Einphasiger Spannungs-Wechselrichter (W2C)

Größe: px
Ab Seite anzeigen:

Download "Einphasiger Spannungs-Wechselrichter (W2C)"

Transkript

1 5.3. Selbstgeführter Wechselrichter Aufgabe: Umformung einer Gleichspannung in eine Wechselspannung mit frei einstellbarer Frequenz, vielfach auch frei einstellbarer Spannungshöhe. Unterscheidung: -Schaltungen mit eingeprägtem Gleichstrom (Strom-Wechselrichter oder I-Wechselrichter) -Schaltungen mit eingeprägter Gleichspannung (Spannungs-Wechselrichter oder U-Wechselrichter) Spannungs-Wechselrichter Gleichspannungs-Zwischenkreis wird mit einem Kondensator stabilisiert. Dadurch ist auch ein Blindleistungsaustausch bei induktiven Verbrauchern möglich Einphasiger Spannungs-Wechselrichter (W2C) Aufbau: Identisch zum Vierquadranten-Gleichstromsteller, aber mit Wechselstromverbraucher als Last (ohmscher-induktiver Verbraucher), veränderter Ansteuerung i d U d + - D1 D2 T1 T3 D3 i L L R T2 u L T4 D4 Bild 5.13: Einphasiger Spannungs- Wechselrichter Bild 5.14: Zeitliche Verläufe von Ausgangsspannung und -strom t t Wechselspannung: Rechteckförmig (Blockbetrieb) Wechselstrom: Verlauf entsprechend Last, d.h. bei großer Zeitkonstante T=L/R nahezu dreieckförmig, bei kleinem T nahezu rechteckförmig Erklärung zu Bild 5.14: Zustand 1: (0 < t < T/2) T1 und T4 leitfähig Zustand 2: (T/2 < t < T) T2 und T3 leitfähig Skript Le04_05a.doc- Ausgabe September 2004 i 99

2 Leistungshalbleiter werden paarweise im Gegentakt zueinander geschaltet, d.h. Ansteuerverfahren mit Zweipunktverhalten (Spannung am Verbraucher wird zwischen den beiden Polaritäten +U d und U d hin und her geschaltet) + U d /2 N U d /2 Z Bild 5.15: Schaltermodell eines einphasigen WR mit Zweipunktverhalten t= 0: Laststrom i L negativ, von Spule L über Dioden D1 / D4 gegen Speisespannung U D angetrieben, Transistoren T1 / T4 sind zwar angesteuert, aber noch stromlos. Es gilt: ul = U d; id1 = id4 = i L Der Laststrom i L wird nach e-funktion mit der Zeitkonstanten τ=l/r kleiner. t= t 1 : i L =0, danach Übernahme durch T1 / T4, es gilt: ul = U d; it1 = it4 = il t= T/2: T1 / T4 werden ausgeschaltet, Spule L treibt Strom über D2 / D3 gegen U d weiter, i L nimmt nach e-funktion ab, es gilt: ul = U d; id2 = id3 = i L t= t2: i L ändert Richtung und geht von D2 / D3 auf T2 / T3 über, es gilt: ul = U d; it2 = it3 = i L t= T: T2 / T3 werden ausgeschaltet, danach T1 / T4 eingeschaltet, Spule L hält Laststrom aufrecht, der über D1 / D4 gegen U d fließt. Periodisch auftretender Energierücktransport von der Spule zum Gleichspannungszwischenkreis immer dann, wenn Dioden Strom führen (Lieferung von Blindleistung). Steuerung der Spannungshöhe: 1) Verzögerte Ansteuerung der Transistoren T3/T4 (T1/T2 werden nach wie vor unverzögert angesteuert) Ansteuerung nach dem Schwenkverfahren nur Spannungsabsenkung, Aber: Oberschwingungsgehalt in u L kann sehr groß werden, daher nur in einem begrenzten Stellbereich einsetzbar! t Bild 5.16: Spannungsverlauf beim Schwenksteuerverfahren Skript Le04_05a.doc- Ausgabe September 2004 i 100

3 2) Pulsung der Ventile innerhalb einer Periode Pulswechselrichter mit den Pulsverfahren - Pulsamplitudenmodulation (PA) Eingangsspannung U d wird verstellt, z.b. durch einen steuerbaren Gleichrichter (B6C, B2C,...) - Pulsbreitenmodulation (PW), Erzeugung durch Dreieck-Rechteck-odulation Nachteile des Blockbetriebs : Nichtsinusförmige Spannungen und Ströme, Vermeidung durch: 1. PW mit Sinusbewertung Erzeugung durch Dreieck-Sinus-odulation 2. Raumzeigermodulation (siehe LV Automatisierte Elektroantriebe ) +U Z Bild 5.17: Strom- und Spannungsverlauf bei sinusbewerteter Pulsbreitensteuerung, Zweipunktverhalten t Nahezu sinusförmige Stromverläufe, Stromhöhe steuerbar -U Z Bild 5.18: Zur Arbeitsweise des Pulswechselrichters mit Zweipunktverhalten Frequenz der Spannung u St : Pulsfrequenz Frequenz der Spannung u R : Grundfrequenz Skript Le04_05a.doc- Ausgabe September 2004 i 101

4 - Verringerung der Höhe der Referenzspannung: Laststrom wird kleiner - Wenn die Pulsfrequenz (Frequenz der Spannung u St ) ein ganzzahliges Vielfache der Grundfrequenz ist (Frequenz der Spannung u R ) stellt die erzeugte Grundschwin gung der Wechselspannung eine Unterschwingung der pulsfrequenten Spannung dar Unterschwingungsverfahren - Wenn Frequenzen von u St und u R so gewählt werden, dass deren Verhältnis eine ungerade Zahl darstellt negative Halbschwingung gleiche Kurvenform wie positive keine geradzahlige Harmonische 2. Übergang zum Dreipunktverhalten Drei-Level-Wechselrichter (Spannung am Verbraucher wird zwischen den Potentialen +U d /2, 0 und U d /2 hin und her geschaltet) + U d /2 N U d /2 Z U Z t Bild 5.19: Schaltermodell eines selbstgeführten einphasigen Wechselrichters mit Dreipunktverhalten (Dreipunkt-WR) sowie Strom- und Spannungsverlauf Bild 5.20: Zur Arbeitsweise des Pulswechselrichters mit Dreipunktverhalten Skript Le04_05a.doc- Ausgabe September 2004 i 102

5 Verringerung der Dauer aller Spannungsimpulse Höhe des Laststroms nimmt ab damit Veränderung der Frequenz und Spannungshöhe möglich. erke: Beim Einphasen WR führen unterschiedliche Ansteuerverfahren zum Zweipunkt-WR bzw. Dreipunkt-WR Dreiphasiger Spannungs-Wechselrichter (W6C) Soll symmetrischer dreiphasiger Drehstrom erzeugt werden, so müssen drei 4QS bereitgestellt werden, bei denen aber eine Brückenhälfte entfallen kann, (Summe der Strangströme ist Null!). Wechselrichter bestehen daher aus drei Halbbrücken. Anwendung: Überwiegend für drehzahlregelbare Drehstromantriebe + V1 V3 V5 f S, U S, I S u - U d v w V4 V6 V2 Zündmuster vom Rechner Bild 5.21: Dreiphasiger Spannungs-Wechselrichter, V1 - V6: Transistor-Schalter mit Freilaufdioden Skript Le04_05a.doc- Ausgabe September 2004 i 103

6 V4 V6 U Z (variabel) V1 V3 V1 V2 V3 V4 V5 V6 U UV ωt V2 V5 U VW U Z v U VW U VN U UV U WU U WN N U UN w U WU u U UN U = U U U = U U U = U U UV UN VN VW VN WN WU WN UN U VN 1/3U Z 2/3U Z Bild 5.22: Zur Arbeitsweise des Spannungs-Wechselrichters bei Blocksteuerung Effektivwert der gesamten verketteten Spannung: 2 /3 12 π 2 2 UUV = Ud dϑ Ud 0,816 d 2π = = U 3 0 Effektivwert der Grundschwingung der verketteten Spannung: 6 UUV1 = Ud = 0,78 U d π U WN I U I V I W Effektivwert der gesamten Strangspannung: 2 /3 2 / π π Ud 1 2Ud 2 UN = ϑ ϑ d 0,471 d 2π + 3 2π = = U U d d U Skript Le04_05a.doc- Ausgabe September 2004 i 104

7 Effektivwert der Strangspannungsgrundschwingung: 2 U d Strangstrom bei ohmscher Last: I L = 3 R 5 U d Strangstrom bei induktiver Last: I L = 3 18 f L U 2 = U = 0, 45 U π UN1 d d Bild 5.23: Entstehung der Ausgangsspannung bei einem dreipulsigen Pulswechselrichter Skript Le04_05a.doc- Ausgabe September 2004 i 105

8 Dreiphasiger Spannungs-Wechselrichter mit Dreipunktverhalten Für größere Leistungen: Spannungs-Wechselrichters mit Dreipunktverhalten Vorteil: Spannung bzw. Strom können dem sinusförmigen Verlauf besser angenähert werden. Drei Potentiale können angenommen werden: +U d /2; -U d /2 und 0 T1 + U d / 2 T2 U d - T3 U d / 2 T4 Bild 5.24: Aufbau eines dreiphasigen Spannungs-Wechselrichters mit Dreipunktverhalten Funktionsbeispiel (für Leiter 1) - Leiter 1 hat Plus wenn T1 und T2 ein-, T3 und T4 ausgeschaltet sind - Leiter 1 mit verbunden wenn T2 und T3 ein-, T1 und T4 ausgeschaltet sind - Leiter 1 hat inus wenn T3 und T4 ein-, T1 und T2 ausgeschaltet sind -Ansteuerung der Leistungshalbleiter meist nach dem Raumzeiger- odulationsverfahren Skript Le04_05a.doc- Ausgabe September 2004 i 106

9 + + U d /2 U d /2 N U d /2 U d /2 N 3 p 3 p Zweigspannung gegen N Außenleiter spannung Strangspannung gegen p des DAS Raumzeiger der Ständerspannung u s im ständerfesten KOS Anzahl der Zustände Bild 5.25: Schaltermodell eines gepulsten selbstgeführten Wechselrichters mit Spannungs-Zwischenkreis links: Zweipunkt-WR; rechts: Dreipunkt- WR Skript Le04_05a.doc- Ausgabe September 2004 i 107

10 Strom-Wechselrichter Dreiphasiger Strom-Wechselrichter mit abschaltbaren Ventilen Strom-Wechselrichter: Durch Drosselspule im Zwischenkreis wird dem Verbraucher ein Strom eingeprägt; Anwendung vorwiegend für Drehstrommotore Wechselrichter + - U d L T1 T2 T3 f S, U S, I S u v w Asynchronmaschine ~ ~ ~ Bild 5.26: Aufbau eines dreiphasigen Strom- Wechselrichters mit abschaltbaren Leistungshalbleitern T4 T5 T6 Stromfluss darf durch die Ansteuerung nicht unterbrochen werden, bei der Stromkommutierung entstehen Überspannungen durch die Drosselspule L Gefährdung der Ventile Schutzbeschaltung mit 3 Kondensatoren notwendig! T1 T2 T3 T4 T5 T6 +1 Takt Nr. (je 60 0 ) i su /I d Bild 5.27: Zeitablaufdiagramm eines ungepulsten Strom- Wechselrichters mit Leitdauer der Ventile 2 π Einschaltung 3 0 ωt i sv /I d ωt +1 0 i sw /I d ωt -1 Skript Le04_05a.doc- Ausgabe September 2004 i 108

11 Ebenso wie beim Spannungs-Wechselrichter ist auch beim Strom-Wechselrichter ein Pulsbetrieb möglich Dreiphasiger Strom-Wechselrichter mit konventionellen Thyristoren (Phasenfolgelöschung) C 1 -C 6 : Zur Thyristorlöschung (Kommutierungskondensatoren) Bild 5.28: Zeitlicher Verlauf von Strangspannung und Strangstrom beim dreiphasigen, mit konventionellen Thyristoren ausgerüsteten Strom- Wechselrichter, Beispiel für Spannung u 1 und Strom i 1 Funktion der Phasenfolgelöschung am Bsp. des Stromübergangs von T 1 nach T 3 : U C abhängig vom Laststrom I d, Lastinduktivität L, Kommutierungskondensatoren C 1 -C 6, Verkettete Spannung u 12 Skript Le04_05a.doc- Ausgabe September 2004 i 109

12 5.4. Zwischenkreis-Wechselstromumrichter (Umrichter) Umrichter (oder Zwischenkreis-Wechselstromumrichter): Der für die Wechselrichterschaltung benötigte Gleichstrom wird aus einem Gleichrichterschaltung gewonnen. Anwendung: Hauptsächlich drehzahlregelbare Drehstromantriebe Bild 5.29: Prinzipaufbau eines Frequenzumrichters Zwischenkreis: Energiespeicher für den Verbraucher (otor) Unterteilbar in Umrichter mit Gleichspannungs- und Gleichstromzwischenkreis Zwischenkreistypen: 1) Der Zwischenkreis, der die Spannung des Gleichrichters in einen Gleichstrom umformt. b) Der Zwischenkreis, der die pulsierende Gleichspannung stabilisiert bzw. glättet und dem Wechselrichter zur Verfügung stellt. c) Der Zwischenkreis, der die konstante Gleichspannung des Gleichrichters variabel macht. Skript Le04_05a.doc- Ausgabe September 2004 i 110

13 Bild 5.30: Umrichterverfahren Stromgeführter Umrichter: CSI ( ) Puls-Amplitudenmodulierter Umrichter: PA ( ) ( ) Puls-Weitenmodulierter Umrichter: PW/VVCplus ( ) Bild 5.31: Konstruktionsprinzipien bei Umrichtern Wichtige Vorteile des Zwischenkreis-Umrichter gegenüber dem Direkt-Umrichter: besseres Blindleistungsverhalten Entkopplung der Oberschwingungen und Freizügigkeit in der Ausgangsfrequenz. Diese wird nur durch die Steuerung und die Eigenschaften der Bauelemente begrenzt. Frequenzumrichter für hohe Ausgangsfrequenzen sind daher stets Zwischenkreisumrichter. Skript Le04_05a.doc- Ausgabe September 2004 i 111

14 Wechselstromumrichter mit Gleichspannungs-Zwischenkreis (voltage source inverter, VSI) Zwischenkreis mit eingeprägter Gleichspannung, überwiegend angewendet Bild 5.32: Aufbau von Gleichspannungszwischenkreisen L1 L2 L3 L1 L2 L3 L1 L2 L3 G G G Z S W 3~ W W 3~ 3~ a) b) c) Bild 5.33: Wechselstromumrichter mit Gleichspannungs-Zwischenkreis a) mit steuerbarem Gleichrichter (G) am Eingang, -Verstellbare Ausgangsspannung durch steuerbaren Netzstromrichter -Steuerblindleistung bei Teilaussteuerung -Welligkeit der Zwischenkreisspannung -Totzeit bis zur nächsten Spannungsverstellung (siehe Kap. 3.6) b) mit einem Gleichstromsteller (S) im Zwischenkreis, c) mit einem Pulswechselrichter (W) im Ausgang Skript Le04_05a.doc- Ausgabe September 2004 i 112

15 netzseitiger Gleichrichter motorseitiger Wechselrichter (VSI) T 1 T 2 T 3 L T T 1 T 3 T 5 C d U d T 4 T 5 T 6 u s u w v 3 T 2 T 4 T 6 Ansteuerung GR Ansteuerung VSI Bild 5.34: Umrichter mit Gleichspannungs-Zwischenkreis Der Strom für die agnetisierung des otors wird vom Kondensator im Zwischenkreis des Frequenzumrichters zur Verfügung gestellt. Der agnetisierungsstrom ist ein Blindstrom, der vom Kondensator zum otor hin und her fließt Netz 1: f N, U N 3 3 I W = Netzstromrichter (NSR) I B I S Netz 2: f s, U s = aschinen-sr (SR) I S ϕ I W I B I S = IW cosϕ Bild 5.35: Ströme im Frequenzumrichter Es wird vom Netz nur der Wirkstrom (IW) aufgenommen. Deshalb ist der Ausgangsstrom des Frequenzumrichters immer größer als der Eingangsstrom. Zusätzlich zu dem Wirkstrom, werden die Verluste (IVerlust) vom Netz aufgenommen. Beispiel: Der Leerlaufstrom eines vierpoligen 1,1 kw-otors ist 1,6 A. Der Ausgangsstrom des angeschlossenen Frequenzumrichters wird ca. 1,6 A betragen und der Eingangsstrom im Leerlauf wird annähernd Null sein. Die otorenhersteller geben normalerweise den cos ϕ des otors bei Nennstrom an. Bei einem niedrigen Wert von cos ϕ (z.b. Reluktanzmotor) wird der otornennstrom bei gleicher Leistung und Nennspannung nach der Gleichung I = I cosϕ größer sein. S W Skript Le04_05a.doc- Ausgabe September 2004 i 113

16 Bild 5.36: Gleichspannungszwischenkreis mit variabler Spannung Wechselstromumrichter mit Gleichstrom-Zwischenkreis (current source inverter, CSI) Zwischenkreis mit eingeprägtem Gleichstrom Bild 5.37: Variabler Gleichstromzwischenkreis netzseitiger Gleichrichter L d motorseitiger Wechselrichter (CSI) T 1 T 2 T 3 L T T 1 T 3 T 5 I d T 4 T 5 T 6 i s u w v 3 T 2 T 4 T 6 Ansteuerung GR Ansteuerung CSI Bild 5.38: Struktur eines Drehstromantriebs mit Umrichterspeisung durch einen CSI Kennzeichen: - Netzstromrichter ist gesteuert (variable Gleichspannung) - Glättungsdrossel im Zwischenkreis (wandelt Gleichspannung in variablen Gleichstrom) - aschinenstromrichter ist Strom-Wechselrichter Umkehrung der Polarität der Zwischenkreisspannung möglich, dadurch ohne zusätzlichen Aufwand otor- und Generatorbetrieb der elektrischen aschine möglich. C F Skript Le04_05a.doc- Ausgabe September 2004 i 114

Elektrische Antriebe und Anlagen

Elektrische Antriebe und Anlagen Elektrische Antriebe und Anlagen Kapitel 8: selbstgeführte Wechselrichter 5.Jhrg KOHE KOHE 1 Wechsel-Umrichter Einführung: netzgeführte Direktumrichter f 0.5 f 2max 1 Umrichter mit Gleichspannungszwischenkreis

Mehr

Übungsziel: Zusammensetzung der Stromrichterkomponenten zu Umrichterschaltungen.

Übungsziel: Zusammensetzung der Stromrichterkomponenten zu Umrichterschaltungen. Übungsziel: Zusammensetzung der Stromrichterkomponenten zu Umrichterschaltungen. Übungsdateien: SIMPLORER: u_umrdr.ssh; u_umrdr_m.ssh; u_umrdr_mf.mdx; u_umrdr_mf.day 19.1 Allgemeines Allgemein findet der

Mehr

Leistungselektronik. dulh. Systematische Darstellung und Anwendungen in der elektrischen Antriebstechnik. Gert Hagmann

Leistungselektronik. dulh. Systematische Darstellung und Anwendungen in der elektrischen Antriebstechnik. Gert Hagmann Gert Hagmann Leistungselektronik Systematische Darstellung und Anwendungen in der elektrischen Antriebstechnik Mit 216 Abbildungen, Aufgaben mit Lösungen und Lösungswegen 2., überarbeitete Auflage dulh

Mehr

Blockbetrieb. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München

Blockbetrieb. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 80333 München Email: eat@ei.tum.de Internet: http://www.eat.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Übungsaufgaben Übung Raumzeiger: Gegeben ist folgende Durchflutung für die Wicklung a einer dreiphasigen Maschine. F a (θ mech, t) = α =

Mehr

3.5 Vollgesteuerte 6-Puls-Brückenschaltung

3.5 Vollgesteuerte 6-Puls-Brückenschaltung .5 Vollgesteuerte -Puls-Brückenschaltung.5.1 Messungen an den vorgegebenen Schaltungen Schaltungen: ut1 ud ud ufd ud ud ifd Der arithmetischer Mittelwert der Gleichspannung, sowie Mittel- und Effektivwert

Mehr

3. Zeichnen Sie ein beliebiges Pulsmuster des Raumzeigers aus der vorherigen Aufgabe. Welche Freiheitsgrade bestehen bei der Wahl des Pulsmusters?

3. Zeichnen Sie ein beliebiges Pulsmuster des Raumzeigers aus der vorherigen Aufgabe. Welche Freiheitsgrade bestehen bei der Wahl des Pulsmusters? Ü bungsaufgabe RZM 1. Leiten Sie die Gleichungen für die Schaltzeiten t 1 und t für den dritten Sektor her.. Berechnen Sie die Schaltzeiten für folgenden Sollspannungszeiger U soll = u d (cos ( 5 π) 6

Mehr

Spannungszwischenkreisumrichter (Pulsumrichter)

Spannungszwischenkreisumrichter (Pulsumrichter) Lehrveranstaltung Umwandlung elektrischer Energie mit Leistungselektronik Spannungszwischenkreisumrichter (Pulsumrichter) Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Aufgabe 9

Institut für Leistungselektronik und Elektrische Antriebe. Aufgabe 9 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Aufgabe 9 Photovoltaik-Wechselrichter mit Leistungsmaximierung In dieser Aufgabe soll die Einspeisung von elektrischer

Mehr

7 Drehstromsteller. 7.1 Verbraucher mit zugänglichem Sternpunkt

7 Drehstromsteller. 7.1 Verbraucher mit zugänglichem Sternpunkt 7 Drehstromsteller Drehstromsteller werden zur verlustlosen Steuerung von Dreiphasensystemen eingesetzt. Die Frequenz wird nicht verändert. Sie werden im unteren Leistungsbereich zum Spannungsanlauf und

Mehr

Manfred Meyer. Leistungs elektronik. Einführung Grundlagen Überblick. Mit 324 Abbildungen

Manfred Meyer. Leistungs elektronik. Einführung Grundlagen Überblick. Mit 324 Abbildungen Manfred Meyer Leistungs elektronik Einführung Grundlagen Überblick Mit 324 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona 1990 Inhalt Formelzeichen Indizes

Mehr

Elektrische Antriebe und Anlagen

Elektrische Antriebe und Anlagen Elektrische Antriebe und Anlagen Kapitel 3: Grundlagen der Leistungselektronik 5.Jhrg KOHE 1 Bsp. Glühbirne Ziel: Helligkeitssteuerung einer Glühbirne. 1) Mit einstellbarem Vorwiderstand Spannungsteiler.

Mehr

Leistungselektronik HANSER. Rainer Felderhoff t Udo Busch. unter Mitarbeit von Natascha Heet. 4., neu bearbeitete Auflage

Leistungselektronik HANSER. Rainer Felderhoff t Udo Busch. unter Mitarbeit von Natascha Heet. 4., neu bearbeitete Auflage Rainer Felderhoff t Udo Busch Leistungselektronik unter Mitarbeit von Natascha Heet 4., neu bearbeitete Auflage mit 564 Bildern sowie zahlreichen Beispielen, Übungen und Testaufgaben HANSER Inhalt 1 Grundlagen

Mehr

FACHHOCHSCHULE Bielefeld 3. Juli 2001 Fachbereich Elektrotechnik

FACHHOCHSCHULE Bielefeld 3. Juli 2001 Fachbereich Elektrotechnik FACHHOCHSCHULE Bielefeld 3. Juli 2001 Fachbereich Elektrotechnik Professor Dr. Ing. habil. K. Hofer Klausur zu LEISTUNGSELEKTRONIK UND ANTRIEBE (LE) Bearbeitungsdauer: Hilfsmittel: 3.0 Zeitstunden Vorlesungsskriptum,

Mehr

Leistungselektronik. Rainer Felderhoff ISBN Inhaltsverzeichnis

Leistungselektronik. Rainer Felderhoff ISBN Inhaltsverzeichnis Leistungselektronik Rainer Felderhoff ISBN 3-446-40261-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40261-6 sowie im Buchhandel Inhalt 1 Grundlagen der Leistungselektronik

Mehr

E l e k t r o n i k II

E l e k t r o n i k II Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k II Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Drehstrom-Mittelpunktsschaltung

Mehr

Leistungsmessung an einem Pulswechselrichter mit Perception-Software

Leistungsmessung an einem Pulswechselrichter mit Perception-Software edrive TechNote #02 2013 08 Leistungsmessung an einem Pulswechselrichter mit Perception-Software Für die Beurteilung und Prüfung von elektrischen Antrieben in der Industrie sowie bei Hybrid- und Elektrofahrzeugen

Mehr

Belastung des Neutralleiters durch Elektro-Mobilität

Belastung des Neutralleiters durch Elektro-Mobilität Informationstag Energie Dezentrale Speicher- Auswirkungen auf die Netzstabilität und Netzbelastung Stuttgart, 15.10.2014 Belastung des Neutralleiters durch Elektro-Mobilität Timo Thomas, M.Eng. Prof. Dr.

Mehr

4. Gleichstromsteller

4. Gleichstromsteller Gleichstromsteller 4-1 4. Gleichstromsteller 4.1Einleitung Zur Steuerung von Antriebsmotoren batteriebetriebener Fahrzeuge (z. B. Elektrokarren, Hubstapler) oder zum Antrieb von Straßenbahnen (meistens

Mehr

3.4. Zweipuls-Brückenschaltungen (B2-Schaltungen)

3.4. Zweipuls-Brückenschaltungen (B2-Schaltungen) 3.4. Zweipuls-Brückenschaltungen (B-Schaltungen) Aus vier Dioden kann eine Gleichrichterbrückenschaltung (Graetz-Brücke) aufgebaut werden. Brückenschaltungen können in ungesteuerte, vollgesteuerte und

Mehr

Fakultät ME Labor: Elektrische Antriebe und Anlagen Versuch LE-2: Frequenzumrichter

Fakultät ME Labor: Elektrische Antriebe und Anlagen Versuch LE-2: Frequenzumrichter Labor Leistungselektronik (LE) Fakultät ME Labor: Elektrische Antriebe und Anlagen Versuch LE-: Frequenzumrichter Datum: Semester: Gruppe: Protokoll: Vortestat: Bericht: Mitberichter: Endtestat: Datum:.

Mehr

5. Wechselstromsteller

5. Wechselstromsteller Wechselstromsteller 5-1 5. Wechselstromsteller Wechselstromsteller steuern die Leistung eines Wechselstromverbrauchers an einem Wechselstromnetz. Als steuerbare Halbleiterventile werden für niedrige Leistungen

Mehr

Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen

Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen Uwe Probst Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen ISBN-10: 3-446-40784-7 ISBN-13: 978-3-446-40784-8 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-40784-8

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 07.04.2009 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (16) 2 (23) 3 (22) 4 (21) 5 (18) Fachprüfung Leistungsnachweis

Mehr

Prof. Dr.-Ing. Rainer Jäger Prof. Dr.-Ing. Edgar Stein. Leistungselektronik. Grundlagen und Anwendungen. 5. Auflage. VDE VERLAG Berlin Offenbach

Prof. Dr.-Ing. Rainer Jäger Prof. Dr.-Ing. Edgar Stein. Leistungselektronik. Grundlagen und Anwendungen. 5. Auflage. VDE VERLAG Berlin Offenbach Prof. Dr.-Ing. Rainer Jäger Prof. Dr.-Ing. Edgar Stein Leistungselektronik Grundlagen und Anwendungen 5. Auflage VDE VERLAG Berlin Offenbach Inhalt Einleitung 11 1 Halbleiterbauelemente der Leistungselektronik

Mehr

rtllfc Leistungselektronik AULA-Verlag Gert Hagmann Grundlagen und Anwendungen jn.der elektrischen Antriebstechnik -.,.,.

rtllfc Leistungselektronik AULA-Verlag Gert Hagmann Grundlagen und Anwendungen jn.der elektrischen Antriebstechnik -.,.,. Gert Hagmann Leistungselektronik Grundlagen und Anwendungen jn.der elektrischen Antriebstechnik -.,.,. it 209 Abbildungen, Aufgaben und Lösungen 4., korrigierte Auflage rtllfc AULA-Verlag 1 Einführung

Mehr

Rechenübungen zu Leistungselektronik

Rechenübungen zu Leistungselektronik Ausarbeitung der Beispiele aus Rechenübungen zu eistungselektronik Teil B - Selbstgeführte Stromrichter Die hier angeführten Berechnungen könnten fehlerhaft sein Inhalt Beispiel 3 Beispiel 4 Beispiel 3

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Umwandlung elektrische Energie mit Leistungselektronik

Umwandlung elektrische Energie mit Leistungselektronik Umwandlung elektrische Energie mit Leistungselektronik Félix Rojas Technische Universität München Prof. Dr. Ing. Ralph Kennel. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Übung 2

Mehr

Leistungselektronik fur Bachelors

Leistungselektronik fur Bachelors Uwe Probst Leistungselektronik fur Bachelors Grundlagen und praktische Anwendungen mit 188Bildern Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Einfiihrung in die Leistungselektronik

Mehr

4 Ein- und dreiphasige Diodengleichrichtung

4 Ein- und dreiphasige Diodengleichrichtung 4 Ein- und dreiphasige Diodengleichrichtung Abb.4.1 zeigt die in das ETH Zurich Converter Lab integrierte dreiphasige Gleichrichterbrücke mit der verschiedene Gleichrichterschaltungen experimentell analysiert

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr.

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr. Elektrotechnik 3 Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe Studium Plus // WI-ET SS 06 Prof. Dr. Sergej Kovalev Drehstromsystems Themen: Einführung Zeitverläufe Mathematische

Mehr

Leistungselektronik. Grundlagen und Anwendungen. Bearbeitet von Rainer Jäger, Edgar Stein

Leistungselektronik. Grundlagen und Anwendungen. Bearbeitet von Rainer Jäger, Edgar Stein Leistungselektronik Grundlagen und Anwendungen Bearbeitet von Rainer Jäger, Edgar Stein 06. Auflage, aktualisierte 2011. Buch. 427 S. Hardcover ISBN 978 3 8007 2966 1 Format (B x L): 14,8 x 21 cm Gewicht:

Mehr

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null.

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. WECHSELSTROMLEHRE Wechselgrössen Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. Zeigerdarstellung Mittelwerte (Gleichwert, Gleichrichtwert

Mehr

Versuch: Dreiphasiger netzgeführter Stromrichter (B6C)

Versuch: Dreiphasiger netzgeführter Stromrichter (B6C) Praktikum Leistungselektronik (Im Rahmen des Komplexpraktikums Elektrotechnik) Versuch: Dreiphasiger netzgeführter Stromrichter (B6C) 1 Versuchsziel Kennenlernen der Funktionsweise konventioneller leistungselektronischer

Mehr

1 Stromrichterschaltungen (Übersicht)

1 Stromrichterschaltungen (Übersicht) 1 Stromrichterschaltungen (Übersicht) Bevor die verschiedenen Stromrichterschaltungen im einzelnen besprochen werden, wird in diesem Kapitel ein kurzer Überblick über die Einteilung und die verschiedenen

Mehr

Aufgabe 10 Weitere netzeinspeisende Topologien für Photovoltaikanlagen

Aufgabe 10 Weitere netzeinspeisende Topologien für Photovoltaikanlagen Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Aufgabe 10 Weitere netzeinspeisende Topologien für Photovoltaikanlagen Die in Aufgabe 9 vorgestellten Ansteuerungen

Mehr

3. Grundlagen des Drehstromsystems

3. Grundlagen des Drehstromsystems Themen: Einführung Zeitverläufe Mathematische Beschreibung Drehstromschaltkreise Anwendungen Symmetrische und unsymmetrische Belastung Einführung Drehstrom - Dreiphasenwechselstrom: Wechselstrom und Drehstrom

Mehr

Nullphasendurchgang. Leistungsmaximierung durch optimale Einschaltzeiten

Nullphasendurchgang. Leistungsmaximierung durch optimale Einschaltzeiten Nullphasendurchgang Leistungsmaximierung durch optimale Einschaltzeiten Themen Gliederung: 1. Wechselstrom (Grundlagen) 2. Leistungsbilanz 3. Nullphasendurchgang im Projekt 20.11.2012 2 1. Wechselstrom

Mehr

Elektrische Antriebe und Anlagen

Elektrische Antriebe und Anlagen Elektrische Antriebe und Anlagen Kapitel 7: selbstgeführte Gleichstromsteller 5.Jhrg KOHE KOHE 1 Gleichstromsteller Einführung: selbstgeführt da keine Netzspannung zur Kommutierung notwendig Schaltelemente

Mehr

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Übungsaufgaben Übung Raumzeiger: Gegeben ist folgende Durchflutung für die Wicklung a einer dreiphasigen Maschine. F a (θ mech, t) = α =

Mehr

5. Anwendungen von Dioden in Stromversorgungseinheiten

5. Anwendungen von Dioden in Stromversorgungseinheiten in Stromversorgungseinheiten Stromversorgungseinheiten ( Netzgeräte ) erzeugen die von elektronischen Schaltungen benötigten Gleichspannungen. Sie bestehen oft aus drei Blöcken: Transformator Gleichrichter

Mehr

3.2. Einpulsige (Gleichrichter)Schaltungen (M1-Schaltungen)

3.2. Einpulsige (Gleichrichter)Schaltungen (M1-Schaltungen) Kapitel 3 Netzgeführte leistungselektronische Schaltungen 3.1. Einführung Netzgeführte Stromrichter: Schaltungen zum mwandeln von Wechselstrom in Gleichstrom (Gleichrichterschaltungen) und umgekehrt (Wechselrichterschaltungen)

Mehr

Servoantriebe mit Gleichstrommotor. 4.1 Aufbau und Anwendungsbereich. 4.2 Gleichstrommotoren für Servoantriebe

Servoantriebe mit Gleichstrommotor. 4.1 Aufbau und Anwendungsbereich. 4.2 Gleichstrommotoren für Servoantriebe 4 Servoantriebe mit Gleichstrommotor 4.1 Aufbau und Anwendungsbereich Servoantriebe mit Gleichstrommotor waren bis in die 80-ger Jahre dominierenden Servoantriebe. Sie sind einfach regelbar und die erforderlichen

Mehr

E l e k t r o n i k I

E l e k t r o n i k I Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k I Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Gleichrichter etc

Mehr

Weitnauer Messtechnik. Dirty Power

Weitnauer Messtechnik. Dirty Power Weitnauer Messtechnik Dirty Power Gesamtheit aller Störungen durch elektrische Systeme, welche in erster Linie über die elektrischen Verbindungen leitungsgebunden ausgesandt werden. Im amerikanischen Sprachraum

Mehr

Inhaltsverzeichnis. Uwe Probst. Leistungselektronik für Bachelors. Grundlagen und praktische Anwendungen ISBN:

Inhaltsverzeichnis. Uwe Probst. Leistungselektronik für Bachelors. Grundlagen und praktische Anwendungen ISBN: Inhaltsverzeichnis Uwe Probst Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen ISBN: 978-3-446-42734-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42734-1

Mehr

Raumzeiger. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München

Raumzeiger. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 80333 München Email: eat@ei.tum.de Internet: http://www.eat.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Leistungselektronik II

Leistungselektronik II 01 4. Anwendungen für erneuerbare Energien 4.1 Windenergieanlagen (WEA) 4.1.1 Aufbau von Windenergieanlagen 4.1.2 Generatoren und deren Betrieb 4.1.3 Topologien selbstgeführter Gleich- u. Wechselrichter

Mehr

Umwandlung elektrischer Energie mit Leistungselektronik

Umwandlung elektrischer Energie mit Leistungselektronik Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof. Dr.-Ing. Ralph Kennel Arcisstraße 1 Email: eat@ei.tum.de Tel.: +49 (0)89 89 858 D 80 München Internet:

Mehr

Vorwort 5. Benutzerhinweise 7

Vorwort 5. Benutzerhinweise 7 Inhalt Vorwort 5 Benutzerhinweise 7 o Einführung in das Simulationssystem Portunus 15 0.1 Installation 15 0.2 Portunus Übersicht. 16 0.2.1 Menü und Symbolleiste 19 0.2.2 Kontextmenü 26 0.2.3 Modell-Datenbanken

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 2: Netzgeführte Stromrichter

Leistungselektronik Grundlagen und Standardanwendungen. Übung 2: Netzgeführte Stromrichter Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 1 D 8333 München Email: eal@ei.tum.de Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

3.2 Ohmscher Widerstand im Wechselstromkreis 12

3.2 Ohmscher Widerstand im Wechselstromkreis 12 3 WECHSELSPANNNG 3 3.1 Grundlagen der 3 3.1.1 Festlegung der Wechselstromgrößen 3 3.1.2 Sinusförmige Wechselgrößen 7 3.1.3 Graphische Darstellung von Wechselgrößen 9 3.2 Ohmscher Widerstand im Wechselstromkreis

Mehr

Man unterscheidet zwischen statischen Wechselrichtern und rotierenden Wechselrichtern.

Man unterscheidet zwischen statischen Wechselrichtern und rotierenden Wechselrichtern. Wechselstromsteller 1 / 14 :HFKVHOULFKWHU (LQI KUXQJ:HFKVHOULFKWHU Mit Wechselrichtern wird Gleichstrom in Wechselstrom umgewandelt Die Energierichtung verläuft vom Gleichstrom zum Wechselstromsystem.

Mehr

Vergleich verschiedener Umrichtertopologien für Ausgangsströme im khz-bereich

Vergleich verschiedener Umrichtertopologien für Ausgangsströme im khz-bereich Vergleich verschiedener Umrichtertopologien für Ausgangsströme im khz-bereich A. Knop *, F.W. Fuchs + * Christian Albrechts Universität zu Kiel, Kaiserstraße 2, 2443 Kiel, ank@tf.uni-kiel.de + Christian

Mehr

Einschaltstrom-Begrenzer 28. August 2018

Einschaltstrom-Begrenzer 28. August 2018 Einschaltstrom-Begrenzer 28. August 2018 Heiß-kalt kombiniert Leistungsstarke Lasten sind beim Einschalten für Sicherungen und Bauelemente ein großer Stressfaktor, da hierbei sehr hohe Ströme fließen.

Mehr

4 Ein- und dreiphasige Diodengleichrichtung

4 Ein- und dreiphasige Diodengleichrichtung 4 Ein- und dreiphasige Diodengleichrichtung Abb.4.1 zeigt die in das ETH Zurich Converter Lab integrierte dreiphasige Gleichrichterbrücke mit der verschiedene Gleichrichterschaltungen experimentell analysiert

Mehr

Erzeugung von drei Phasen verschobenen Wechselspannungen

Erzeugung von drei Phasen verschobenen Wechselspannungen Erzeugung von drei Phasen verschobenen Wechselspannungen Werden in einem Generator nicht nur eine, sondern drei Spulen im Winkel von 120 versetzt angebracht, so bekommt man in jeder der drei Spulen einen

Mehr

9. Schaltungen der Leistungselektronik

9. Schaltungen der Leistungselektronik Einführung (a) 9. Schaltungen der Leistungselektronik Wenn große Lasten (Elektromotoren, Heizungen, Leuchtmittel) stufenlos angesteuert werden müssen, geschieht dies oft mittels Pulsweitenmodulation, kurz

Mehr

2. Wechselrichter. 2.1 Steuerverfahren Steuerung der Ausgangsspannung Amplitudensteuerung Blocksteuerung

2. Wechselrichter. 2.1 Steuerverfahren Steuerung der Ausgangsspannung Amplitudensteuerung Blocksteuerung . Wechselrichter 1. Wechselrichter Es steht eine Gleichspannung zur Umwandlung in Wechselspannung zur Verügung. Meist wird eine Brückenschaltung mit Transistoren als Wechselrichter eingesetzt. Durch gegenphasiges

Mehr

Inhalt Vorwort Elektrisches Power Management Leistungshalbleiter und Stromrichterschaltungen

Inhalt Vorwort Elektrisches Power Management Leistungshalbleiter und Stromrichterschaltungen Vorwort... 5 1 Elektrisches Power Management... 15 1.1 Entwicklungsgeschichte der elektrischen Energietechnik... 17 1.2 Zentrales und dezentrales Energiemanagement... 22 1.3 Internationales SI-Einheitensystem...

Mehr

Leistungselektronik - Formelsammlung Seite 1 von 5. x(t)dt. x2 (t)dt

Leistungselektronik - Formelsammlung Seite 1 von 5. x(t)dt. x2 (t)dt Leistungselektronik - Formelsammlung Seite von 5 allgemeine Formeln Spannung über einer Induktivität Strom durch Kondensator Zeitkonstante u L (t) = L di i C (t) = C du = L oder = C Berechnung des Mittelwertes

Mehr

Die Schaltung (M3) wird an einem symmetrischen Drehstromsystem betrieben. Die zeitlichen Verläufe der Spannungen werden damit beschrieben durch:

Die Schaltung (M3) wird an einem symmetrischen Drehstromsystem betrieben. Die zeitlichen Verläufe der Spannungen werden damit beschrieben durch: Aufgabe Ü Gegeben ist folgende Gleichrichterschaltung mit drei idealen Ventilen. An der Sekundärseite des Transformators liegt ein symmetrisches Dreiphasen-Wechselspannungssystem an. u s1 t u s t u V1

Mehr

FACHHOCHSCHULE Bielefeld 10. Juli 2006 Fachbereich Elektrotechnik

FACHHOCHSCHULE Bielefeld 10. Juli 2006 Fachbereich Elektrotechnik FACHHOCHSCHULE Bielefeld 10. Juli 2006 Fachbereich Elektrotechnik Professor Dr.Ing.habil. K. Hofer Klausur zu LEISTUNGSELEKTRONIK UND ANTRIEBE (LEA) Bearbeitungsdauer: Hilfsmittel: 3.0 Zeitstunden Vorlesungsskriptum,

Mehr

Klausur-Lösungen EL(M)

Klausur-Lösungen EL(M) Beuth-Hochschule, Prof. Aurich -1/5- Prüfungstag: Do, 11.7.2013 Raum: T202 Zeit: 10:00-12:00 Studiengang: 2. Wiederholung (letzter Versuch)? ja / nein. Name: Familienname, Vorname (bitte deutlich) Matr.:

Mehr

Elektrische Antriebe und Anlagen

Elektrische Antriebe und Anlagen Elektrische Antriebe und Anlagen Kapitel 6: netzgeführte Stromrichter 5.Jhrg KOHE 1 Gleichspannung Einsatz: Konsumelektronik: kleine Spannungen & Leistungen keine Amplituden-Verstellung erforderlich Antriebstechnik:

Mehr

Netzgeführte Schaltungen

Netzgeführte Schaltungen Lehrveranstaltung Leistungselektronik - Grundlagen und Standard-Anwendungen Netzgeführte Schaltungen Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21 80333

Mehr

Power Management. Klaus Hofer. Moderne Leistungselektronik Sensorlose Antriebstechnik Intelligente Bussysteme. 2., komplett überarbeitete Auflage

Power Management. Klaus Hofer. Moderne Leistungselektronik Sensorlose Antriebstechnik Intelligente Bussysteme. 2., komplett überarbeitete Auflage Klaus Hofer Power Management Moderne Leistungselektronik Sensorlose Antriebstechnik Intelligente Bussysteme 2., komplett überarbeitete Auflage VDE VERLAG GMBH Berlin Offenbach Inhalt Vorwort 5 1 Elektrisches

Mehr

Netzgerät mit integriertem Festspannungsregler

Netzgerät mit integriertem Festspannungsregler mit integriertem Festspannungsregler 1. Allgemeines Ein paar Grundlagen müssen schon sein, denn ohne geht es nicht. Vor Beginn der Arbeit sind einige Symbole ( Bild 1 ) aus der verwendeten Schaltung zu

Mehr

ET II Übung 1 Überlagerung von Quellen

ET II Übung 1 Überlagerung von Quellen ET II Übung 1 Überlagerung von Quellen Allgemeines zum Kurs Übungen sind freiwillig Einreichung der Übungen ist freiwillig Alle Dokumente sind auf MOODLE hochgestellt!!! Kontakt: Silvan Plüss e-mail: spluess@student.ethz.ch

Mehr

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R. Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 19.08.2008 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (16) 2 (23) 3 (22) 4 (21)

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Aufgabe 1: Aufgabe 2: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf. 1. den arithmetischen Mittelwert, 2.

Aufgabe 1: Aufgabe 2: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf. 1. den arithmetischen Mittelwert, 2. Aufgabe 1: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf 1. den arithmetischen Mittelwert, 2. den Effektivwert, 3. den Scheitelfaktor, 4. den Formfaktor. ū=5v, U = 6,45V, k s =

Mehr

In Teil 2 der Aufgabe erfolgt der Anschluss des Thyristorwechselrichters an das Netz unter Zwischenschaltung von Kommutierungsdrosseln.

In Teil 2 der Aufgabe erfolgt der Anschluss des Thyristorwechselrichters an das Netz unter Zwischenschaltung von Kommutierungsdrosseln. Aufgabe 3 Institut für eistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Ein Thyristorwechselrichter in sechspulsiger Brückenschaltung soll unter verschiedenen Bedingungen an ein

Mehr

~ ~ ~ 11 Dreiphasiges Pulsgleichrichtersystem

~ ~ ~ 11 Dreiphasiges Pulsgleichrichtersystem 11 Dreiphasiges Pulsgleichrichtersystem Ähnlich wie für eine Einphasen-Gleichrichterschaltung mit sinusförmiger Stromaufnahme können auch die Netzrückwirkungen einer dreiphasigen Gleichrichterschaltung

Mehr

von Robert PAPOUSEK 4.2 Gegentaktverstärker: Bild 1:PRINZIP DER DARLINGTONSCHALTUNG

von Robert PAPOUSEK 4.2 Gegentaktverstärker: Bild 1:PRINZIP DER DARLINGTONSCHALTUNG von Robert PAPOUSEK INHALTSVERZEICHNIS: 1.Anforderungen an Leistungsverstärker 2.Grundlagen 3.Leistungsstufen: 3.1 Parallelschalten von Transistoren 4. A- und B-Betrieb: 4.1 Eintaktverstärker 4.2 Gegentaktverstärker

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

10 Einphasiges bidirektionales Pulsumrichtersystem

10 Einphasiges bidirektionales Pulsumrichtersystem 10 Einphasiges bidirektionales Pulsumrichtersystem Eine einphasige, durch Leistungstransistoren mit antiparallelen Freilaufdioden gebildete Vollbrückenschaltung mit Ausgangskapazität und Vorschaltinduktivität

Mehr

Wie funktioniert der Wellenschnüffler? 10 Antworten.

Wie funktioniert der Wellenschnüffler? 10 Antworten. Wie funktioniert der Wellenschnüffler? 10 Antworten. 1 2 4 5 7 19 10 8 3 6 1) Dioden funktionieren wie elektrische Ventile: Sie lassen den Strom nur in eine Richtung durch. Die Diode dient hier als Schutzdiode

Mehr

GLEICHSTROMSTELLER (GS) Versuchsaufgabe

GLEICHSTROMSTELLER (GS) Versuchsaufgabe Fachhochschule Praktikum Versuch LEA3 + RUL3 Bielefeld Leistungselektronik und Antriebe Prof. Dr. Hofer FB Elektrotechnik Regelungstechnik und Leistungselektronik GLEICHSTROMSTELLER (GS Versuchsaufgabe

Mehr

UMRICHTERSYSTEME MIT NEUEN SPEICHERKOMPONENTEN

UMRICHTERSYSTEME MIT NEUEN SPEICHERKOMPONENTEN Umrichtersysteme mit neuen Speicherkomponenten 1 UMRICHTERSYSTEME MIT NEUEN SPEICHERKOMPONENTEN A. Guetif 1 EINFÜHRUNG Ein Verbundnetz ist ein nichtlineares instabiles System, das durch ständige Regeleingriffe

Mehr

Elektrische Maschinen und Antriebe

Elektrische Maschinen und Antriebe Viewegs Fachbücher der Technik Elektrische Maschinen und Antriebe Lehr- und Arbeitsbuch Bearbeitet von Klaus Fuest, Peter Döring 1. Auflage 004. Taschenbuch. X, 3 S. Paperback ISBN 978 3 58 54076 0 Format

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 7: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 4 4. Mittelwerte bei Wechselstrom

Mehr

Schneider Electric Schiffbautag Bordnetzqualität und deren Überwachung. Bordnetzqualität Theorie, Simulation und Praxis

Schneider Electric Schiffbautag Bordnetzqualität und deren Überwachung. Bordnetzqualität Theorie, Simulation und Praxis Schneider Electric Schiffbautag 2013 Bordnetzqualität und deren Überwachung Bordnetzqualität Theorie, Simulation und Praxis Prof. Dr.-Ing. Günter Ackermann Institut für Elektrische Energiesysteme und Automation

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

*EP A2* EP A2 (19) (11) EP A2 (12) EUROPÄISCHE PATENTANMELDUNG. (43) Veröffentlichungstag: Patentblatt 2002/39

*EP A2* EP A2 (19) (11) EP A2 (12) EUROPÄISCHE PATENTANMELDUNG. (43) Veröffentlichungstag: Patentblatt 2002/39 (19) Europäisches Patentamt European Patent Office Office européen des brevets *EP001244193A2* (11) EP 1 244 193 A2 (12) EUROPÄISCHE PATENTANMELDUNG (43) Veröffentlichungstag: 2.09.2002 Patentblatt 2002/39

Mehr

White Paper: Optimale Spannungsauslegung von mobilen Systemen

White Paper: Optimale Spannungsauslegung von mobilen Systemen U I P White Paper: Optimale Spannungsauslegung von mobilen Systemen Einleitung Bekannte Zusammenhänge: + Höhere Spannungen ermöglichen die gleiche Leistung mit geringerem Strom und damit geringeren Kupferquerschnitten

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

2 Grundlagen. 2.2 Gegenüberstellung Induktivität und Kapazität. 2.1 Gegenüberstellung der Grössen Translation > Rotation

2 Grundlagen. 2.2 Gegenüberstellung Induktivität und Kapazität. 2.1 Gegenüberstellung der Grössen Translation > Rotation 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis... 1 2 Grundlagen... 3 2.1 Gegenüberstellung der Grössen Translation > Rotation... 3 2.2 Gegenüberstellung Induktivität und Kapazität... 4 2.3 Zentrifugalkraft...

Mehr

Spannungszwischenkreisumrichter, Pulsumrichter

Spannungszwischenkreisumrichter, Pulsumrichter Lehrveranstaltung Leistungselektronik Grundlagen und StandardAnwendungen Spannungszwischenkreisumrichter, Pulsumrichter Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München

Mehr

Versuch LE 4. (Praktikum) Grundlagen selbstgeführter Stromrichter

Versuch LE 4. (Praktikum) Grundlagen selbstgeführter Stromrichter FH Stralsund Fachbereich Elektrotechnik Praktikum im Fach Leistungselektronik Versuch LE 4 (Praktikum) Grundlagen selbstgeführter Stromrichter Der selbstgeführte Stromrichter als DC-DC-Wandler (Tiefsetz-Steller)

Mehr

Spannungszwischenkreisumrichter (Pulsumrichter)

Spannungszwischenkreisumrichter (Pulsumrichter) Lehrveranstaltung Umwandlung elektrischer Energie mit Leistungselektronik Spannungszwischenkreisumrichter (Pulsumrichter) Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München

Mehr

Inhaltsverzeichnis Grundlagen der Elektrotechnik

Inhaltsverzeichnis Grundlagen der Elektrotechnik Inhaltsverzeichnis 1 Grundlagen der Elektrotechnik................. 1 1.1 Gleichstromkreis........................ 1 1.1.1 Elektrischer Gleichstromkreis................ 2 1.1.2 Elektrische Spannung...................

Mehr

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab!

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Aufgabe 1 (Zuordnung reeller Größen zu komplexen Größen) Der Vorteil der komplexen Rechnung gegenüber der reellen besteht darin,

Mehr