Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 20
Intuitiver Algorithmusbegriff Ein Algorithmus überführt Eingabedaten in Ausgabedaten (wobei die Art der Daten vom Problem, das durch den Algorithmus gelöst werden soll, abhängig ist), besteht aus einer endlichen Folge von Anweisungen mit folgenden Eigenschaften: es gibt eine eindeutig festgelegte Anweisung, die als erste auszuführen ist, nach Abarbeitung einer Anweisung gibt es eine eindeutig festgelegte Anweisung, die als nächste abzuarbeiten ist, oder die Abarbeitung des Algorithmus ist beendet und hat eindeutig bestimmte Ausgabedaten geliefert, die Abarbeitung einer Anweisung erfordert keine Intelligenz (ist also prinzipiell durch eine Maschine realisierbar). B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 21
Beispiele für Algorithmen der Gaußsche 1 Algorithmus zur Lösung von linearen Gleichungssystemen (über den rationalen Zahlen), Kochrezepte (mit Zutaten und Kochgeräten als Eingabe und dem fertigen Gericht als Ausgabe), Bedienungsanweisungen für Geräte, PASCAL-Programme. 1 Carl Friedrich Gauss, 1777 1855, deutscher Mathematiker. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 22
Idee der Turingmaschine 2 Arbeitsband beidseitig (potenziell) unendliches Band, in Felder eingeteilt; jedes Feld enthält einen Buchstaben aus dem Bandalphabet; zum Bandalphabet gehört das Leerzeichen oder Blank-Symbol. Schreib-Lesekopf über dem Band beweglich bearbeitet ein aktuelles Feld endliche Steuerung oder Kontrolle endliche Menge von internen Zuständen, die den Programmablauf regeln 2 Alan Mathison Turing (1912 1954), britischer Mathematiker, Logiker, Kryptoanalytiker und Computerkonstrukteur. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 23
Veranschaulichung einer Turingmaschine......... x y.. z # x $ 1.... 1... unendliches Band endliche Kontrolle Schreib-Lesekopf B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 24
Definition der Turingmaschine Eine (deterministische) Turingmaschine (kurz: TM) ist gegeben durch ein 7-Tupel M = (Z, Σ, Γ, δ, z 0,, E). Hierbei sind Z eine endliche Menge (Zustandsmenge), Σ ein Alphabet (Eingabealphabet), Γ ein Alphabet (Bandalphabet) mit Σ Γ, δ : (Z \ E) Γ Z Γ {L, R, N} eine Funktion (Überführungsfunktion), z 0 Z (Anfangszustand), Γ \ Σ (Leerzeichen, Blank), E Z (Menge der Endzustände). B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 25
Erstes Beispiel einer Turingmaschine Gegeben sei die Turingmaschine M = ({z 0, z 1, z 2, z e }, {0, 1}, {0, 1, }, δ, z 0,, {z e }), wobei δ wie folgt definiert ist. Wir geben dabei δ in einer Tabelle an, wobei im Kreuzungspunkt der Zeile mit der Bezeichnung a und der Spalte mit der Bezeichnung z der Funktionswert δ(z, a) steht. δ z 0 z 1 z 2 (z 1,, L) (z e, 1, N) (z e,, R) 0 (z 0, 0, R) (z 2, 1, L) (z 2, 0, L) 1 (z 0, 1, R) (z 1, 0, L) (z 2, 1, L) B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 26
Konfiguration einer Turingmaschine Eine Konfiguration k einer Turingmaschine M = (Z, Σ, Γ, δ, z 0,, E) ist ein Wort k Γ ZΓ. Dabei soll k = αzβ folgendermaßen interpretiert werden: αβ steht auf dem Eingabeband, des weiteren stehen nur noch Blankzeichen auf dem Band, die Turingmaschine befindet sich im Zustand z und der Kopf der Turingmaschine steht über dem ersten Symbol von β. Eine Startkonfiguration ist k 0 = z 0 w mit w Σ. Eine Endkonfiguration ist k e = m z e w n mit z e E, w Σ, m, n N. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 27
Die binäre Relation in der Menge der Konfigurationen (Änderung der Konfiguration in einem Schritt der TM) a 1... a m zb 1... b n a 1... a m z cb 2... b n falls δ(z, b 1 ) = (z, c, N), m 0, n 1, a 1... a m cz b 2... b n falls δ(z, b 1 ) = (z, c, R), m 0, n 2, a 1... a m 1 z a m cb 2... b n falls δ(z, b 1 ) = (z, c, L), m 1, n 1, a 1... a m zb 1 a 1... a m cz falls δ(z, b 1 ) = (z, c, R), m 0, zb 1... b n z cb 2... b n falls δ(z, b 1 ) = (z, c, L), n 1. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 28
Die binäre Relation * (Änderung der Konfiguration in endlich vielen Schritten der TM) Mit bezeichnen wir den reflexiven und transitiven Abschluss der binären Relation, also es gilt k 0 k e genau dann, wenn (i) k 0 = k e ist, oder (ii) eine Zahl n 0 und Konfigurationen k 1, k 2,..., k n existieren, so dass k 0 k 1 k 2 k n k e. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 29
Turingberechenbarkeit Eine Funktion f : Σ Σ heißt Turingberechenbar, falls es eine Turingmaschine M = (Z, Σ, Γ, δ, z 0,, E) gibt, so dass für alle x, y Σ gilt: f(x) = y genau dann, wenn z 0 x... z e y... für ein z e E. Eine Funktion f : N k N für ein k N heißt Turingberechenbar, falls es eine Turingmaschine M = (Z, {0, 1, #}, Γ, δ, z 0,, E) gibt, so dass für alle n 1, n 2,..., n k, m N gilt: f(n 1, n 2,..., n k ) = m genau dann, wenn für ein z e E : z 0 bin(n 1 )#bin(n 2 )#... #bin(n k )... z e bin(m)... B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 30
Beispiele für Turingberechenbare Funktionen Die Nachfolgerfunktion f : N N vermöge n f(n) = n + 1 ist Turingberechenbar, da die Turingmaschine aus unserem ersten Beispiel die Eingabe bin(n) in die Ausgabe bin(n + 1) transformiert. Die für alle Wörter aus {a, b} nicht-definierte Funktion Ω: {a, b} {a, b} vermöge w Ω(w) = nicht definiert ist Turing-berechenbar, da sie von der Turingmaschine M = ({z 0, z e }, {a, b}, {a, b, }, δ, z 0,, {z e }) mit δ(z 0, x) = (z 0, x, N) für alle x {a, b, } berechnet wird. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 31
Mehrband-Turingmaschinen k 1 Bänder (Eingabe/Ausgabe auf Band 1) Jedes Band hat einen eigenen Schreib-Lesekopf, der separat bewegt wird. Formal δ : Z Γ k Z Γ k {L, R, N} k B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 32
Äquivalenz von Mehrband- und (Einband)-TM Zu jeder Mehrband-TM M gibt es eine (Einband-)TM M, die dieselbe Funktion berechnet wie M. Mehrband-TM a a a b b a a b a b b a a a b a Einband-TM a a a b b a a b a b b a a a b a l k Bänder 1 Schritt 1 Band mit 2k Spuren 2(l + k) Schritte B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 33
Notationen : modifizierte Subtraktion : N 2 N vermöge (n 1, n 2 ) n 1 n 2 = { n 1 n 2 falls n 1 n 2, 0 sonst. Band := Band + 1 : TM, die zu einer Zahl 1 dazuaddiert Band(i) := Band(i) + 1 : k-band-tm, die auf i-tem Band 1 addiert und alle anderen Bänder unverändert läßt Band(i) := Band(i) 1 : k-band-tm, die auf i-tem Band 1 modifiziert subtrahiert und alle anderen Bänder unverändert läßt Band(i) := Band(j) : k-band-tm, die Inhalt des j-ten Bandes auf i-tes Band kopiert B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 34
Nacheinanderausführung von Turingmaschinen Seien M 1 und M 2 zwei Turingmaschinen, so wollen wir durch start M 1 M 2 stop oder auch durch M 1 ; M 2 diejenige Turingmaschine verstehen, die zuerst wie die Turingmaschine M 1 arbeitet und wenn M 1 einen Stopzustand erreichen würde in den Anfangszustand von M 2 übergeht und jetzt wie die Turingmaschine M 2 arbeitet. Sie stoppt dann, wenn M 2 einen Stopzustand erreichen würde. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 35
Beispiel für Nacheinanderausführung von TM Betrachten wir das Diagramm in folgender Abbildung. So erkennen wir, dass dort das schematische Flussbild einer Turingmaschine steht, welche dreimal nacheinander zur Zahl auf dem Band 1 addiert, also es sich um die Turingmaschine Band := Band + 3 handelt. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 36
Beispiel für Verzweigung von TM Folgende Abbildung stellt eine sich verzweigende TM dar. Sie soll nach Simulation der Turingmaschine M die Turingmaschine M 1 simulieren, falls sie bei der Simulation von M im Zustand z e1 stoppt. Analog soll sie die Turingmaschine M 2 abarbeiten, falls sie bei der Simulation von M im Zustand z e2 stoppt. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 37
Beispiel für Band (i) = 0? Es sei M = ({z 0, z 1, ja, nein}, Σ, Γ, δ, z 0,, {ja, nein}) mit 0 Σ sowie mit der Überführungsfunktion δ, gegeben durch δ(z 0, a) = (nein, a, N) für a 0, δ(z 0, 0) = (z 1, 0, R), δ(z 1, a) = (nein, a, L) für a, δ(z 1, ) = (ja,, L). Diese Turingmaschine testet, ob die Eingabe genau das Wort 0 ist. Falls ja, stoppt sie im Zustand ja, falls nein, stoppt sie im Zustand nein. Wir wollen diese Turingmaschine mit Band = 0? bezeichnen. Die k-band-tm, die das i-te Band auf 0 testet, nennen wir Band(i) = 0? B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 38
Beispiel für WHILE-Schleife Sei M eine beliebige Turingmaschine. start.. Band. (i) = 0?. M... nein ja. stop Dann bezeichnen wir die Turingmaschine, die durch das Diagramm gegeben ist, mit WHILE Band(i) 0 DO M. Die Arbeitsweise ist einfach zu erkennen. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 39
LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; := Schlüsselwörter: LOOP DO END B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 40
LOOP-Programme: Syntax Die Syntax von LOOP-Programmen wird wie folgt induktiv definiert. (i) Jede Wertzuweisung der Form x i := x j + c bzw. x i := x j c ist ein LOOP-Programm, wobei c eine Konstante ist. (ii) Sind P 1, P 2 LOOP-Programme, dann sind auch P 1 ; P 2 sowie LOOP x i DO P 1 END LOOP-Programme. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 41
LOOP-Programme: Semantik, Teil i) (i) Jede Wertzuweisung der Form x i := x j +c wird wie üblich interpretiert: der neue Wert der Variablen x i berechnet sich als Summe des Wertes der Variablen x j und der Konstanten c, wobei der Wert in der Variablen x j erhalten bleibt. Die Wertzuweisung x i := x j c wird analog interpretiert, wobei sich aber die Werte nach der sogenannten modifizierten Differenz, die wie folgt definiert ist n 1 n 2 = { n 1 n 2 falls n 1 n 2, 0 sonst, berechnen. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 42
LOOP-Programme: Semantik, Teil ii) ii) Ein LOOP-Programm der Form P 1 ; P 2 soll die Hintereinanderausführung der Programme P 1 und P 2 bedeuten, also zuerst wird das Programm P 1, dann das Programm P 2 ausgeführt. Ein LOOP-Programm der Form LOOP x i DO P 1 END bedeutet, dass das Programm P 1 sooft ausgeführt wird, wie der Wert der Variablen x i zu Beginn angibt. Änderungen des Wertes der Variablen x i haben also keinen Einfluss auf die Anzahl der Wiederholungen. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 43
LOOP-berechenbare Funktionen Eine Funktion f : N k N, k N, heißt LOOP-berechenbar, falls es ein LOOP-Programm P gibt, das f in dem Sinne berechnet, dass P, gestartet mit n 1, n 2,..., n k in den Variablen x 1, x 2,..., x k und 0 in den restlichen Variablen, mit dem Wert f(n 1, n 2,..., n k ) in der Variablen x 0 stoppt. Schreibweise: f = f k P B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 44
Erstes Beispiel einer LOOP-berechenbaren Funktion Gegeben sei das LOOP-Programm x 0 := x 1 + 0; LOOP x 2 DO x 0 := x 0 + 1 END Man erkennt leicht, dass das Programm mit dem Wert der Summe der Anfangsbelegungen der Variablen x 1 und x 2 in der Variablen x 0 stoppt. Es berechnet also die Addition +: N 2 N vermöge (x 1, x 2 ) +(x 1, x 2 ) = x 1 + x 2. Also ist die Addition LOOP-berechenbar. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 45
Zweites Beispiel einer LOOP-berechenbaren Funktion Gegeben sei das LOOP-Programm LOOP x 2 DO LOOP x 1 DO x 0 := x 0 + 1 END END Eine genaue Betrachtung des Programms zeigt, dass damit die Funktion : N 2 N vermöge (x 1, x 2 ) (x 1, x 2 ) = x 1 x 2, berechnet wird. Die Multiplikation ist damit also LOOP-berechenbar. Man beachte, dass die Anfangsbelegung der Variablen x 0 Definition 0 ist. Das wird hier gebraucht und verwendet. natürlich laut B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 46
Drittes Beispiel einer LOOP-berechenbaren Funktion Das Konstrukt IF x 1 = 0 THEN A ELSE B END wird durch das LOOP-Programm x 2 := 1; x 3 := 0; LOOP x 1 DO x 2 := 0; x 3 := 1 END; LOOP x 2 DO A END; LOOP x 3 DO B END simuliert. Dabei sind die Variablen x 2 und x 3 natürlich nicht in den Programmen A und B enthalten. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 47
Aussagen über LOOP-berechenbarer Funktionen Jede von einem LOOP-Programm berechnete Funktion ist total. (Da die Anzahl der Abläufe einer LOOP-Schleife endlich ist, stoppt das Programm bei jeder Eingabe.) Es gibt (intuitiv) berechenbare Funktionen, die nicht LOOP-berechenbar sind. (z.b. jede berechenbare Funktion, die nicht total ist) Es gibt totale und (intuitiv) berechenbare Funktionen, die nicht LOOPberechenbar sind. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 48
WHILE-Programme: Syntaktische Komponenten WHILE-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Trennsymbole: ; := Operationssymbole: + Schlüsselwörter: LOOP WHILE DO END B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 49
WHILE-Programme: Syntax Die Syntax von WHILE-Programmen wird wie folgt induktiv definiert. (i) Jede Wertzuweisung der Form x i := x j + c bzw. x i := x j c ist ein WHILE-Programm, wobei c eine Konstante ist. (ii) Sind P 1, P 2 WHILE-Programme, dann sind auch P 1 ; P 2 und LOOP x i DO P 1 END und WHILE x i 0 DO P 1 END WHILE-Programme. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 50
WHILE-Programme: Semantik, Teil i) Jede Wertzuweisung der Form x i := x j + c wird wie üblich interpretiert: der neue Wert der Variablen x i berechnet sich als Summe des Wertes der Variablen x j und der Konstanten c, wobei der Wert in der Variablen x j erhalten bleibt. Die Wertzuweisung x i := x j c wird analog interpretiert, wobei sich aber die Werte nach der sogenannten modifizierten Differenz, die wie folgt definiert ist { n 1 n 2 falls n 1 n 2, n 1 n 2 = 0 sonst, berechnen. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 51
WHILE-Programme: Semantik, Teil ii) Ein WHILE-Programm der Form P 1 ; P 2 soll die Hintereinanderausführung der Programme P 1 und P 2 bedeuten, also zuerst wird das Programm P 1, dann das Programm P 2 ausgeführt. Ein WHILE-Programm der Form LOOP x i DO P 1 END bedeutet, dass das Programm P 1 sooft ausgeführt wird, wie der Wert der Variablen x i zu Beginn angibt. Änderungen des Wertes der Variablen x i haben also keinen Einfluss auf die Anzahl der Wiederholungen. Ein WHILE-Programm der Form WHILE x i 0 DO P 1 END bedeutet, dass das Programm P 1 solange ausgeführt wird, wie der Wert der Variablen x i ungleich Null ist. Es findet also vor jedem erneuten Durchlauf des Programms P 1 eine Abfrage der Variablen x i statt. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 52
WHILE-berechenbare Funktionen Eine Funktion f : N k N, k N, heißt WHILE-berechenbar, falls es ein WHILE-Programm P gibt, das f in dem Sinne berechnet, dass P, gestartet mit n 1, n 2,..., n k in den Variablen x 1, x 2,..., x k und 0 in den restlichen Variablen, mit dem Wert f(n 1, n 2,..., n k ) in der Variablen x 0 stoppt. Ist f(n 1, n 2,..., n k ) dagegen nicht definiert, so stoppt P nicht. Schreibweise: f = f k P Folgerung: Jede LOOP-berechenbare Funktion ist WHILE-berechenbar. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 53
1. Beispiel einer WHILE-berechenbaren Funktion Das WHILE-Programm x 3 := x 1 5; WHILE x 3 0 DO x 1 := x 1 + 1 END; LOOP x 1 DO x 0 := x 0 + 1 END; LOOP x 2 DO x 0 := x 0 + 1 END berechnet die Funktion f : N 2 N vermöge f(x 1, x 2 ) = { x 1 + x 2 falls x 1 5, nicht definiert sonst. Folgerung: Es gibt WHILE-berechenbare Funktionen, die nicht LOOPberechenbar sind. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 54
2. Beispiel einer WHILE-berechenbaren Funktion Das WHILE-Programm x 1 := x 1 + 1; WHILE x 1 0 DO x 0 := x 0 + 1; LOOP x 2 DO x 1 := x 1 1 END END; x 0 := x 0 1 berechnet die ganzzahlige Division div : N 2 N vermöge { x 1 x x 1 div x 2 = 2 falls x 2 > 0, nicht definiert sonst. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 55
Äquivalenz von WHILE-Programmen und Turingmaschinen Satz: 1. Jede WHILE-berechenbare Funktion ist Turing-berechenbar. 2. Jede Turing-berechenbare Funktion ist WHILE-berechenbar. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 56
Simulation: WHILE-Programm durch Turingmaschine Mehrband-Turingmaschinen können Wertzuweisungen ausführen (wobei ein Band einer Variablen entspricht), Konstanten addieren und subtrahieren, hintereinander ausgeführt werden, WHILE-Schleifen ausführen. Damit kann man ein WHILE-Programm (mit k Variablen) durch eine (k-band-)turingmaschine simulieren. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 57
Simulation: Turingmaschine durch WHILE-Programm 1 Gegeben sei TM M = (Z, Σ, Γ, δ, z 1,, {z k }), wobei Z = {z 1, z 2,..., z k }, Γ = {a 1, a 2,..., a m }. Sei außerdem b eine Zahl mit b > m. Eine Turingmaschinen-Konfiguration a i1 a i2... a ip z l a j1 a j2... a jq wird durch drei Programmvariablen x, y, z mit den Werten x = (i 1 i 2... i p ) b, y = (j q j q 1... j 1 ) b, z = l repräsentiert; dabei bedeutet (i 1 i 2... i p ) b die Zahl i 1 i 2... i p in b-närer Darstellung, also x = p i µ b p µ, y = µ=1 q j µ b µ 1 µ=1 B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 58
Simulation: Turingmaschine durch WHILE-Programm 2 Stuktur des WHILE-Programmes mit Eingabe und Ausgabe auf y z := 1; WHILE z < k DO END a := y mod b; z := z; IF(z = 1 AND a = 1) THEN P 1,1 END; IF(z = 1 AND a = 2) THEN P 1,2 END;. IF(z = k 1 AND a = m) THEN P k 1,m END; Das Teilprogramm P i,j simuliert die Konfigurationsänderung für Zustand z i und Bandsymbol a j. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 59
Simulation: Turingmaschine durch WHILE-Programm 3 Stuktur des Teilprogrammes P i,j für δ(z i, a j ) = (z i, a j, L) z := i ; y := y div b; y := b y + j ; y := b y + (x mod b); x := x div b Entsprechend kann man sich die anderen Fälle vorstellen. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 60
Die Churchsche These Jede intuitiv berechenbare Funktion ist Turing-berechenbar. Die Churchsche These kann naturgemäß nicht bewiesen werden. Sie wird aber durch die Tatsache gestützt, dass zahlreiche weitere Modelle der Berechenbarkeit äquivalent zur Turing-Berechenbarkeit sind, z.b. Post- und Markov-Algorithmen, Registermaschinen, partiell-rekursive Funktionen. B. Reichel, R. Stiebe: Theoretische Informatik für Lehrer 61