Komplexitätsklassen P und NP

Größe: px
Ab Seite anzeigen:

Download "Komplexitätsklassen P und NP"

Transkript

1 Komplexitätsklassen P und Tim Jungnickel Technische Universität Berlin Fachgebiet für Modelle und Theorie Verteilter Systeme 9. Juli 2013 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

2 Agenda 1 Funktionenwachstum Komplexitätsklassen Reduktion -vollständige Probleme Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

3 Funktionenwachstum Funktionenwachstum Beispiel Wir berechnen verschiedene Funktionen auf einem Computer mit einer Geschwindigkeit von 1 µs pro elementarem Rechenschritt. n linear quadratisch exponentiell 1 1 µs 1 µs 2 µs µs 100 µs 1 ms µs 400 µs 1 sec µs 900 µs 18 min µs 2 ms 13 Tage µs 3 ms 36 Jahre µs 10 ms Jahre ms 1 sec... 1 Das Alter des Universums wird auf Jahre geschätzt. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

4 O-Notation Funktionenwachstum Definition: O-Notation Sei FN N N die Menge aller Funktionen auf den Natürlichen Zahlen und g FN Beispiel O(g) {f FN c R +, n 0 N. n n 0. f (n) c g(n)} O(n 2 ) {f FN c R +, n 0 N. n n 0. f (n) c n 2 } Lesart: Die Menge aller Funktionen die (nicht mehr als) quadratisches Wachstum haben. Einige Beispiele: n O(n 2 ), 5n 2 O(n 2 ), n 3 / O(n 2 ) Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

5 Wachstumsklassen Funktionenwachstum O(1) O(n) O(log n) O(n 2 ) O(n 3 ) O(k n ) mit k > 1 konstant linear logarithmisch quadratisch kubisch exponentiell Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

6 Komplexitätsklassen Komplexitätsklasse P P ist eine Menge von Sprachen Das Wortproblem einer Sprache aus P ist entscheidbar (Es ist möglich zu entscheiden, ob ein Wort in der Sprache ist oder nicht) Es gibt einen Algorithmus mit polynomiellem Aufwand, welcher das Wortproblem löst Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

7 Komplexitätsklassen Komplexitätsklasse P P ist eine Menge von Sprachen Das Wortproblem einer Sprache aus P ist entscheidbar (Es ist möglich zu entscheiden, ob ein Wort in der Sprache ist oder nicht) Es gibt einen Algorithmus mit polynomiellem Aufwand, welcher das Wortproblem löst Definition P P ist die Menge aller Sprachen, die sich von einer deterministischen (Turing-) Maschine in polynomialer Zeit entscheiden lassen. P k N{A Σ M DTM. A = L(M) dtime M O(n k )} Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

8 Komplexitätsklassen Nichtdeterminismus Deterministischer Algorithmus: Nichtdeterministischer Algorithmus: Lösung Lösung Laufzeit eines nichtdeterministischen Algorithmus Die Laufzeit eines nichtdeterministischen Algorithmus entspricht der Länge des Pfades der zu Lösung führt. Gibt es keine Lösung, so ist die Laufzeit 0. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

9 Komplexitätsklassen Komplexitätsklasse ist eine Menge von Sprachen Das Wortproblem einer Sprache aus ist entscheidbar (Es ist möglich zu entscheiden, ob ein Wort in der Sprache ist oder nicht) Es gibt einen nichtdeterministischen Algorithmus mit polynomiellem Aufwand, welcher das Wortproblem löst Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

10 Komplexitätsklassen Komplexitätsklasse ist eine Menge von Sprachen Das Wortproblem einer Sprache aus ist entscheidbar (Es ist möglich zu entscheiden, ob ein Wort in der Sprache ist oder nicht) Es gibt einen nichtdeterministischen Algorithmus mit polynomiellem Aufwand, welcher das Wortproblem löst Definition ist die Menge aller Sprachen, die sich von einer nichtdeterministischen (Turing-) Maschine in polynomialer Zeit entscheiden lassen. k N{A Σ M NTM. A = L(M) ntime M O(n k )} Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

11 Reduktion Reduktion Definition: Reduktion Seien A und B zwei Sprachen über dem Alphabet Σ. A ist reduzierbar auf B (geschrieben A B), wenn eine totale und berechenbare Funktion f : Σ Σ existiert, so dass: x Σ. x A f (x) B A ist polynomiell reduzierbar auf B (geschrieben A B), wenn f eine in polynomialer Zeit a berechenbare Funktion ist. a Abhängig von der Eingabegröße werden nur polynomiell viele Schritte ausgeführt, um die Funktion f zu berechnen. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

12 -schwer und -vollständig Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

13 -schwer und -vollständig Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

14 -schwer und -vollständig Sat Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

15 -schwer und -vollständig Sat Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

16 -schwer und -vollständig Sat Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

17 -schwer und -vollständig p Sat Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

18 -schwer und -vollständig p Sat Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

19 -schwer und -vollständig p Sat Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Definition -schwer Eine Sprache A ist -schwer, wenn alle Sprachen aus in polynomialer Zeit auf A reduzierbar sind. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

20 -schwer und -vollständig p Sat Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Definition -schwer Eine Sprache A ist -schwer, wenn alle Sprachen aus in polynomialer Zeit auf A reduzierbar sind. Definition -vollständig Eine Sprache A ist -vollständig, wenn A -schwer ist und A gilt. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

21 -schwer und -vollständig -vollständig Satz von Cook (1971) Alle Sprachen aus lassen sich in polynomialer Zeit auf Sat reduzieren. Sat ist in. Definition -schwer Eine Sprache A ist -schwer, wenn alle Sprachen aus in polynomialer Zeit auf A reduzierbar sind. Definition -vollständig Eine Sprache A ist -vollständig, wenn A -schwer ist und A gilt. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

22 -vollständig Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

23 -vollständig Variante 1: P (trivial) P (ungelöst) Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

24 -vollständig Variante 1: P (trivial) P (ungelöst) Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

25 -vollständig Variante 1: P (trivial) P (ungelöst) Variante 2: P P P (ungelöst, Tendenz) Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

26 -vollständig Variante 1: P (trivial) P (ungelöst) Variante 2: P P P (ungelöst, Tendenz) P Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

27 -vollständig Variante 1: P (trivial) P (ungelöst) Variante 2: P P P (ungelöst, Tendenz) P Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

28 -vollständig Variante 1: P (trivial) P (ungelöst) Variante 2: P P P (ungelöst, Tendenz) P Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

29 -vollständig Variante 1: P (trivial) P (ungelöst) Variante 2: P P P (ungelöst, Tendenz) P Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

30 -vollständig Variante 1: P (trivial) P (ungelöst) Variante 2: P P P (ungelöst, Tendenz) P Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

31 -vollständig Variante 1: P (trivial) P (ungelöst) Variante 2: P P P (ungelöst, Tendenz) P Aufgabe: Ein -vollständiges Problem auf ein Problem in P zu reduzieren. Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

32 -vollständige Probleme -vollständige Probleme In der Praxis existieren viele -vollständige Probleme für die es keinen effizienten Lösungsalgorithmus gibt. Graphprobleme [GJ79] Vertex Cover Clique Traveling Salesman Problem Chinese Postman Problem Erfüllbarkeitsprobleme in der Aussagenlogik [GJ79] 3SAT Weighted Monotone 2SAT Spiele Tetris [DHLN02] Minesweeper [Kay00] Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

33 Literatur Literatur [DHLN02] Erik D. Demaine, Susan Hohenberger, and David Liben-Nowell. Tetris is hard, even to approximate. CoRR, cs.cc/ , [GJ79] [Kay00] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of -Completeness. W. H. Freeman & Co., New York, NY, USA, Richard Kaye. Minesweeper ist np-complete, Tim Jungnickel Komplexitätsklassen P und 9. Juli / 13

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise

Mehr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr Definition 6 3SAT ist die Menge der booleschen Formeln in konjunktiver Normalform, die in jeder Klausel höchstens drei Literale enthalten und die erfüllbar sind. Satz 7 3SAT ist N P-vollständig. Info IV

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0 1 Das große O Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit f(n) c g(n) für alle n n 0 c, n 0 : konstant und größer als 0 O(g) beschreibt alle Probleme, die eine algorithmische

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 10. Komplexitätstheorie Theoretische Informatik Mitschrift Klassifikation algorithmischer Probleme (formalisiert als Sprachen) nach ihrem Bedarf an Berechnungsressourcen (= Rechenzeit, Speicherplatz als

Mehr

Diskrete Mathematik II

Diskrete Mathematik II Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 DiMa II - Vorlesung 01-04.04.2011 1 / 252 Organisatorisches Vorlesung: Mo 12-14 in HZO 70, Di 09-10

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Vollständigkeit 1 David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 20.05.2016 Übersicht Schwere Definition CIRCUIT-VALUE ist P-schwer

Mehr

NP-vollständige Probleme

NP-vollständige Probleme NP-vollständige Probleme Dr. Eva Richter 6. Juli 2012 1 / 13 NP-Vollständigkeit Definition Eine Sprache B heißt NP-vollständig, wenn sei zwei Bedingungen erfüllt: (i) B ist in NP (ii) Jedes Problem A in

Mehr

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP Formale Grundlagen der Informatik 1 Kapitel 21 Frank Heitmann heitmann@informatik.uni-hamburg.de 28. Juni Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Die Klassen Probleme in P := {L es gibt

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Programmieren und Problemlösen

Programmieren und Problemlösen Dennis Komm Programmieren und Problemlösen Komplexität von Algorithmen Frühling 2019 27. Februar 2019 Komplexität von Algorithmen Aufgabe Primzahltest Schreibe ein Programm, das eine ganze Zahl x als Eingabe

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 15. DIE POLYNOMIELL BESCHRÄNKTEN KOMPLEXITÄTSKLASSEN Theoretische Informatik (SoSe 2011) 15. Polynomiell beschränkte

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl

Mehr

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 4 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 4 : Komplexitätsklassen Informatik III - WS07/08 Kapitel 4 2 Sprachen, Probleme, Zeitkomplexität

Mehr

Formale Grundlagen der Informatik 1 Kapitel 20

Formale Grundlagen der Informatik 1 Kapitel 20 Formale Grundlagen der Informatik 1 Kapitel 20 Zeit- und Platzkomplexität Frank Heitmann heitmann@informatik.uni-hamburg.de 27. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/52 Motivation

Mehr

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Kapitel 1.4 Exkurs: Entscheidbarkeit und Komplexität Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Algorithmen Ein Algorithmus oder eine Rechenvorschrift ist ein effektives

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1 Motivation Michael Budahn - Theoretische Informatik 2 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Carlos Camino Einführung in die Theoretische Informatik SS 2015

Carlos Camino Einführung in die Theoretische Informatik SS 2015 Themenüberblick Dies ist eine Art Checkliste für die Klausurvorbereitung. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Besonders nützlich sind die Tabellen und Abbildungen auf den

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

FORMALE SYSTEME. Kompexitätsklassen. Deterministisch vs. nichtdeterministisch. Die Grenzen unseres Wissens. 25. Vorlesung: NP-Vollständigkeit

FORMALE SYSTEME. Kompexitätsklassen. Deterministisch vs. nichtdeterministisch. Die Grenzen unseres Wissens. 25. Vorlesung: NP-Vollständigkeit Kompexitätsklassen FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Komplexitätsklassen sind Mengen von Sprachen, die man (grob) einteilt entsprechend

Mehr

FORMALE SYSTEME. Kompexitätsklassen. Die Grenzen unseres Wissens. Deterministisch vs. nichtdeterministisch. 25. Vorlesung: NP-Vollständigkeit

FORMALE SYSTEME. Kompexitätsklassen. Die Grenzen unseres Wissens. Deterministisch vs. nichtdeterministisch. 25. Vorlesung: NP-Vollständigkeit Kompexitätsklassen FORMALE SYSTEME 25 Vorlesung: NP-Vollständigkeit Markus Krötzsch Professur für Wissensbasierte Systeme Komplexitätsklassen sind Mengen von Sprachen, die man (grob) einteilt entsprechend

Mehr

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit Wissenschaftliche Arbeitstechniken und Präsentation Dominik Fakner, Richard Hentschel, Hamid Tabibian, den 20.01.2012 Inhalt Definitionen Definition Nachweis Beispiel Reduktion Komplexitätsklasse Befasst

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

Theoretische Informatik. Berechenbarkeit

Theoretische Informatik. Berechenbarkeit Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

1 Zeit- und Platzklassen. 2 Schaltkreise. Reduktionen Many-One- Reduktionen Turing- Reduktionen und Orakel. Zusammenfassung

1 Zeit- und Platzklassen. 2 Schaltkreise. Reduktionen Many-One- Reduktionen Turing- Reduktionen und Orakel. Zusammenfassung Einführung für das Seminar Komplexität und Kryptologie Übersicht 1 2 23 und 30 April 2008 und 3 und und Turingmaschinen als erechnungsmodell Ressourcenverbrauch von Turingmaschinen Erweiterte Church sche

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1

1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1 1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1 Alphabet, Wort, Konkatenation, Sprache, Leere Sprache, Definition 1.1 Seien Σ 1 und Σ 2 zwei Alphabete. Eine Substitution von Σ 1 nach Σ 2 ist eine

Mehr

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-18: Jenseits von P und NP 1/43 Organisatorisches Nächste (letzte) Vorlesung: Mittwoch,

Mehr

Ist Tetris NP - Vollständig?

Ist Tetris NP - Vollständig? Ist Tetris NP - Vollständig? Michael König 30. April 2015 Tetris Allgemeines Geschichte Tetris Allgemeines Geschichte russischer Entwickler: Alexei Paschitnow Tetris Allgemeines Geschichte russischer Entwickler:

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Selbstreduzierbarkeit (von Joachim Selke, Mai 2005) Fünfter Vortrag im Rahmes des Seminars Perlen der Komplexitätstheorie

Selbstreduzierbarkeit (von Joachim Selke, Mai 2005) Fünfter Vortrag im Rahmes des Seminars Perlen der Komplexitätstheorie Selbstreduzierbarkeit (von Joachim Selke, Mai 2005) Fünfter Vortrag im Rahmes des Seminars Perlen der Komplexitätstheorie Vorbemerkungen Im folgenden werden nur Mengen über dem Alphabet Σ := {0, 1} betrachtet.

Mehr

8 Komplexitätstheorie

8 Komplexitätstheorie 8 Komplexitätstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundidee der Komplexitätstheorie

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Ziele. Kapitel 10: Komplexität von Algorithmen und Sortierverfahren. Beispiel: Lineare Suche eines Elements in einem Array (1)

Ziele. Kapitel 10: Komplexität von Algorithmen und Sortierverfahren. Beispiel: Lineare Suche eines Elements in einem Array (1) Einführung in die Informatik: Programmierung und Softwareentwicklung Wintersemester 2018/19 Ziele Kapitel 10: Komplexität von Algorithmen und Sortierverfahren Prof. Dr. David Sabel Lehr- und Forschungseinheit

Mehr

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-13: Polynomielle Reduktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-13: Polynomielle Reduktionen 1/46 Organisatorisches Nächste Vorlesungen: Donnerstag,

Mehr

Gliederung. 1. Einführung. 2. Polynominal Reduktion und NP-Vollständigkeit. 3. Geschichte. 4. Reale Probleme und Lösungsansetze 5.

Gliederung. 1. Einführung. 2. Polynominal Reduktion und NP-Vollständigkeit. 3. Geschichte. 4. Reale Probleme und Lösungsansetze 5. Gliederung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren Konsequenzen 2. Polynominal Reduktion und

Mehr

Asymptotik und Laufzeitanalyse

Asymptotik und Laufzeitanalyse und Vorkurs Informatik SoSe13 08. April 2013 und Algorithmen = Rechenvorschriften Wir fragen uns: Ist der Algorithmus effizient? welcher Algorithmus löst das Problem schneller? wie lange braucht der Algorithmus

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (I) 22.07.2015 und 23.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie 3. Endliche

Mehr

Einführung in die Theoretische Informatik Tutorium IX

Einführung in die Theoretische Informatik Tutorium IX Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Lerneinheit 5: Die Klasse NP Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 26.9.2015 Einleitung Thema dieser Lerneinheit

Mehr

Zunächst ein paar einfache "Rechen"-Regeln: Lemma, Teil 1: Für beliebige Funktionen f und g gilt:

Zunächst ein paar einfache Rechen-Regeln: Lemma, Teil 1: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Zunächst ein paar einfache "Rechen"-Regeln: G. Zachmann Informatik 1 - WS 05/06 Komplexität 22 Additionsregel Lemma, Teil 1: Für beliebige Funktionen f und g gilt: Zu beweisen: nur das

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 25. Vorlesung 01.02.2007 1 Approximation Viele wichtige Probleme sind NP-vollständig (also nicht effizient lösbar unter der Annahme P NP) Diese sind zu

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste (letzte) Vorlesung: Mittwoch, Januar 24, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

P = NP? Stefan Kranich. 9. Juni 2011

P = NP? Stefan Kranich. 9. Juni 2011 P = NP? Stefan Kranich 9. Juni 2011 Gliederung 1 Motivation 2 Komplexität 3 Berechnungsmodelle Turing-Maschine Blum-Shub-Smale-Maschine 4 Die Klassen P und NP 5 NP-schwer und NP-vollständig 6 Auflösung:

Mehr

Zusammenfassung Info3. Lydia Pintscher 20. März 2005

Zusammenfassung Info3. Lydia Pintscher 20. März 2005 Zusammenfassung Info3 Lydia Pintscher 20. März 2005 1 1 Automaten 1.1 DEA Ein deterministischer endlicher Automat besteht aus (Q,Σ,δ,s,F), wobei: Q: endliche Menge von Zuständen Σ: Alphabet, endliche Menge

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Algorithmen und Datenstrukturen Effizienz und Funktionenklassen

Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren,

Mehr

Wie man das Poissonsche Problem löst

Wie man das Poissonsche Problem löst Komplexitätstheorie 27.10.2004 Theorem 6 : Falls P = NP ist, dann ist auch E = NE. Padding : Technik zum übertragen von Kollapsresultaten nach oben Sei # є Σ ein neues Symbol. Für w є Σ* ist pad (w) :

Mehr

Theoretische Informatik. Komplexitätstheorie

Theoretische Informatik. Komplexitätstheorie Theoretische Informatik Komplexitätstheorie Inhalt Komplexität Nichtdeterministisch Polynomiale Probleme SAT ist NP-hart Polynomiale Reduzierbarkeit NP-Vollständige Probleme Effizienz von Lösungen Wir

Mehr

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 4 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 6. Dezember 2017 Abgabe 19. Dezember 2017, 11:00 Uhr

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 13

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 13 Prof. J. Esparza Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 13 Übungsblatt Wir unterscheiden

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Cryptanalytic Attacks on RSA

Cryptanalytic Attacks on RSA Seminar IT-Sicherheit Cryptanalytic Attacks on RSA 1.1 Introduction & 1.2 Computability, Complexity and Intractability von Toni Rein (winf100726@fh-wedel.de) im Sommersemester 2016 Dozent: Prof. Dr. Gerd

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte)

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) 1 Aufgabe 1 (19 Punkte) a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) Q, die endliche Zustandsmenge b) Was besagt die Church-Turing-These? (1 Punkt)

Mehr