(Schema-Management) Seminar Cloud Data Management WS 09/10. Hendrik Kerkhoff 1

Größe: px
Ab Seite anzeigen:

Download "(Schema-Management) Seminar Cloud Data Management WS 09/10. Hendrik Kerkhoff 1"

Transkript

1 (Schema-Management) Seminar Cloud Data Management WS 09/10 Hendrik Kerkhoff 1

2 Anforderungen an eine Multi-Tenancy Datenbank Erweiterung von klassischen Datenbanken Funktionsweise & Einsatzgebiete Schema-Mapping Techniken Performanz Beispiel: Force.com SaaS Multi-Tenancy DBS Hendrik Kerkhoff 2

3 Multi-tenancy refers to the ability to run multiple customers on a single software instance installed on multiple servers. This is done to increase resource utilization by allowing load balancing among tenants, and to reduce operational complexity and cost in managing the software to deliver the service. From a customer s perspective, multi-tenancy is transparent. The customer seems to have an instance of the software entirely to themselves. Most importantly, the customer s data is secure relative to other customer s data and customization can be employed to the degree the application supports it without regard to what other tenants are doing. [1] Bob Warfield Hendrik Kerkhoff 3

4 Private Table Layout Basic Table Layout Extension Table Layout Universal Table Layout Pivot Table Layout Chunk Table Layout Chunk Folding Hendrik Kerkhoff 4

5 Mandanten erhalten eigenes, logisches Schema Query Transformation Schicht (QTL) sorgt für Umwandlung der SQL Anfragen von logischem auf physisches Schema Metadaten Mandanten-Prioritäten für SLAs leicht realisierbar, da QTL vorgeschaltet Selbsterstellte Grafik Hendrik Kerkhoff 5

6 Cloud?? [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 6

7 Vorteile: Jeder Mandant hat eigenes Datenbank-Schema Leichte Realisierung von Erweiterungen Nur Umbenennung der Tabellen notwendig Nachteile Hohe Isolation = Konsolidierung ( Vereinheitlichbarkeit ) Hoher Speicherbedarf [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 7

8 Eine Tabelle für alle Mandanten Nutzung der Tenant ID zur Zuordnung der Daten Query Transformation Layer fügt Tenant ID an SELECT Name FROM Account SELECT Name FROM Account WHERE TenantID = 13 Account Tenant Aid Name Acme Gump Ball Big Selbsterstellte Grafik Hendrik Kerkhoff 8

9 Vorteile: Einfache Implementierung Geringer Speicherverbrauch Gut geeignet für einfache Anwendungen wie Blogs Nachteile Keine mandantenabhängigen Erweiterungen Hendrik Kerkhoff 9

10 Erweiterungen des Grundschemas durch zusätzliche Tabellen Tentant-Spalte Notwendig, da mehrere Mandanten eine Erweiterung nutzen können Row-Spalte Ermöglicht die Rekonstruktion der logischen Tabellen [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 10

11 Vorteile Nur Tabellen, die benötigt werden müssen gelesen werden Performanz-Gewinn Hohe Konsolidierung ( Vereinheitlichbarkeit ) Einfache Erweiterbarkeit Nachteile Rekonstruktion der logischen Tabellen durch zusätzliche Join- Operationen aufwändig Zusätzlicher Schreib-/Leseaufwand da nicht sichergestellt werden kann, dass Reihen in gleichem Speicherbereich hinterlegt sind (hohe Fragmentierung) Hendrik Kerkhoff 11

12 Tentant und Table Spalte Mehrere generische Spalten Flexibeler Datentyp, z.b. VARCHAR Mapping: Spalte Col n = Spalte n in logischer Tabelle Metadaten über Spaltentypen und logische Tabellen [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 12

13 Vorteile Rekonstruktionsaufwand gering, da alle Werte eines Datensatzes zusammen Problemlose Erweiterungen Nachteile Datentypen müssen umgewandelt werden, nicht typsicher Sehr breite Spalten notwendig Viele NULL-Werte Indizierung nicht praktikabel: entweder über alle Mandanten, oder gar nicht Hendrik Kerkhoff 13

14 Tenant, Table, Row und Column-Spalte Jedes Feld in der logischen Tabelle wird zu eigenem Datensatz in Pivot- Tabellen VARCHAR als Datentyp verteilte Universal Table Für jeden Datentyp eigene Tabelle Keine Speicherung von NULL-Werten notwendig Für Indizierung: neue Tabelle, z.b. Pivot Str Index [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 14

15 Vorteile Keine NULL-Werte Problemlose Erweiterbarkeit Wenig Metadaten notwendig Nachteile Logische Tabelle mit N-Spalten erfordert (N-1) Joins zur Rekonstruktion Geringerer Aufwand bei wenigen Spalten Hendrik Kerkhoff 15

16 Tentant, Table, Chunk und Row Spalten Chunks (= Blöcke ) identifizieren Reihenfolge der Werte Spalten mit verschiedenen Datentypen Spart Metadaten sowie Umwandlung der Daten Erlaubt das sinnvolle Indizieren von Spalten Durch das Ändern der Breite können Joins verringert werden auf Kosten eventueller NULL-Werte [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 16

17 Vorteile Einfache Erweiterungen Datentypen müssen nicht umgewandelt werden Nur eine Tabelle im Speicher Wenige Metadaten notwendig Nachteile Viele Selbst-Joins durch Haltung fast aller Daten im Arbeitsspeicher relativ geringe Kosten Hohe Flexibilität bedeutet aufwendige Query-Transformation Hendrik Kerkhoff 17

18 Mischung aus Extension Tables und Chunk Tables Oft / gemeinsam Benutzte Daten werden in einer Tabelle gespeichert Seltene Attribute werden in Chunk-Tabellen gespeichert * Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, Jan Rittinger: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques [2] Hendrik Kerkhoff 18

19 Vorteile Hohe Konsolidierung Eine Tabelle für gemeinsame Daten Erweiterbarkeit Typsicherheit gewährleistet Nachteile Transformationsaufwand Jedoch nicht größer als bei Chunk Tables Hendrik Kerkhoff 19

20 DB2 Datenbank auf 2.8Ghz Intel Xeon, 1GB Arbeitsspeicher, 2Gbit/s Ethernet Anbindung 10 Tabellen, Mandanten (1.4MB Daten / Mandant) 4 KB pro Tabelle je Schema 8 KB für Benutzerdaten inkl. Indizierung verschiedene Anfragen (Select, Insert, Update) mit unterschiedlicher Komplexität Extension Table Layout ohne Erweiterungen Hendrik Kerkhoff 20

21 [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 21

22 Kosten für JOINs [2] Aulbach et. Al: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques Hendrik Kerkhoff 22

23 Isolation Konsolidierung Erweiterbarkeit Transfor mationsa ufwand Sonstiges Private Table o ++ - Hoher Speicherbedarf Basic Table + ++ (o) Keine Erweiterungen Extension Table o - ggf. hoher Speicherbedarf Universal Table o o o - - Viele NULL-Werte - Keine Indizierung - nicht Typsicher Pivot Table o o Viele JOINS Chunk Table o o ++ o - Nur eine Tabelle - wenige Metadaten Chunk Folding o + ++ o - Gute Mischung Hendrik Kerkhoff 23

24 Von außen aufgesetzte Mandantenfähigkeit Nur Zwischenschicht kennt Verknüpfungen zwischen Daten Datenbanken werden zu Datentopf wenig Optimierung der Daten möglich Durch wenige Tabellen bessere Ausnutzung des Arbeitsspeichers Allerdings müssen logische Strukturen durch Joins wieder zusammengeführt werden Modifikation der Kerntabellen schwierig Kompatibilität der Mandanten muss gewährleistet sein, muss durch Versionierung hergestellt werden Hendrik Kerkhoff 24

25 Software-Entwicklungsplattform als Dienst Entwicklung von beliebigen SaaS-Applikationen Hosting von SaaS Fertige Funktionalitäten Benutzerverwaltung Datenmanagement Workflows Reporting Multi-Tenant Datenbank Universal Table Layout Optimierungen Hendrik Kerkhoff 25

26 Metadaten Datentabellen Spez. Pivot Tabellen [3] Salesforce.com: The Force.com Multitenant Architecture Hendrik Kerkhoff 26

27 Hendrik Kerkhoff 27

28 Private Table Schema Grid-Infrastruktur Geringe Hardwarekomplexität mit gemeinsamem Archivspeicher Replikation auf Mandantenebene zur Performanzsteigerung und Verfügbarkeit Eine globale Logging-Datei pro Mandant Hendrik Kerkhoff 28

29 Hendrik Kerkhoff 29

30 1. Bob Warfield, SmoothSpan Blog 27th October 2007, smoothspan.wordpress.com/2007/10/28/multitenancy-can-havea-161-cost-advantage-over-single-tenant/ 2. Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, Jan Rittinger: Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques, SIGMOD 08, ACM /08/0 3. Salesforce.com: The Force.com Multitenant Architecture, 2008, ForcedotcomBookLibrary/ Force.com_Multitenancy_WP_ pdf 4. Stefan Aulbach, Dean Jacobs, Alfons Kemper, Michael Seibold: A Comparison of Flexible Schemas for Software as a Service, SIGMOD 09, ACM /09/06 5. Dean Jacobs, Stefan Aulbach: Ruminations on Multi-Tenant Databases, BTW 2007, Hendrik Kerkhoff 30

Software as a Service, Cloud Computing und aktuelle Entwicklungen

Software as a Service, Cloud Computing und aktuelle Entwicklungen A. Göbel, Prof. Dr. K. Küspert Friedrich-Schiller-Universität Fakultät für Mathematik und Informatik Seminar am Lehrstuhl für Datenbanken und Informationssysteme Software as a Service, Cloud Computing

Mehr

Multi-Tenant-Datenbanken für SaaS (Schema Management)

Multi-Tenant-Datenbanken für SaaS (Schema Management) Universität Leipzig Fakultät für Mathematik und Informatik Institut für Informatik Professur Datenbanksysteme Seminararbeit Multi-Tenant-Datenbanken für SaaS (Schema Management) Betreuerin: Bearbeiter:

Mehr

Database Technology for SaaS (Software as a Service)

Database Technology for SaaS (Software as a Service) Database Technology for SaaS (Software as a Service) Multi-Tenant Database Enhancements Quality of Service Enabled Databases Alfons Kemper Fakultät für Informatik Technische Universität München Alfons

Mehr

Anforderungen von Cloud-Anwendungen an den Einsatz von Datenbanksystemen

Anforderungen von Cloud-Anwendungen an den Einsatz von Datenbanksystemen Anforderungen von Cloud-Anwendungen an den Einsatz von Datenbanksystemen Im Rahmen des Seminars Software as a Service, Cloud Computing und aktuelle Entwicklungen Friedrich Schiller Universität Jena Lehrstuhl

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

XQuery Implementation in a Relational Database System

XQuery Implementation in a Relational Database System Humboldt Universität zu Berlin Institut für Informatik XQuery Implementation in a Relational Database System VL XML, XPath, XQuery: Neue Konzepte für Datenbanken Jörg Pohle, pohle@informatik.hu-berlin.de

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

DB2 Codepage Umstellung

DB2 Codepage Umstellung DB2 Codepage Umstellung Was bei einer Umstellung auf Unicode zu beachten ist Torsten Röber, SW Support Specialist DB2 April 2015 Agenda Warum Unicode? Unicode Implementierung in DB2/LUW Umstellung einer

Mehr

XML in der Oracle Datenbank "relational and beyond"

XML in der Oracle Datenbank relational and beyond XML in der Oracle Datenbank "relational and beyond" Ulrike Schwinn (Ulrike.Schwinn@oracle.com) Oracle Deutschland GmbH Oracle XML DB Ein Überblick 1-1 Agenda Warum XML in der Datenbank? Unterschiedliche

Mehr

Database Technology for SaaS (Software as a Service)

Database Technology for SaaS (Software as a Service) Database Technology for SaaS (Software as a Service) Multi-Tenant Database Enhancements Quality of Service Enabled Databases Prof. Alfons Kemper, Ph.D. Fakultät für Informatik Technische Universität München

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

7. XML-Datenbanksysteme und SQL/XML

7. XML-Datenbanksysteme und SQL/XML 7. XML-Datenbanksysteme und SQL/XML Native XML-DBS vs. XML-Erweiterungen von ORDBS Speicherung von XML-Dokumenten Speicherung von XML-Dokumenten als Ganzes Generische Dekomposition von XML-Dokumenten Schemabasierte

Mehr

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015 Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends Cloud-Datenbanken Franz Anders 02.07.2015 Dies ist das erweiterte Abstract zum Vortrag Cloud-Datenbanken für das Oberseminar Datenbanksysteme

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

Datenbanken für Online Untersuchungen

Datenbanken für Online Untersuchungen Datenbanken für Online Untersuchungen Im vorliegenden Text wird die Verwendung einer MySQL Datenbank für Online Untersuchungen beschrieben. Es wird davon ausgegangen, dass die Untersuchung aus mehreren

Mehr

MySQL Cluster und MySQL Proxy

MySQL Cluster und MySQL Proxy MySQL Cluster und MySQL Proxy Alles Online Diese Slides gibt es auch unter: http://rt.fm/s4p Agenda (Don't) Panic Web- und MySQL-Server MySQL Master-Master Cluster MySQL Proxy und Cluster MySQL Master-Slave/Master

Mehr

Raumbezogene Datenbanken (Spatial Databases)

Raumbezogene Datenbanken (Spatial Databases) Raumbezogene Datenbanken (Spatial Databases) Ein Vortrag von Dominik Trinter Alexander Christian 1 Inhalte Was ist ein raumbezogenes DBMS? Modellierung Abfragen Werkzeuge zur Implementierung Systemarchitektur

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Microsoft Azure Fundamentals MOC 10979

Microsoft Azure Fundamentals MOC 10979 Microsoft Azure Fundamentals MOC 10979 In dem Kurs Microsoft Azure Fundamentals (MOC 10979) erhalten Sie praktische Anleitungen und Praxiserfahrung in der Implementierung von Microsoft Azure. Ihnen werden

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Relationales Datenbanksystem Oracle

Relationales Datenbanksystem Oracle Relationales Datenbanksystem Oracle 1 Relationales Modell Im relationalen Modell wird ein relationales Datenbankschema wie folgt beschrieben: RS = R 1 X 1 SC 1... R n X n SC n SC a a : i=1...n X i B Information

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

SQL Azure Technischer Überblick. Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk

SQL Azure Technischer Überblick. Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk SQL Azure Technischer Überblick Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Haftungsausschluss Microsoft kann für die Richtigkeit und Vollständigkeit

Mehr

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse?

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Ein Beispiel Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Dipl.-Kfm. Claus Häberle WS 2015 /16 # 42 XML (vereinfacht) visa

Mehr

Hardware versus Brainware

Hardware versus Brainware Software & Informatik Hardware versus Brainware Lothar Flatz Senior Principal Consultant Anatomie eines SQL Befehls Ich stelle mich vor... Wer bin ich? über 25 Jahre Oracle Database Erfahrung (beginnend

Mehr

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH Windows Azure für Java Architekten Holger Sirtl Microsoft Deutschland GmbH Agenda Schichten des Cloud Computings Überblick über die Windows Azure Platform Einsatzmöglichkeiten für Java-Architekten Ausführung

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Anforderungen von Cloud-Anwendungen an den Einsatz von Datenbanksystemen

Anforderungen von Cloud-Anwendungen an den Einsatz von Datenbanksystemen Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Lehrstuhl für Datenbanken und Informationssysteme Anforderungen von Cloud-Anwendungen an den Einsatz von Datenbanksystemen Im

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

HaskellDB. Datenbank-Features in Haskell. 15.01.2013 Johannes Reiher

HaskellDB. Datenbank-Features in Haskell. 15.01.2013 Johannes Reiher HaskellDB Datenbank-Features in Haskell Gliederung Was ist HaskellDB? Installation ORM Funktionsweise Vor- und Nachteile Was ist HaskellDB? Datenbank-Interface-Bibliothek Ursprünglich für Hugs entwickelt

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

7. Übung - Datenbanken

7. Übung - Datenbanken 7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006 Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN

Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN Vorstellung der Diplomarbeit Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN Oberseminar Datenbanken WS 05/06 Diplomand: Oliver Schmidt Betreuer:

Mehr

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen.

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. 1 In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. Zunächst stellt sich die Frage: Warum soll ich mich mit der Architektur eines DBMS beschäftigen?

Mehr

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,

Mehr

Datenmanagement in Android-Apps. 16. Mai 2013

Datenmanagement in Android-Apps. 16. Mai 2013 Datenmanagement in Android-Apps 16. Mai 2013 Überblick Strukturierung von datenorientierten Android-Apps Schichtenarchitektur Möglichkeiten der Datenhaltung: in Dateien, die auf der SDCard liegen in einer

Mehr

GridMate The Grid Matlab Extension

GridMate The Grid Matlab Extension GridMate The Grid Matlab Extension Forschungszentrum Karlsruhe, Institute for Data Processing and Electronics T. Jejkal, R. Stotzka, M. Sutter, H. Gemmeke 1 What is the Motivation? Graphical development

Mehr

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs])

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Hochschule für Technik, Wirtschaft und Kultur Leipzig 06.06.2008 Datenbanken II,Speicherung und Verarbeitung großer Objekte

Mehr

Es geht also im die SQL Data Manipulation Language.

Es geht also im die SQL Data Manipulation Language. 1 In diesem Abschnitt wollen wir uns mit den SQL Befehlen beschäftigen, mit denen wir Inhalte in Tabellen ( Zeilen) einfügen nach Tabelleninhalten suchen die Inhalte ändern und ggf. auch löschen können.

Mehr

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Datensatzhistorie mit dem SQL Server 2000 und 2005 Datensatzhistorie mit dem SQL Server 2000 und 2005-2 - Inhalt

Mehr

MySQL Replikation. Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de 19.11.2013. linsenraum.de

MySQL Replikation. Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de 19.11.2013. linsenraum.de MySQL Replikation Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de linsenraum.de 19.11.2013 Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de (linsenraum.de) MySQL Replikation 19.11.2013 1 / 37 Who

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken

Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken Version 2.0 D-28359 Bremen info@indi-systems.de Tel + 49 421-989703-30 Fax + 49 421-989703-39 Inhaltsverzeichnis Was ist die QuickHMI-Schnittstelle

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

A Generic Database Web Service for the Venice Lightweight Service Grid

A Generic Database Web Service for the Venice Lightweight Service Grid A Generic Database Web Service for the Venice Lightweight Service Grid Michael Koch Bachelorarbeit Michael Koch University of Kaiserslautern, Germany Integrated Communication Systems Lab Email: m_koch2@cs.uni-kl.de

Mehr

Performanceaspekte in der SAP BI Modellierung

Performanceaspekte in der SAP BI Modellierung Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Seminar XML und Datenbanken Andreas Krug. XML -Unterstützung durch IBM DB2

Seminar XML und Datenbanken Andreas Krug. XML -Unterstützung durch IBM DB2 Seminar XML und Datenbanken Andreas Krug XML -Unterstützung durch IBM DB2 Fahrplan 1. XML-enabled Unterstützung vs. native XML Unterstützung 2. Nachteile der relationalen XML- Unterstützung 3. Native XML-Verarbeitung

Mehr

Granite Gerhard Pirkl

Granite Gerhard Pirkl Granite Gerhard Pirkl 2013 Riverbed Technology. All rights reserved. Riverbed and any Riverbed product or service name or logo used herein are trademarks of Riverbed Technology. All other trademarks used

Mehr

Datenbanksysteme für Business, Technologie und Web. Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S

Datenbanksysteme für Business, Technologie und Web. Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S Datenbanksysteme für Business, Technologie und Web Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S Christoph Gollmick gollmick@informatik.uni-jena.de Friedrich-Schiller-Universität

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

SQL-INJECTIONS. N E T D E V E L O P E R S G R O U P B E R L I N B R A N D E N B U R G, 0 5. 0 4. 2 0 1 2

SQL-INJECTIONS. N E T D E V E L O P E R S G R O U P B E R L I N B R A N D E N B U R G, 0 5. 0 4. 2 0 1 2 SQL-INJECTIONS. N E T D E V E L O P E R S G R O U P B E R L I N B R A N D E N B U R G, 0 5. 0 4. 2 0 1 2 Wie sind die nur wieder an meine Kreditkartendaten gekommen? http://www.testedich.de/quiz29/picture/pic_1312394875_7.jpg

Mehr

Vollständig generisches DWH für kleine und mittelständische Unternehmen

Vollständig generisches DWH für kleine und mittelständische Unternehmen Vollständig generisches DWH für kleine und mittelständische Unternehmen Marc Werner Freiberufler Berlin Schlüsselworte: Wirtschaftlichkeit, Kostenreduzierung, Metadaten, Core Data Warehouse, Slowly Changing

Mehr

1001 Möglichkeiten eine Staging Area zu füllen. Sven Bosinger its-people GmbH

1001 Möglichkeiten eine Staging Area zu füllen. Sven Bosinger its-people GmbH Ausgangslage Szenarien Populate the Stage - 1001 Möglichkeiten eine Staging Area zu füllen Sven Bosinger its-people GmbH 1 Sven Bosinger Solution Architect BI und Portfoliomanagement BI its-people GmbH

Mehr

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse Seminar Advanced Data Warehouse Thema: Index Selection Vortrag von Stephan Rieche gehalten am 2. Februar 2004 Download:.../~rieche Inhalt des Vortrages 1. Einleitung - Was ist das Index Selection Problem?

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

Datenbanken. Ein DBS besteht aus zwei Teilen:

Datenbanken. Ein DBS besteht aus zwei Teilen: Datenbanken Wikipedia gibt unter http://de.wikipedia.org/wiki/datenbank einen kompakten Einblick in die Welt der Datenbanken, Datenbanksysteme, Datenbankmanagementsysteme & Co: Ein Datenbanksystem (DBS)

Mehr

Foreign Data Wrappers

Foreign Data Wrappers -Angebot Foreign Data Wrappers Postgres ITos GmbH, CH-9642 Ebnat-Kappel Swiss Postgres Conference 26. Juni 2014 Foreign Data Wrapper Postgres -Angebot Foreign Data Wrapper? Transparente Einbindung (art-)fremder

Mehr

Projektseminar "Texttechnologische Informationsmodellierung"

Projektseminar Texttechnologische Informationsmodellierung Projektseminar "Texttechnologische Informationsmodellierung" Speicherung von Korpora Ziele dieser Sitzung Nach dieser Sitzung sollten Sie: einen Überblick über die Alternativen zur Speicherung von Korpusdaten

Mehr

Wirtschaftsinformatik 2. Tutorium im WS 11/12

Wirtschaftsinformatik 2. Tutorium im WS 11/12 Wirtschaftsinformatik 2. Tutorium im WS 11/12 Entity/Relationship-Modell SQL Statements Tutorium Wirtschaftsinformatik WS 11/12 2.1 Datenmodellierung mit ERM (1) Datenmodellierung zur Erarbeitung des konzeptionellen

Mehr

Dokumentenorientierte Datenbanken - MongoDB

Dokumentenorientierte Datenbanken - MongoDB Dokumentenorientierte Datenbanken - MongoDB Jan Hentschel Ultra Tendency UG Übersicht Dokumente sind unabhängige Einheiten Bessere Performance (zusammengehörige Daten werden gemeinsam gelesen) Objektmodell

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 22. April 2013 - MySQL Sebastian Cuy sebastian.cuy@uni-koeln.de Datenbanken Was sind eigentlich Datenbanken? Eine

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Der Neue Weg zur Verschlüsselung von Datenbankinhalten

Der Neue Weg zur Verschlüsselung von Datenbankinhalten Der Neue Weg zur Verschlüsselung von Datenbankinhalten Da Häufigkeit und Schwere von Datendiebstahl zunehmen, ist es immens wichtig, dass Unternehmen vertrauliche und sensible Daten zusätzlich durch Verschlüsselung

Mehr

Anforderungen an Datenbankservices in SOA-basierten Lösungen. Liane Will SAP AG/ Otto-von-Güricke-Universität Magdeburg 6.5.2010

Anforderungen an Datenbankservices in SOA-basierten Lösungen. Liane Will SAP AG/ Otto-von-Güricke-Universität Magdeburg 6.5.2010 Anforderungen an services in SOA-basierten Lösungen Liane Will SAP AG/ Otto-von-Güricke-Universität Magdeburg 6.5.2010 Diplom-Mathematikerin Seit 1997 bei SAP AG Berlin im Active Global Support Best Practices

Mehr

Interaktive Webseiten mit PHP und MySQL

Interaktive Webseiten mit PHP und MySQL Interaktive Webseiten mit PHP und Vorlesung 4: PHP & Sommersemester 2003 Martin Ellermann Heiko Holtkamp Sommersemester 2001 Hier noch ein wenig zu (My)SQL: SHOW INSERT SELECT ORDER BY GROUP BY LIKE /

Mehr

Terminierungs-Analyse von SQL-Triggern. Sommersemester 05 T. Jahn Seminar Intelligente Datenbanken SQL-Trigger: Terminierungs-Analyse 1

Terminierungs-Analyse von SQL-Triggern. Sommersemester 05 T. Jahn Seminar Intelligente Datenbanken SQL-Trigger: Terminierungs-Analyse 1 Terminierungs- von SQL-Triggern T. Jahn Seminar Intelligente Datenbanken SQL-Trigger: Terminierungs- 1 Terminierungs- von SQL-Triggern Seminar Intelligente Datenbanken Prof. Dr. R. Manthey Andreas Behrend

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Fortbildung elearning

Fortbildung elearning Media Design Center (MDC) Fortbildung elearning elearningcms Content Management and Modelling http://elearning.tu-dresden.de/fortbildung elearning@tu-dresden.de Christian Meier Motivation Erstellung und

Mehr

Was ist Windows Azure? (Stand Juni 2012)

Was ist Windows Azure? (Stand Juni 2012) Was ist Windows Azure? (Stand Juni 2012) Windows Azure Microsofts Cloud Plattform zu Erstellung, Betrieb und Skalierung eigener Cloud-basierter Anwendungen Cloud Services Laufzeitumgebung, Speicher, Datenbank,

Mehr

Wie profitiert SAP MaxDB von SSD Technologie?

Wie profitiert SAP MaxDB von SSD Technologie? Wie profitiert SAP MaxDB von SSD Technologie? Direktor Software und Services SAP MaxDB InfoTage 2014 15.-25. September 2014 Purpose Agenda MaxDB ENTERPRISE EDITION Including Mobile DB Monitor MaxDB & SSD

Mehr

AZURE ACTIVE DIRECTORY

AZURE ACTIVE DIRECTORY 1 AZURE ACTIVE DIRECTORY Hype oder Revolution? Mario Fuchs Welcome 2 Agenda 3 Was ist [Azure] Active Directory? Synchronization, Federation, Integration Praktische Anwendungen z.b.: Multifactor Authentication

Mehr

Object Relational Mapping Layer

Object Relational Mapping Layer Object Relational Mapping Layer Views Controlers Business logic GUI OO-application logic Object-relational-Mapping Relational DBMS PHP (propel) 1/18 Propel - Persistance Layer OR-Mapper für PHP Portierung

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling 30. Juni 2006 - Technische Universität Kaiserslautern Paul R. Schilling ! " #$% & '( ( ) *+, - '. / 0 1 2("$ DATEN SIND ALLGEGENWÄRTIG Bill Inmon, father of data warehousing Unternehmen In einer vollkommenen

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Erstellen einer Datenbank. Datenbankabfragen

Erstellen einer Datenbank. Datenbankabfragen Erstellen einer Datenbank Datenbankabfragen Überblick Die fünf Stationen Semantisches Modell Logisches Modell Prüfung auf Redundanz Abfragen Softwaremäßige Implementierung Zur Erinnerung: Semantisches

Mehr