Theoretische Informatik Mitschrift

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik Mitschrift"

Transkript

1 10. Komplexitätstheorie Theoretische Informatik Mitschrift Klassifikation algorithmischer Probleme (formalisiert als Sprachen) nach ihrem Bedarf an Berechnungsressourcen (= Rechenzeit, Speicherplatz als Funktion der Eingabelänge). Ziele: Entwicklung effizienter Verfahren Nachweis von oberen und unteren Schranken für die Komplexität von Problemen CYK-Algorithmus: O(n 3 ) ist obere Schranke für die Zeitkomplexität des Wortproblems für kontextfreie Sprachen. DFA: O(n) obere Schranke bei regulären Sprachen Nachweis unterer Schranken schwierig, weil Aussage für alle Algorithmen, die das Problem lösen, gelten muss. Vergleichsbasiertes Sortieren: Ω(n log n) 10.1 Die O-Notation Vergleich von Funktionen bezüglich ihres Wachstums Definition 10.1: Sei f, g :NN.O g:={ f c0 n 0 0 n n 0 : f n c g n} Sprechweise: f ist von der Ordnung g, falls f O g. g:={ f c0 n 0 0 n n 0 f n c g n} 1 g:={ f c0 n 0 0 n n 0 g n f n c gn} Schreibweise: O g n statt O g O f =O g, falls O f O g O f O g, falls O f O g Regeln: f 1 O g 1, f 2 Og 2 f 1 f 2 Omax {g 1, g 2 } f 1 f 2 Og 1 g 2 Satz 10.1: k c argumentweise Eine Polynomfunktion pn= a i n k vom Grad k hat die Ordnung O n k. i=0

2 Beweis (Induktion über k): k=0: p n=a 0 p O 1 O n k1 k k1: pn=a k1 n k1 k a i n k i=0 IV: On k Ordnung O max {n k 1,n k }=O n k1 q.e.d. Wichtige Beispiele: O1 O log n O n Onlog n On 2... O n k... O2 n k Komplexität von Algorithmen hier nur: Zeitkomplexität Algorithmen als Turingprogramme für Mehrband-Turingmaschine TM k (Σ) Zeit = Anzahl Schritte der Turingmaschine Platz = Anzahl besuchte Felder der Turingmaschine Definition 10.2: Sei TM k Mehrband-Turingmaschine. Definiere time : * N { } durch: time w:={min {l x 0 w Anfangskonfiguration bei Eingabe w l q,...} mit q,... hat keine Folgekonfiguration falls bei Eingabe von w stoppt sonst Bemerkung: Mehrband-Turingmaschine mit Rechenzeitbeschränkung f(n) kann durch eine Einband- Turingmaschine mit Beschränkung f(n) 2 simuliert werden alternative Berechnungsmodelle möglich Abschätzung der Rechenzeit der Anweisungen verschiedene Kostenmaße uniformes Kostenmaß Kosten pro atomarer Anweisung 1 nur realistisch bei Beschränkung der Speicherplatznforderung pro Datum P=in X 1 ;var X 2 ; X 2 :=2;loop X 1 X 2 := X 2 X 2 ; X 1 :=X 2 ; out X 1 P berechnet n2 2n uniformes Kostenmaß: O n, aber wir benötigen 2 n Bits zur Darstellung des Ergebnisses alternativ: logarithmisches Kostenmaß Berücksichtigung der Länge der Dualdarstellung der Variablenwerte im obigen O 2 n.

3 10.3 Die Klassen P und NP Definition 10.3: Sei f :NN. TIME f n:={l * DTM : L= L und w *:time w f w } P= TIME pn enthält die von deterministischen Turingmaschinen in Polynomzeit p Polynom erkennbaren Sprachen. Für P kann man Einband-Turingmaschine betrachten, weil Polynome unter Quadrieren abgeschlossen sind. P umfasst die Probleme/Sprachen, für die effiziente Algorithmen existieren. Algorithmen mit exponentieller Komplexität O 2 n,o n log n sind nicht effizient. P Klasse der Sprachen, deren charakteristische Funktion LOOP -berechenbar ist. MST : Bestimmung eines einen beliebigen Graphen aufspannenden Baumes mit minimalem Gewicht. Graph G=V,E,w mit Knotenmenge V (vertices), Kantenmenge E V V (edges) und Gewichtsfunktion w : E N V ={1,2,...,6} E={6,1,1,2,...} 7 w :{6,1 1,2 6 3,21... Aufspannender Baum von G:T E, so dass gilt: (V, T) ist zusammenhängender, azyklischer Teilgraph von G minimal aufspannender Baum (MST minimal spanning tree): e T w e ist minimal unter allen aufspannenden Bäumen T Kruskal-Algorithmus: Verwalte die Menge S von disjunkten Teilbäumen von G, die alle Knoten zusammen genommen umfassen. Zu Beginn sei S = V. Solange S mehr als einen Baum enthält, wiederhole: Wähle eine Kante minimalen Gewichts, die zwei Bäume t 1 und t 2 aus S verbindet Lösche t 1 und t 2 aus S und füge den Baum, der aus t 1 und t 2 und der Kante besteht, zu S hinzu. MST P : Algorithmus Kruskal V =n, E =e, Aufwand: O elog en

4 Definition 10.4: Sei f :NN. NTIME f n={l * TM k : L=L und w *:time w f w } NP := Polynome p NTIME p n "die von nichtdeterministischer Turingmaschine in Polynomialzeit entscheidbaren Sprachen" Offenes Problem (seit 1970 bekannt): P=NP oder P NP? TSP-Problem: Traveling Salesman Problem Gegeben: G = (V, E, w) wie beim MST-Problem. Gesucht wird ein Kreis in G, der alle Knoten umfasst und dessen Kantengewicht minimal ist. Jeder Knoten soll exakt einmal besucht werden. Hamiltonscher Kreis Obige Formulierung: Optimierungsproblem Entscheidungsproblem (ja/nein-problem) Füge Obergrenze k für Kantengewicht des Kreises hinzu und frage: Gibt es einen Kreis mit Kantengewicht k? Für das TSP ist kein Algorithmus bekannt, der wesentlich besser ist als der folgende: 1. Zähle systematisch alle Folgen v 1 v 2... v n von Knoten in G auf, die jeden Knoten genau einmal enthalten O n! Es gilt n!~ n n e 2 n Dies übersteigt für jede Konstante c schließlich 2 c n. 2. Teste, ob es sich bei einer Knotenfolge v 1 v 2... v n um einen Kreis handelt und das Knotengewicht unterhalb der Obergrenze liegt O n Eine nichtdeterministische Turingmaschine kann Folgen v 1... v n erraten und dann in Polynomzeit feststellen, ob es sich um eine Lösung handelt. TSP NP Charakteristisch für NP-Probleme: exponentiell großer Suchbaum für Lösungen nichtdeterministische Auswahl polynomieller Aufwand für die Feststellung, ob eine Lösung gefunden wurde Cook 1971, Karp 1972: Strukturtheorie für P-NP-Probleme: NP-Vollständigkeit

5 Bis auf wenige Ausnahmen sind NP-Probleme, für die kein polynomieller Algorithmus bekannt ist ( Kandidaten für NP \ P), so miteinander verknüpft, dass entweder alle Probleme polynomielle Algorithmen besitzen ( P = NP) oder keines ( P NP) 10.4 NP-Vollständigkeit Definition 10.5: Sei A, B *. A heißt auf B polynomiell reduzierbar, in Zeichen A p B, falls es eine totale und in Polynomzeit berechenbare Funktion f : * * gibt, so dass w *:w A f w B. Lemma: A p B B P A P A p B B NP A NP p ist transitiv. Beweis: Übung Definition 10.6: Sei A *. (i) A heißt NP-hart, falls für alle L NP gilt: L p A. (ii) A heißt NP-vollständig, falls A NP und A NP-hart. Satz 10.2: Sei A NP-vollständig. Dann gilt: A P P=NP. Satz 10.3 (Cook): Das Erfüllbarkeitsproblem der Aussagenlogik SAT ={codef F ist erfüllbare Formel der Aussagenlogik } ist NP-vollständig. Aussagenlogische Variablen: A, B,C,... Junktoren:,, } A B C Die Belegung {A false, Btrue,C...} erfüllt die Formel. Beweisidee: SAT NP ist einfach zu zeigen: Rate Belegung der aussagenlogischen Variablen}exponentiell viele und teste, ob Belegung die Formel wahr macht}einfach Hauptteil des Beweises von Satz 10.3: Nachweis der NP -Härte Zeige für jedes L NP : L p SAT Konstruiere eine aussagenlogische Formel F, so dass gilt: w L F erfüllbar 1. NP -vollständiges Problem Nachweis der Existenz weiterer NP-vollständiger Probleme erfolgt mittels Reduktion und ist daher einfacher.

6 Satz 10.4: SAT p 3SAT 3SAT: Aussagenlogische Formel in konjunktiver Normalform F =a a 1 i1... a k1... a k ik, wobei jedes a i j aussagenlogische Variable X i j oder negierte aussagenlogische Variable X i j ( a i j ist Literal) mit i j 3 für alle 1 j k 3SAT : Ist F erfüllbar? Beweis: Zeige, wie beliebige Formel der Aussagenlogik mit polynomiellen Aufwand in erfüllbarkeitsäquivalente 3-SAT-Formel F' transformiert werden kann: Erfüllbarkeitsäquivalenz: F erfüllbar F ' erfüllbar schwächer als logische Äquivalenz 1. Schritt Bringe alle Negationszeichen mit De Morgan zu den Variablen F G~ F G F G~ F G F = X 1 X 3 X 2 X 1 X 3 X 2 Baumdarstellung y 0 y 1 X 2 Blätter = Literale, innere Knoten = / -Verknüpfungen X 1 X 3 2. Schritt Ordne inneren Baumknoten neue Variablen aus {y 0, y 1,...} zu, beginnend mit der Wurzel 3. Schritt Erzeuge zu jedem Teilbaum op y i die Formel y i v op z v z im y 0 y 1 y 1 x 1 x 3 Bilde neue Formel F y 0 y 0... y 1... y k... im y 0 y 0 y 1 y 1 x 1 x 3 Es gilt: F erfüllbar F ist erfüllbar. 4. Schritt Transformiere y uop z in KNF y uop z u op z y y u op z uop z y im y 0 y 1 y 0 y 1 y 1 y 0

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Komplexitätstheorie Nico Döttling 8. Januar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion

Mehr

Algorithmische Spieltheorie

Algorithmische Spieltheorie Algorithmische Spieltheorie Grundlagen der Komplexitätstheorie Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit Wissenschaftliche Arbeitstechniken und Präsentation Dominik Fakner, Richard Hentschel, Hamid Tabibian, den 20.01.2012 Inhalt Definitionen Definition Nachweis Beispiel Reduktion Komplexitätsklasse Befasst

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei:

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei: Approximierbarkeit Ein Optimierungsproblem P ist gegeben durch ein Quadrupel wobei: P = (I, Sol, m, goal), I ist die Menge der Instanzen von P. Sol ist eine Funktion, die ein x I abbildet auf die Menge

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 16.12.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder Wie schwer ist SAT? Ziel: Nachweis, dass SAT eines der schwersten Probleme in NP ist: SAT ist das erste bekannte Beispiel eines NP-vollständigen Problems. Demnach kann SAT mit bisher bekannten Techniken

Mehr

Das P=NP-Problem. Besitzen (Entscheidungs-)Probleme mit einer Nichtdeterministischen. deterministische Polynomielle Lösung?

Das P=NP-Problem. Besitzen (Entscheidungs-)Probleme mit einer Nichtdeterministischen. deterministische Polynomielle Lösung? Das P=NP-Problem Besitzen (Entscheidungs-)Probleme mit einer Nichtdeterministischen Polynimiellen Lösung immer auch eine deterministische Polynomielle Lösung? Eines der bekanntesten offenen Probleme der

Mehr

NP Vollständigkeit. Patryk Mazur

NP Vollständigkeit. Patryk Mazur NP Vollständigkeit Patryk Mazur 04.05.2010 0.Gliderung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren

Mehr

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0 1 Das große O Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit f(n) c g(n) für alle n n 0 c, n 0 : konstant und größer als 0 O(g) beschreibt alle Probleme, die eine algorithmische

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Lösungen zur Ergänzung 12

Lösungen zur Ergänzung 12 Theoretische Informati II SS 018 Carlos Camino Lösungen zur Ergänzung 1 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig: N = {0, 1,,...} und N = {1,, 3,...}.

Mehr

Teil III: Komplexitätstheorie

Teil III: Komplexitätstheorie Teil III: Komplexitätstheorie 1. Vorbemerkungen bisher: welche Probleme sind entscheidbar (lösbar) und welche nicht? jetzt: welche entscheidbaren Probleme sind effizient zu lösen. Beispiel: es gibt 40!

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 22.12.2011 INSTITUT FÜR THEORETISCHE 0 KIT 09.01.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p 6.3 NP-Vollständigkeit 1 Polynomielle Reduzierbarkeit p 2 NP-vollständige Probleme = härteste Probleme in NP, alle anderen Probleme in NP darauf polynomiell reduzierbar 3 Satz: SAT ist NP-vollständig Definition

Mehr

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise

Mehr

Komplexitätstheorie P versus NP

Komplexitätstheorie P versus NP Komplexitätstheorie P versus NP Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 6. Januar 2014 Gliederung Komplexitätstheorie und die Komplexitätslandschaft

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1 Motivation Michael Budahn - Theoretische Informatik 2 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde

Mehr

Konjunktive Normalform

Konjunktive Normalform Konjunktive Normalform Eine Formel α in konjunktiver Normalform hat die Form α k 1 k 2... k r. Die Klauseln k 1,..., k r sind Disjunktionen von Literalen, also Disjunktionen von Variablen oder negierten

Mehr

NP-Vollständigkeit des Erfüllbarkeitsproblems

NP-Vollständigkeit des Erfüllbarkeitsproblems NP-Vollständigkeit des Erfüllbarkeitsproblems Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 25 Def: NP-Härte Definition (NP-Härte) Ein Problem L heißt NP-hart,

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 4 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 6. Dezember 2017 Abgabe 19. Dezember 2017, 11:00 Uhr

Mehr

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Helmut Veith Technische Universität München Organisatorisches Anmeldung zur Lehrveranstaltung: complexity@tiki.informatik.tu-muenchen.de

Mehr

1. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018

1. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 1. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP Formale Grundlagen der Informatik 1 Kapitel 21 Frank Heitmann heitmann@informatik.uni-hamburg.de 28. Juni Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Die Klassen Probleme in P := {L es gibt

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Lerneinheit 5: Die Klasse NP Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 26.9.2015 Einleitung Thema dieser Lerneinheit

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 15. DIE POLYNOMIELL BESCHRÄNKTEN KOMPLEXITÄTSKLASSEN Theoretische Informatik (SoSe 2011) 15. Polynomiell beschränkte

Mehr

Komplexitätsklassen P und NP

Komplexitätsklassen P und NP Komplexitätsklassen P und Tim Jungnickel Technische Universität Berlin Fachgebiet für Modelle und Theorie Verteilter Systeme 9. Juli 2013 This work is licensed under the Creative Commons Attribution-ShareAlike

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Vorname Nachname Matrikelnummer Hinweise Für

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Klausur SoSe Juli 2013

Klausur SoSe Juli 2013 Universität Osnabrück / FB6 / Theoretische Informatik Prof. Dr. M. Chimani Informatik D: Einführung in die Theoretische Informatik Klausur SoSe 2013 11. Juli 2013 (Prüfungsnr. 1007049) Gruppe: Batman,

Mehr

Einführung Erfüllbarkeitsproblem NP-Vollständigkeit Definition von NP Was wäre, wenn Was tun? Ideen und Konzepte der Informatik.

Einführung Erfüllbarkeitsproblem NP-Vollständigkeit Definition von NP Was wäre, wenn Was tun? Ideen und Konzepte der Informatik. Ideen und Konzepte der Informatik P versus NP Die Grenzen der (effizienter) Berechnung? Antonios Antoniadis Basiert auf Folien von Kurt Mehlhorn 8. Jan. 2018 8. Jan. 2018 1/24 Gliederung Ziele von Theorie/Grundlagenforschung

Mehr

Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013

Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013 P versus NP Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013 Gliederung Informelle Formulierung des P = NP Problems Das Erfüllbarkeitsproblem

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Zusammenfassung Info3. Lydia Pintscher 20. März 2005

Zusammenfassung Info3. Lydia Pintscher 20. März 2005 Zusammenfassung Info3 Lydia Pintscher 20. März 2005 1 1 Automaten 1.1 DEA Ein deterministischer endlicher Automat besteht aus (Q,Σ,δ,s,F), wobei: Q: endliche Menge von Zuständen Σ: Alphabet, endliche Menge

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen

Mehr

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge)

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) Universität des Saarlandes Theoretische Informatik (WS 2015) Fakultät 6.2 Informatik Team der Tutoren Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) 1 Berechenbarkeitstheorie Aufgabe 8.1 (Wahr oder

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Was ist überhaupt berechenbar? Was ist mit vernünftigem Aufwand berechenbar?

Was ist überhaupt berechenbar? Was ist mit vernünftigem Aufwand berechenbar? Effiziente Berechenbarkeit bisher: Frage nach der prinzipiellen Lösbarkeit von algorithmischen Fragestellungen Was ist überhaupt berechenbar? Rekursionstheorie jetzt: Frage nach der effizienten Lösbarkeit

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Komplexität von Problemen Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 3 Gesamtübersicht Organisatorisches; Einführung Algorithmenanalyse:

Mehr

Klassische Informationstheorie: Berechenbarkeit und Komplexität

Klassische Informationstheorie: Berechenbarkeit und Komplexität Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 4 Komplexitätstheorie Zeitkomplexität 3 Definition: Sei

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 17.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Evaluation Ergebnisse

Mehr

1. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018

1. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 1. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften

Mehr

Das Traveling Salesman Problem und das Assignment Problem zweiter Ordnung. Gerold Jäger

Das Traveling Salesman Problem und das Assignment Problem zweiter Ordnung. Gerold Jäger Das Traveling Salesman Problem und das Assignment Problem zweiter Ordnung Gerold Jäger Martin-Luther-Universität Halle-Wittenberg Zusammenarbeit mit Frank Fischer, Anja Lau, Paul Molitor DFG-Projekt: Toleranzbasierte

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr