Lösungen zur Ergänzung 12

Größe: px
Ab Seite anzeigen:

Download "Lösungen zur Ergänzung 12"

Transkript

1 Theoretische Informati II SS 018 Carlos Camino Lösungen zur Ergänzung 1 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig: N = {0, 1,,...} und N = {1,, 3,...}. Wir verwenden die erste. Bei uns gilt immer log = log. Wenn nicht explizit anders angegeben, sind Graphen immer ungerichtet und einfach. Ein Graph ist einfach, wenn er eine Schleifen oder Mehrfachanten besitzt. Für n N setzen wir [n] = {1,..., n} mit [0] = und [n] 0 = {0,..., n}. Aufgabe 1: Besprechung der Hausübungen auf Blatt 5. Lösung: 1. (i = (ii Sei L eine beliebige Sprache, die von einer Polynomialzeit-Turingmaschine M mit Orael für SAT erannt wird. Ersetzt man in M jeden Aufruf des SAT-Oraels durch einen Aufruf einer Polynomialzeit-Turingmaschine für SAT, so erhält man eine neue (i. A. nichtdeterministische Polynomialzeit-Turingmaschine für L. Somit ist L in NP und nach Annahme auch in P. (ii = (i Nach Annahme gilt SAT P. Nach Vorlesungsfolie 4.4 folgt sofort P = NP.. Sei InducedCycle das gegebene Problem. InducedCycle NP Mit guess and chec: Man ann eine nichtdeterministische Turingmaschine onstruieren, die die Liste der Knoten in C rät und dann in polynomieller Zeit überprüft (z. B. mit Tiefensuche, ob C ein induzierter Kreis ist. InducedCycle ist NP-hart Wir zeigen 3KNF-SAT p InducedCycle. Sei x die Kodierung einer 3KNF-Formel F = m n i i=1 j=1 l i,j = (l 1,1... l 1,n1... (l m,1... l m,nm. 1 Termin:

2 Dabei sei m die Anzahl der Klauseln und n i [3] die Anzahl der Literale in der i-ten Klausel. Wähle f(x als eine Kodierung der InducedCycle-Instanz (G, mit = m + 1 und G = (V, E einen Graph mit Knotenmenge und Kantenmenge V = {(i, j i [m] j [n i ]} [m] 0 E = {{(i, j, } i [m] j [n i ] [m] 0 i {0, 1}} {{(i, j, (, l} i, [m] j, l [n i ] l i,j l,l } {{0, m}}. f ist total und in Polynomialzeit berechenbar und für alle Kodierungen von 3KNF-Formeln x gilt: x 3KNF-SAT es gibt ein Modell A für F es gibt Zahlen j 1,..., j m [n i ] und eine Belegung A mit A(l i,ji = 1 für alle i [m] es gibt Zahlen j 1,..., j m [n i ] für die C = [m] 0 {(i, i j i [m]} ein induzierter Kreis in G der Größe C = m + 1 ist f(x InducedCycle. Da 3KNF-SAT NP-hart ist, ist es InducedCycle auch. Bemerung: Man beachte, dass die Knoten 0 und m nicht zu einem Knoten verschmolzen werden önnen, da sonst der Graph für die Formel F = x einen induzierten Kreis hätte, obwohl F erfüllbar ist. 3. Sei BoundedPCP das gegebene Problem. BoundedPCP PSPACE Mit guess and chec: Man ann eine nichtdeterministische Turingmaschine onstruieren, die wiederholt einen Index i l [] rät und nur das Teilstüc speichert, um das sich die Wörter x i1... x il und y i1... y il unterscheiden. Da dieses Teilstüc höchstens Länge l hat und l höchstens so groß wie die Eingabelänge ist, gilt: BoundedPCP NSPACE(n 1 NSPACE(n = PSPACE. BoundedPCP ist PSPACE-hart unter Polynomialzeitredutionen Sei BoundedMPCP wie BoundedPCP definiert, aber mit der Ausnahme, dass Lösungen mit i 1 = 1 beginnen müssen. Wir zeigen durch Angabe einer Masterredution, dass sich jede Sprache L PSPACE mittels p auf BoundedPCP reduzieren lässt. Dazu zeigen wir, analog zum Beweis der Unentscheidbareit von PCP, die Redutionsette L p BoundedMPCP p BoundedPCP. Sei dazu L PSPACE beliebig. Dann gibt es eine Turingmaschine M und ein Polynom p mit T (M = L und space M (x p( x für alle x L. Termin:

3 L p BoundedMPCP Sei x eine gegebene L-Instanz, d. h. ein Wort über dem Alphabet von L. Wähle f(x als die Kodierung einer BoundedMPCP-Instanz (P, l mit P die auf Vorlesungsfolien beschriebene PCP-Instanz und l = p( x. Aus space M (x p( x für alle x L folgt: x L wenn auf x angesetzt, verwendet M höchstens p( x Felder auf jedem Arbeitsband und hält P ist l-beschränt und jede Lösung beginnt mit i 1 = 1 f(x BoundedMPCP BoundedMPCP p BoundedPCP Sei x die Kodierung einer gegebenen BoundedMPCP-Instanz (P, l. Wähle f(x als die Kodierung einer BoundedPCP-Instanz (P, l mit P die PCP-Instanz, die durch die auf Vorlesungsfolien beschriebene Konstrution aus P entsteht, und l = l + 1. Aus der Konstrution von P und der Wahl von l folgt sofort: x BoundedMPCP f(x BoundedPCP. Aus der Transitivität von p folgt L p BoundedPCP für alle L PSPACE. Aufgabe : Entscheiden Sie für jedes der gegebenen Klassenpaare, welche Klasse in der jeweils anderen als Teilmenge enthalten ist und welche nicht. Beweisen Sie Ihre Antworten. 1. NTIME(n und DSPACE(n 3. DTIME(3n + (log n 4 und DTIME(n NSPACE( n und DSPACE(5 n Zusatzaufgaben: 4. NSPACE( (log n und DSPACE(n O(log n 5. NTIME(n und DTIME(n n+ 6. DSPACE(n 3 und NSPACE(n 7. DTIME(n + n log n und DTIME((n log n 8. DSPACE( O(n und DSPACE(3 O(n 9. NTIME((log n und DSPACE(3 (log n3 10. NSPACE((log n log n und NTIME(n Lösung: 3 Termin:

4 Für die Beweise werden die Aussagen aus den Vorlesungsfolien 31.3, 3., 33.1, 34.1 und 34.7 verwendet. Machen Sie sich bitte lar, an welchen Stellen welche Aussagen verwendet wurden und überprüfen Sie, dass alle notwendigen Bedingungen der jeweiligen Aussagen erfüllt sind. Erinnerung: Für a, b N mit a 0 gilt a b = b log a. 1. Wegen NTIME(n DSPACE(n DSPACE(n 3 ist NTIME(n eine echte Teilmenge von DSPACE(n 3.. Wegen DTIME(n + 1 = DTIME(O(n + 1 = DTIME(O(n sind beide Klassen gleich. 3. Wegen = DTIME(O(3n + (log n 3 = DTIME(3n + (log n 3 NSPACE( n DSPACE(( n = DSPACE(4 n DSPACE(5 n ist NSPACE( n eine echte Teilmenge von DSPACE(5 n. 4. Wegen NSPACE( (log n DSPACE(( (log n = DSPACE(4 (log n DSPACE(8 (log n = DSPACE( 3(log n c N = DSPACE(n O(log n DSPACE( c(log n = c N DSPACE(n c log n ist NSPACE( (log n eine echte Teilmenge von DSPACE(n O(log n. 5. Wegen NTIME(n DTIME( O(n = c N DTIME( cn DTIME( n log n DTIME(n n log n = DTIME(n n+ ist NTIME(n eine echte Teilmenge von DTIME(n n+. 6. Wegen NSPACE(n DSPACE(n DSPACE(n 3 ist NSPACE(n eine echte Teilmenge von DSPACE(n Wegen DTIME(n + n log n = DTIME(O(n + n log n = DTIME(O(n = DTIME(n DTIME(n (log n = DTIME((n log n ist DTIME(n + n log n eine echte Teilmenge von DTIME((n log n. 4 Termin:

5 8. Die Inlusion DSPACE( O(n DSPACE(3 O(n ist leicht zu sehen. Wir zeigen, dass die umgeehrte Inlusion ebenfalls gilt. Sei L DSPACE(3 O(n. Dann gibt es ein c N mit L DSPACE(3 cn. Da c eine natürliche Zahl ist, gilt dann L DSPACE(3 cn DSPACE(4 cn = DSPACE( cn DSPACE( c n = DSPACE( O(n. c N Somit sind DSPACE( O(n und DSPACE(3 O(n gleich. 9. Wegen NTIME((log n DTIME( O((log n = c N DTIME( c(log n DSPACE( (log n3 DSPACE(3 (log n3 ist NTIME((log n eine echte Teilmenge von DSPACE(3 (log n Wegen NTIME(n DSPACE(n DSPACE(n log log n NSPACE(n log log n = NSPACE( (log n log log n = NSPACE((log n log n ist NTIME(n eine echte Teilmenge von NSPACE((log n log n. Aufgabe 3 (Zusatzaufgabe: Sei A das folgende Problem: Gegeben: Ein Graph G = (V, E und Zahlen l, m N. Frage: Gibt es eine Menge S V mit S l und {e E e S} m? Zeigen Sie, dass dieses Problem NP-vollständig ist. Lösung: A NP Mit guess and chec: Man ann eine nichtdeterministische Turingmaschine onstruieren, die für jeden Knoten v V rät, ob dieser in S ist oder nicht und in polynomieller Zeit überprüft, ob die Bedingungen S l und {e E e S} m erfüllt sind. A ist NP-hart Wir reduzieren Clique auf A. Sei x die Kodierung einer Clique-Instanz (G,. Da Kanten zweielementige Mengen sind, hat eine beliebige Knotenmenge S höchstens ( S Kanten. Wählt man also f(x als die Kodierung einer A-Instanz (G, l, m mit demselben Graph G, l = und m = (, dann gilt: x Clique es gibt eine Menge S V mit S = und {e E e S} = ( ( es gibt eine Menge S V mit S und {e E e S} ( f(x A. 5 Termin:

6 Da Clique NP-hart ist, ist es A auch. Hinweise: Für natürliche Zahlen m, n N gilt: ( n m = n! m! (n m!. Die Richtung = in ( ist leicht zu sehen. Um die Richtung = zu zeigen, nimmt man S und {e E e S} ( an und folgt daraus: ( {e E e S} ( S d. h. ( ( {e E e S} ( und ( S (, also {e E e S} = und S =. ( (, 6 Termin:

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge)

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) Universität des Saarlandes Theoretische Informatik (WS 2015) Fakultät 6.2 Informatik Team der Tutoren Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) 1 Berechenbarkeitstheorie Aufgabe 8.1 (Wahr oder

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 27.11.2018 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Die

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr Definition 6 3SAT ist die Menge der booleschen Formeln in konjunktiver Normalform, die in jeder Klausel höchstens drei Literale enthalten und die erfüllbar sind. Satz 7 3SAT ist N P-vollständig. Info IV

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 01. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 01.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Komplexitätstheorie WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2008/09 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP Formale Grundlagen der Informatik 1 Kapitel 21 Frank Heitmann heitmann@informatik.uni-hamburg.de 28. Juni Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Die Klassen Probleme in P := {L es gibt

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Konjunktive Normalform

Konjunktive Normalform Konjunktive Normalform Eine Formel α in konjunktiver Normalform hat die Form α k 1 k 2... k r. Die Klauseln k 1,..., k r sind Disjunktionen von Literalen, also Disjunktionen von Variablen oder negierten

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1 Motivation Michael Budahn - Theoretische Informatik 2 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde

Mehr

Satz von Hennie und Stearns

Satz von Hennie und Stearns Satz von Hennie und Stearns Auch für Zeitklassen wäre es für viele Anwendungen praktisch, eine Form der Bandreduktion verwenden zu können. Ein naiver Zugang (mit Spuren) liefert die Beziehung DTIME(f )

Mehr

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit Wissenschaftliche Arbeitstechniken und Präsentation Dominik Fakner, Richard Hentschel, Hamid Tabibian, den 20.01.2012 Inhalt Definitionen Definition Nachweis Beispiel Reduktion Komplexitätsklasse Befasst

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 22.12.2011 INSTITUT FÜR THEORETISCHE 0 KIT 09.01.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 11 1. August 2011 Einführung in die Theoretische Informatik

Mehr

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 10. Komplexitätstheorie Theoretische Informatik Mitschrift Klassifikation algorithmischer Probleme (formalisiert als Sprachen) nach ihrem Bedarf an Berechnungsressourcen (= Rechenzeit, Speicherplatz als

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (I) 22.07.2015 und 23.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie 3. Endliche

Mehr

Algorithmische Spieltheorie

Algorithmische Spieltheorie Algorithmische Spieltheorie Grundlagen der Komplexitätstheorie Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

NP Vollständigkeit. Patryk Mazur

NP Vollständigkeit. Patryk Mazur NP Vollständigkeit Patryk Mazur 04.05.2010 0.Gliderung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren

Mehr

Speicherplatz-Komplexität 1 / 30

Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

NP-vollständige Probleme

NP-vollständige Probleme NP-vollständige Probleme Dr. Eva Richter 6. Juli 2012 1 / 13 NP-Vollständigkeit Definition Eine Sprache B heißt NP-vollständig, wenn sei zwei Bedingungen erfüllt: (i) B ist in NP (ii) Jedes Problem A in

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Komplexitätstheorie WiSe 2009/10 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2009/10 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2009/10 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 4 Komplexitätstheorie Zeitkomplexität 3 Definition: Sei

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Platzkomplexität David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 22.04.2016 Platzkomplexität Platzkomplexitätsklassen Zeit vs. Platzbedarf

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 23. Vorlesung 25.01.2007 1 NP-Vollständigkeit Definition: Eine Sprache S ist NP-vollständig, wenn: S NP S ist NP-schwierig, d.h. für alle L

Mehr

19. Nichtdeterministische Turingmaschinen und ihre Komplexität

19. Nichtdeterministische Turingmaschinen und ihre Komplexität 19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder

Mehr

1 Zeit- und Platzklassen. 2 Schaltkreise. Reduktionen Many-One- Reduktionen Turing- Reduktionen und Orakel. Zusammenfassung

1 Zeit- und Platzklassen. 2 Schaltkreise. Reduktionen Many-One- Reduktionen Turing- Reduktionen und Orakel. Zusammenfassung Einführung für das Seminar Komplexität und Kryptologie Übersicht 1 2 23 und 30 April 2008 und 3 und und Turingmaschinen als erechnungsmodell Ressourcenverbrauch von Turingmaschinen Erweiterte Church sche

Mehr

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 9. Dezember 2016 Abgabe 20. Dezember 2016, 11:00 Uhr

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven

Mehr

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-13: Polynomielle Reduktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-13: Polynomielle Reduktionen 1/46 Organisatorisches Nächste Vorlesungen: Donnerstag,

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Komplexitätstheorie 2

Komplexitätstheorie 2 Komplexitätstheorie 2 Montag und Donnerstag 14:15 15:45 Uhr in C - 221 1 echte Hierarchien Aus der Theorie der Formalen Sprachen ist bekannt, dass es Sprachen gibt, die entscheidbar aber nicht kontextsensitiv

Mehr

Komplexität und Komplexitätsklassen

Komplexität und Komplexitätsklassen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Seminar: Ausgewählte Kapitel der Informatik bei Prof. Dr. R. Schrader Seminarvortrag von Nils Rosjat Wintersemester 09 / 10 1 Einleitung Dieser

Mehr

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Vorname Nachname Matrikelnummer Hinweise Für

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

NP-Vollständigkeit des Erfüllbarkeitsproblems

NP-Vollständigkeit des Erfüllbarkeitsproblems NP-Vollständigkeit des Erfüllbarkeitsproblems Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 25 Def: NP-Härte Definition (NP-Härte) Ein Problem L heißt NP-hart,

Mehr

Reelle Komplexität - Grundlagen II

Reelle Komplexität - Grundlagen II Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Inforatik 1 Teil 6 Bernhard Nessler Institut für Grundlagen der Inforationsverabeitung TU Graz SS 2008 Übersicht 1 Reduktionen 2 Definition P- NP- 3 Sprachbeziehungen Klassenbeziehungen Turingreduktion

Mehr

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 4 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 4. Dezember 2018 Abgabe 18. Dezember 2018, 11:00 Uhr

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 16.12.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 3 Gesamtübersicht Organisatorisches; Einführung Algorithmenanalyse:

Mehr

Approximationskomplexität 1 / 53

Approximationskomplexität 1 / 53 Approximationskomplexität 1 / 53 Approximationsalgorithmen Ein Optimierungsproblem P besteht aus einer Menge I von Instanzen, einer Zielfunktion f, die nur nicht-negative reelle Zahlen annimmt, und für

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am..03 Randomisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013

Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013 P versus NP Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013 Gliederung Informelle Formulierung des P = NP Problems Das Erfüllbarkeitsproblem

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 15. DIE POLYNOMIELL BESCHRÄNKTEN KOMPLEXITÄTSKLASSEN Theoretische Informatik (SoSe 2011) 15. Polynomiell beschränkte

Mehr

Teil III: Komplexitätstheorie

Teil III: Komplexitätstheorie Teil III: Komplexitätstheorie 1. Vorbemerkungen bisher: welche Probleme sind entscheidbar (lösbar) und welche nicht? jetzt: welche entscheidbaren Probleme sind effizient zu lösen. Beispiel: es gibt 40!

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 4 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 6. Dezember 2017 Abgabe 19. Dezember 2017, 11:00 Uhr

Mehr

Komplexitätstheorie P versus NP

Komplexitätstheorie P versus NP Komplexitätstheorie P versus NP Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 6. Januar 2014 Gliederung Komplexitätstheorie und die Komplexitätslandschaft

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V8, 12.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Komplexitätstheorie Nico Döttling 8. Januar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012)

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012) Berlin, 05. Oktober 2012 Name:... Matr.-Nr.:... TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012) 1 2 3 4 5 6 7 Σ Bearbeitungszeit: 60 min.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr