in verdünnten Lösungen der pk-wert einer schwachen Säure dann gleich dem p-wert der Lösung ist, wenn die Konzentration der undissoziierten Säure ca gleich der Konzentration des Anions ca - geworden ist. Dies tritt bei einer Säure-Basen- Titration dann ein, wenn die halbe Menge der zur Titration erforderlichen Laugenmenge verbraucht ist. Der in diesem Punkt gemessene p-wert ergibt dann den pk-wert, d.h. die Dissoziationskonstante der schwachen Säure. Man misst also während der Titration die Zellspannung einer p-messzelle (Glaselektrode) in Abhängigkeit von der Laugenzugabe. Aus der Titrationskurve p-wert gegen Laugenverbrauch erhält man den Laugenverbrauch am Äquivalenzpunkt und bei der älfte dieses Verbrauches einen Zellspannungswert, der aus der Kalibriergeraden der Glaselektrode den entsprechenden p-wert abzulesen gestattet.

Versuch E 11 5 3. Versuchsdurchführung (a) Die Wasserstoffelektrode wird mit der gesättigten Kalomelelektrode (SCE) als Bezugselektrode zu der galvanischen Zelle (3) zusammengestellt. Das Meßgefäß wird mit so viel Versuchslösung gefüllt, daß das platinierte Platinblech etwa zu /3 eintaucht. Der für die Messung erforderliche Wasserstoff wird einer Stahlflasche entnommen. Die Geschwindigkeit des Gasstromes wird mittels eines Schraubquetschhahnes so einreguliert, daß ca. 1 bis 3 Gasblasen pro Sekunde entweichen. Die Strömungsgeschwindigkeit des Wasserstoffs ist ohne Einfluß auf die Zellspannung. Zur Messung der Zellspannung dient ein hochohmiges Digitalvoltmeter. (Alternativ kann ein Präzisionskompensator in Verbindung mit einem hochempfindlichen Spiegelgalvanometer eingesetzt werden.) Da sich die Galvanispannung der Wasserstoffelektrode relativ langsam einstellt, wird die Zellspannung in Zeitabständen von 5-10 min gemessen, bis sich ein konstanter Endwert (+/- 1 mv) eingestellt hat. In der Regel ist dieser nach etwa 30-60 min erreicht. (b) Mit der Glaselektrodenmesszelle (ausgestattet mit interner gesättigter Silber/Silberchlorid- Elektrode in der Glaskugel und separater Bezugselektrode gleichen Typs in der Probelösung) werden die p-werte von 5-6 Pufferlösungen gemessen und anschließend eine Kalibriergerade der Zellspannung gegen den p-wert erstellt. Vor jeder Messung spült man zunächst die äußere Glaskugeloberfläche mit der zu vermessenden Pufferlösung ab und taucht dann die Glaselektrode bis knapp unter den Schaftansatz in diese Lösung. Nach 5 min hat sich zwischen beiden Ableitelektroden eine konstante Zellspannung eingestellt, die dann mit einem hochohmigen Messverstärker erfasst werden kann. (c) In analoger Weise wird bei der potentiometrischen Titration der unbekannten schwachen Säure verfahren. Diese wird auf ca. 100 ml mit dest. Wasser verdünnt, in ein 00 ml Becherglas gegeben. Nach Einbringen des Glaskörpers der Glaselektrode und der äußeren gesättigten Silber/Silberchloridelektrode wird der Magnetrührer einreguliert und anschließend mit 0,1 N NaO titriert. (Bitte Sicherheitsabstand zwischen Rührfisch und Glasmembran beachten!). In der Nähe des Äquivalenzpunktes wird die Lauge in 0,1ml - Schritten zugeführt. Nach Beendigung des Versuches ist die Messzelle sorgfältig mit destilliertem Wasser auszuspülen. Die ebenfalls abzuspülende platinierte Platinelektrode wird wieder unter destilliertem Wasser aufbewahrt.

Versuch E 11 6 4. Auswertung Der p-wert der unbekannten Elektrolytlösung wird unter Beachtung der Messbedingungen (T, p) nach Gl. 4 und 6 berechnet. (Welches Vorzeichen hat die gemessene Zellspannung?) E (SCE) für 5 C, 1 bar = + 0,41 V; E (SCE) für 0 C, 1bar = + 0,44 V Weiterhin ist die Kalibrierkurve für die Glaselektrode aufzunehmen und zu zeichnen, die Titrationskurve aufzunehmen und der pk-wert graphisch zu ermitteln. 5. Diskussion In der Diskussion ist jeweils eine möglichst quantitative Abschätzung der wesentlichen Versuchsfehler vorzunehmen und es sind diese Fehler zu bewerten. In diesem Zusammenhang ist auch der generelle Einfluss von Druck und Temperatur (z.b. bei Abweichungen von 40 mbar vom Standarddruck bzw. 5 K von der Tabellierungstemperatur 98,1 K) auf die Berechnung des p-wertes qualitativ und quantitativ zu diskutieren. 6. Kontrollfragen a) Mit ilfe welcher Elektroden lässt sich der p-wert einer Lösung bestimmen? Zählen Sie Vor- und Nachteile auf! b) Beschreiben Sie Aufbau und Funktionsweise einer Wasserstoffelektrode! c) Beschreiben Sie den Aufbau einer Kalomelelektrode! d) Was versteht man unter Elektroden. Art? e) Was ist ein Diffusionspotential EDIF f) Welchen Einfluss auf den p-wert hätte ein Diffusionspotential von 6 mv? g) Informieren Sie sich über Aufbau und Funktion der Glaselektrodenzelle zur p-messung! h) Was verstehen Sie unter dem Asymmetriepotential einer Glaselektrode? i) Was versteht man unter dem Alkalifehler der Glaselektrode? 7. Literaturhinweise [1] amann, Vielstich, Elektrochemie, Wiley, 005, Abschn.3.6.6, 3.6.7 sowie ggf. [] olze, Rudolf, Elektrochemisches Praktikum, Teubner, 001 [3] Wedler, LB der PC, Wiley,1997 [4] LW Chemie, LB 5, Abschn. 3.6. [5] LW Chemie, AB 5, Abschn. 1..3. [6] Schwabe, p-messung, Berlin 1980.