Symmetrie in Kristallen Anleitung für das F-Praktikum

Größe: px
Ab Seite anzeigen:

Download "Symmetrie in Kristallen Anleitung für das F-Praktikum"

Transkript

1 Symmetrie in Kristallen Anleitung für das F-Praktikum Sommersemester 2015 Fachbereich Physik Physikalisches Institut Goethe-Universität Frankfurt Betreuer: Kristin Kliemt Stand: April 2015 Versuchsbeginn: montags 9 Uhr, Seminarraum.426

2 1 1 Motivation Interessierende Materialeigenschaften von Festkörpern sind häufig anisotrop. Proben für die Festkörperforschung bzw. für technische Anwendungen werden entlang bestimmter Ebenen ihres Kristallgitters geschnitten und so zur Vermessung richtungsabhängiger physikalischer Eigenschaften vorbereitet. Die Bestimmung der Lage des Kristallgitters in der einkristallinen Probe, das sogenannte Orientieren, geht dem Schneiden der Probe und der Messung voraus. Mittels der Laue Methode kann die Orientierung eines Einkristalls ermittelt werden. Ziel dieses Versuchs ist das Bestimmen der Orientierung eines Einkristalls. 2 Aufgaben zum Versuch Orientieren Sie einen Kristall der von Ihnen gewählten Verbindung! Betrachten Sie den Kristall mit Hilfe des Mikroskops! Achten Sie dabei auf den Habitus und rufen Sie sich die Struktur der Verbindung in Erinnerung! Entscheiden Sie, in welcher Richtung sie den Kristall bestrahlen möchten! Befestigen Sie den Kristall in der richtigen Position auf dem Goniometer! Ermitteln Sie diese Position mit Hilfe des Strahlsimulators ausserhalb der Anlage. Bauen Sie den Kristall in die Laue-Anlage ein und nehmen Sie (mit Hilfe des Betreuers) ein Laue-Bild auf. Das Finden der Orientierung des Kristalls häufig nur möglich, wenn das aufgenommene Bild möglichst symmetrisch ist. Der Kristall wurde dann entlang einer Hauptsymmetrierichtung bestrahlt. Falls das aufgenommene Bild keinerlei Symmetrien erkennen lässt, wird der Kristall um wenige Grad gedreht und ein weiteres Bild aufgenommen. Nachdem die Aufnahme eines symmetrischen Laue Bildes gelungen ist, nehmen Sie von dem Kristall genau entlang der bestrahlten Richtung auch ein Foto mit der Kamera des Digitalmikroskops auf! Benutzen Sie das Programm OrientExpress um die von Ihnen aufgenommene Laue-Aufnahme zu indizieren! Verwenden Sie dazu die separate Anleitung zur Benutzung des Programmes OrientExpress!

3 2 Markieren die in der Laue Aufnahme die zu Hauptsymmetrierichtungen gehörenden Reflexe! Markieren Sie mit Hilfe eines Pfeils die identifizierte(n) Hauptsymmetrierichtung(en) im aufgenommenen Foto! Erstellen Sie ein Protokoll zum Versuch! Das Protokoll soll die Beantwortung der Fragen zur Vorbereitung (dieser Teil ist am Versuchstag mitzubringen), eine Beschreibung des durchgeführten Experiments sowie die aufgenommenen Laue-Aufnahmen und das Foto mit der eingezeichneten Orientierung des Kristalls enthalten. Das Protokoll umfasst inclusive aller Abbildungen 8-12 Seiten, wobei der Theorie-Anteil ca. 1/3 ausmachen soll. Das Protokoll kann in elektronischer Form abgegeben werden. 3 Fragen zur Vorbereitung Zur Vorbereitung des Versuches sind von den Versuchsteilnehmern die im Folgenden notierten Fragen schriftlich zu beantworten und einige versuchsrelevante Daten zu recherchieren. Ohne diese Vorbereitung kann der Versuch am Versuchstag nicht durchgeführt werden. Beachten Sie bei Ihrer Vorbereitung die im Abschnitt 4, gegebenen Literaturhinweise! 3.1 Probe Für den Versuch stehen Einkristalle von drei verschiedenen Verbindungen zur Verfügung: YbRh 2 Si 2, GdRh 2 Si 2 und YbNi 4 P Wählen Sie eine Verbindung aus. 2. Recherchieren Sie in der entsprechenden Publikation die Gitterkonstanten Ihrer gewählten Verbindung! 3. In welchem Kristallsystem kristallisiert Ihre gewählte Verbindung? 4. Zeichnen Sie in die Struktur die Lage der auftretenden Symmetrieelemente (wie z.b. Drehachse, Spiegelebene)! Ein Bild der Struktur befindet sich im Ordner Literatur zum Versuch.

4 3 5. Zeichnen Sie in die Einheitszelle der von ihnen gewählten Verbindung die Gitterebenen mit den Millerschen Indizes (100), (110) und (001)! 6. Welche physikalischen Fragestellungen werden an der von Ihnen gewählten Verbindung untersucht? 7. Wie werden die Einkristalle der von Ihnen gewählten Verbindung hergestellt? 3.2 Kristallographie 1. Was ist ein Einkristall? 2. Was ist Habitus? 3.3 Reziproker Raum 1. Was ist der reziproke Raum? 2. Wie wird das reziproke Gitter konstruiert? 3. Was sind Millersche Indices? 4. Wie werden die Millerschen Indices konstruiert? 3.4 Bragg- und Laue-Bedingung 1. Erklären Sie die Bragg-Bedingung anhand einer Skizze! 2. Erklären Sie die Laue-Bedingung anhand der Ewald-Kugel (Abb. 1)! 3. Im Versuch wird mit Röntgenstrahlung gearbeitet. Wird dabei Bremsstrahlung oder charakteristische Strahlung verwendet? 3.5 Laue-Aufnahme 1. Um eine Laue-Aufnahme mit gut erkennbaren Reflexen der Verbindung KBr aufzunehmen, bestrahlt man den Kristall ca. 15 min lang. Für die Aufnahme des Beugungsbildes eines GdRh 2 Si 2 -Kristalls sind ca. 8 min ausreichend. Erklären Sie diese Beobachtung! 2. Die aufgenommenen Reflexe des KBr-Kristalls (Abb. 6, links) sind nicht punktförmig. Diskutieren Sie mögliche Ursachen!

5 4 Abbildung 1: Links: Ewald-Kugel in 2D; Rechts: Laue-Methode: Verwendung eines kontinuierlichen Spektrums mit Wellenzahlen der einfallenden Strahlung k 0 k k 1. Alle reziproken Gitterpunkte im schraffierten Bereich erfüllen die Laue-Bedingung; Quelle: Skript zur Vorlesung Ex4b, SS2011, M. Lang 3.6 Quellenangaben und Zitate Ein Grundpfeiler wissenschaftlichen Arbeitens ist das korrekte Zitieren von Quellen. Texte, die nicht kenntlich gemachtes geistiges Eigentum Anderer enthalten, nennt man Plagiate. Das gilt selbstverständlich auch für F-Praktikumsprotokolle. Beim Schreiben ist deshalb folgendes zu beachten: Wortwörtlich aus anderen Arbeiten übernommene Textpassagen nennt man Zitate. Diese sind durch sowie Angabe des Autors kenntlich zu machen. Sinngemäss übernommene Aussagen sind mit der Angabe der Quelle zu versehen, wie z.b. In YbRh 2 Si 2, the antiferromagnetic state is stabilized through the application of positive chemical pressure [1]. [1] S. Friedemann et al., Nature Phys.5, 465 (2009) Wikipedia ist ein interaktives Web-Nachschlagewerk von sehr schwankender Qualität und als Quelle für eine wissenschaftliche Arbeit nicht geeignet.

6 5 4 Literatur Grundlagen zur Laue-Methode (Abschnitt 5) aus diesem Skript Material aus dem Ordner Literatur zum Versuch : Strukturbilder, Datenbankauszüge + Publikationen zu den Verbindungen, Anleitung OrientExpress, Artikel: Imaging Plates as Detectors for X-ray Diffraction Vorlesung: Einführung in die Festkörperphysik (4. Semester) Neil W. Ashcroft, David N. Mermin: Festkörperphysik Charles Kittel: Einführung in die Festkörperphysik OrientExpress - CCP14, Publikations-Suchmaschine: (Web of Science, ISI Web of knowledge) 5 Grundlagen zur Laue-Methode 5.1 Laue Methode und Laue Anlage Die Laue Methode wird zur Untersuchung und Charakterisierung von Kristallen mit meist bereits bekannter Struktur verwendet. Mit Hilfe dieser Methode kann die Orientierung eines Kristalls bezüglich einer Röntgenquelle bestimmt werden (Abb. 2). Die Messung erfolgt in Reflexionsgeometrie. Der Strahldurchmesser beträgt ca. 0,5 mm. Die Aufnahme erfolgt auf einer Bildplatte. 5.2 Strahlenschutz Die Laue-Anlage darf ohne Einweisung des Betreuers nicht betrieben werden. Bei der Anlage handelt es sich um ein sogenanntes Vollschutzgerät, das heißt, es besteht keine Gefährdung durch Strahlung während des Betriebs.

7 6 Abbildung 2: Laue-Anlage: Versuchsaufbau Abbildung 3: Schema einer Röntgenröhre, Quelle: Röntgenstrahlung Röntgenstrahlung wird mit Hilfe einer Röntgenröhre erzeugt. Diese besteht aus einer beheizten Kathode und einer Anode eingeschlossen in einer evakuierten Glasröhre (Abb. 3). Aus der Kathode treten Elektronen aus, die in der Glasröhre durch die zwischen Kathode und Anode anliegende Spannung beschleunigt werden. Beim Auftreffen auf die Anode kommt es zu zwei Prozessen, bei denen Röntgenstrahlung entsteht (Abb. 4). Zum einen entsteht durch die Abbremsung (negative Beschleunigung eines geladenen Teilchens) der Elektronen im Feld der Atome die kontinuierliche Bremsstrahlung. Zum anderen verursacht der zweite Prozess die Entstehung materialcharakteristischer Röntgenstrahlung. Die auftreffenden Elektronen schlagen aus der inne-

8 7 Abbildung 4: Links: Entstehung von charakteristischer Röntgenstrahlung; Rechts: Entstehung von Bremsstrahlung; Quelle: ren Schale (K-Schale) der Anodenatome ein Elektron heraus. Der entstehende leere Platz wird nach kurzer Zeit durch einen Übergang eines Elektrons aus einer äusseren Schale wieder aufgefüllt. K α bezeichnet dabei die entstehende Strahlung beim Übergang eines Elektrons aus der L- in die K-Schale, K β - Strahlung entsteht beim Übergang eines Elektrons aus der M-Schale in die K-Schale. Das Spektrum einer Röntgenröhre ist in Abbildung 5 links dargestellt. 5.4 Symmetrietransformationen Wenn der Kristall zum Röntgenstrahl so ausgerichtet steht, dass der Strahl z.b. entlang einer Drehachse des Kristalls verläuft, so kann man diese Symmetrie im Beugungsbild gut wiedererkennen. Im kubischen Kristallsystem gibt es viele solche markante Drehachsen - eine vierzählige und eine dreizählige Achse sind beispielhaft in Abbildung 5 rechts dargestellt. Laue-Bilder von kubischen Kristallen, die entlang einer vier- bzw. einer dreizählien Achse aufgenommen wurden, zeigt Abb Einer oder mehrere? Mit Hilfe der Laue Methode kann festgestellt werden (Abb. 7), ob es sich bei einer hergestellten Probe um einen Einkristall handelt, oder ob die Probe polykristallin ist, d.h. mehrere Kristallkörner enthält.

9 8 Abbildung 5: Links: Spektrum einer Röntgenröhre Quelle: Rechts: 3- und 4-zählige Drehachse im kubischen Kristallsystem Abbildung 6: Laue-Aufnahmen eines KBr-Kristalls aufgenommen entlang einer vierzähligen Drehachse (links) und eines SrF 2 -Kristalls entlang einer dreizähligen Achse (rechts).

10 9 Abbildung 7: Laue-Aufnahmen von einer polykristallinen Probe (links) und einer Probe, die zwei leicht versetzte Kristallkörner enthält (rechts) Abbildung 8: Die Software OrientExpress steht zum kostenlosen Download zur Verfügung.

11 Abbildung 9: Entstehung von Reflexgirlanden 10

12 Abbildung 10: Schemata für die Gitter eines Einkristalls, einer polykristallinen und einer amorphen Probe 11

13 12 Abbildung 11: Die 7 Kristallsysteme Quelle:W. Massa, Kristallstrukturbestimmung, View- eg+teubner Verlag, Wiesbaden, 7.Auflage (2011)

14 13 Abbildung 12: 14 Bravaisgitter: Die dargestellten Zellen sind die gebräuchlichen Einheitszellen; sie sind nicht immer primitiv. Quelle: C. Kittel, Einführung in die Festkörperphysik, Oldenburg Verlag München, Wien (1968)

15 14 Abbildung 13: 14 Bravaisgitter, Achsen und Winkel Quelle: C. Kittel, Einführung in die Festkörperphysik, Oldenburg Verlag München, Wien (1968)

16 6 Strukturbilder zur Vorbereitung des Versuches 15

17 Abbildung 14: Kristallstruktur von YbRh 2 Si 2 16

18 Abbildung 15: Kristallstruktur von GdRh 2 Si 2 17

19 Abbildung 16: Kristallstruktur von YbNi 4 P 2 18

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: cwik@ph2.uni-koeln.de November 2004 Im

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

Typisch metallische Eigenschaften:

Typisch metallische Eigenschaften: Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz

Mehr

Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann

Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann Protokoll zum Versuch Debye - Scherrer - Verfahren Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann 6. März 2005 3 Inhaltsverzeichnis 1 Aufgabenstellung 4 2 Theoretische Grundlagen 4 2.1 Röntgenstrahlung.................................

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 21 30.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 21 Prof. Thorsten Kröll 30.06.2011 1 H 2

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr

Kristallographie und Röntgenbeugung

Kristallographie und Röntgenbeugung 16.04.2009 Gliederung 1 Grundlagen der Kristallographie 2 Röntgenstrahlung Laue-Bedingung Bragg-Bedingung Ewaldsche Konstruktion Röntgenverfahren zur Strukturanalyse von Kristallen 3 4 Festkörper kristalliner

Mehr

Bericht zum Versuch Strukturanalyse mittels Röntgenstrahlung

Bericht zum Versuch Strukturanalyse mittels Röntgenstrahlung Bericht zum Versuch Strukturanalyse mittels Röntgenstrahlung Michael Goerz, Anton Haase 9. Februar 2007 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: C. Rüdt Inhalt 1 Einführung 2 1.1

Mehr

Versuchsanleitung Laue-Experiment. F1-Praktikum, Versuch R2

Versuchsanleitung Laue-Experiment. F1-Praktikum, Versuch R2 Versuchsanleitung Laue-Experiment F1-Praktikum, Versuch R2 Inhaltsverzeichnis 1. Einleitung...3 2. Physikalischer Hintergrund...3 3. Versuchsaufbau...4 3.1 Die Laue-Apparatur...5 3.2 Das Kühlsystem...5

Mehr

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 /

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 / ISP-Methodenkurs Pulverdiffraktometrie Prof. Dr. Michael Fröba, AC Raum 4, Tel: 4 / 4838-337 www.chemie.uni-hamburg.de/ac/froeba/ Röntgenstrahlung (I) Wilhelm Conrad Röntgen (845-93) 879-888 Professor

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 5. Oberflächen-und Dünnschichtanalytik 1 5.1 Übersicht Schichtanalytik - Schichtmorphologie: - Oberflächeneigenschaften - Lichtmikroskop - Rasterelektronenmikroskop - Transmissionselektronenmikroskop -(STM,

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Orientierungsbestimmung von Metalleinkristallen mit der Laue-Kamera

Orientierungsbestimmung von Metalleinkristallen mit der Laue-Kamera 1 Orientierungsbestimmung von Metalleinkristallen mit der Laue-Kamera Organisatorisches Durchführung: Michael Hill, Thomas Link Treffpunkt BH 248 Aufgaben Laue-Aufnahme eines Einkristalls mit unbekannter

Mehr

Röntgenkristallstrukturanalyse : Debye-Scherrer

Röntgenkristallstrukturanalyse : Debye-Scherrer 16.04.2009 Gliederung Bragg-Bedingung Bragg-Bedingung Bragg-Bedingung: 2d m m m h k l sin(ϑ) = nλ für kubisches Gitter: 2sin(ϑ) = λ h 2 + k 2 + l 2 a d m m m h k l...netzebenenabstand ϑ...braggwinkel n...

Mehr

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4 Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 12. 04. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Physikalisches Fortgeschrittenenpraktikum Strukturbestimmung. Vorbereitung. 1 Kristallstrukturen. 1.1 Gittertranslationsvektoren

Physikalisches Fortgeschrittenenpraktikum Strukturbestimmung. Vorbereitung. 1 Kristallstrukturen. 1.1 Gittertranslationsvektoren Physikalisches Fortgeschrittenenpraktikum Strukturbestimmung Vorbereitung Armin Burgmeier Robert Schittny Wir wollen uns in diesem Versuch mit der Bestimmung der Kristallstruktur einer Pulverprobe aus

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Röntgendiffraktometrie Name: Matthias Jasch Matrikelnummer: 077 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 9. Mai 009 Betreuer: Verena Schendel 1 Einleitung Bei der Röntgendiffraktometrie

Mehr

Methoden der Kristallcharakterisierung

Methoden der Kristallcharakterisierung Methoden der Kristallcharakterisierung Aus dem Alltag des Kristallzüchters: Es wurde eine feste Substanz synthetisiert. Ist es eine kristalline Substanz? Um welche kristalline Phase handelt es sich? Antworten

Mehr

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper

Mehr

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können: Festk234 37 11/11/22 2.9. Drehungen und Drehinversionen Bereits kennen gelernt: Translationssymmetrie. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Mehr

VL Physik für Mediziner 2009/10. Röntgenstrahlung

VL Physik für Mediziner 2009/10. Röntgenstrahlung VL Physik für Mediziner 2009/10 Röntgenstrahlung Peter-Alexander Kovermann Institut für Neurophysiologie Medizinische Hochschule Hannover Kovermann.Peter@MH-Hannover.DE Was ist Röntgenstrahlung und. wer

Mehr

Charakteristische Röntgenstrahlung von Wolfram

Charakteristische Röntgenstrahlung von Wolfram Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

Anfängerpraktikum D11 - Röntgenstrahlung

Anfängerpraktikum D11 - Röntgenstrahlung Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter 19.Juni 2005 Strukturbestimmung Gruppe 36 Simon Honc shonc@web.de Christian Hütter christian.huetter@gmx.de 1 I. Theoretische Grundlagen 1. Struktur idealer Kristalle Generell kann man bei Kristallen vom

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen Seite 1 von 8 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen 1. Im Fadenstrahlrohr (siehe Abbildung 1) wird mit Hilfe einer

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Die Abbildung zeigt eine handelsübliche Röntgenröhre

Die Abbildung zeigt eine handelsübliche Röntgenröhre Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Hinweis: Optional kann der Versuch auch mit einer Wolfram-Röntgenröhre ( ) durchgeführt werden.

Hinweis: Optional kann der Versuch auch mit einer Wolfram-Röntgenröhre ( ) durchgeführt werden. Die Intensität charakteristischer Röntgenstrahlung als Funktion von Anodenstrom und Anodenspannung TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Bragg-Gleichung, Intensität

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung 2. Praktikumsversuch aus Halbleiterphysik Röntgenbeugung, 0555150 (Autor), 0555342 Gruppe I/1 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Bragg-Bedingung.............................................

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung VL 20 VL 18 18.1. Mehrelektronensysteme VL 19 19.1. Periodensystem VL 20 20.1. Röntgenstrahlung Wim de Boer, Karlsruhe Atome und Moleküle, 27.06.2013 1 Vorlesung 20: Roter Faden: Röntgenstrahlung Folien

Mehr

Universität Regensburg Stand: August 2014 Fortgeschrittenen-Praktikum. Anleitung zum Versuch. Röntgenbeugung

Universität Regensburg Stand: August 2014 Fortgeschrittenen-Praktikum. Anleitung zum Versuch. Röntgenbeugung Universität Regensburg Stand: August 2014 Fortgeschrittenen-Praktikum Anleitung zum Versuch Röntgenbeugung Inhaltsverzeichnis 1 Warnung und Sicherheitshinweise 1 2 Grundlagen und Fragen zur Vorbereitung

Mehr

P 2 - Piezoelektrizität

P 2 - Piezoelektrizität 56 P2 Piezoelektrizität P 2 - Piezoelektrizität Ein Kristall, dessen Punktgruppe (Kristallklasse) kein Symmetriezentrum (Z) aufweist, kann prinzipiell piezoelektrisch sein Das heißt, der auf den Kristall

Mehr

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Welleneigenschaften, ionisiert Gase, regt manche Stoffe zum Leuchten

Mehr

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1 Abiturprüfung 2003 Vorschlag 2 Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1. Skizziere und beschreibe den Aufbau einer Röntgenröhre. Beschreibe kurz, wie Röntgenstrahlung entsteht.

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Struktur von Einkristallen

Struktur von Einkristallen Struktur von Einkristallen Beschreibung des einkristallinen Festkörpers Am einfachsten zu beschreiben sind atomare Kristalle bei denen an jedem Punkt des Raumgitters sich genau ein Atom befindet. Man wählt

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Department Chemie. Röntgenbeugung. ISP-Methodenkurs. Dr. Frank Hoffmann

Department Chemie. Röntgenbeugung. ISP-Methodenkurs. Dr. Frank Hoffmann Department Chemie Röntgenbeugung ISP-Methodenkurs Dr. Frank Hoffmann 22.01.2008 Ergebnis einer RSA Ä Atomsorten und deren Koordinaten in der asymmetrischen Einheit Ä Bindungslängen und -winkel Ä Elementarzelle

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII Prof. Dr. F. Koch Dr. H. E. Porteanu fkoch@ph.tum.de porteanu@ph.tum.de SS 2005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII 19.05.05 Festkörperphysik - Kristalle Nach unserem kurzen Ausflug in die Molekülphysik

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Anorganische Chemie I und II. FH Münster, FB01

Grundlagen der Röntgenpulverdiffraktometrie. Anorganische Chemie I und II. FH Münster, FB01 Seminar David zur Enseling Vorlesung und Thomas Jüstel Anorganische Chemie I und II Folie 1 Entdeckung & erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

Versuch P6 - HS 2012 Texturuntersuchungen Polfiguren

Versuch P6 - HS 2012 Texturuntersuchungen Polfiguren Versuch P6 - HS 2012 Texturuntersuchungen Polfiguren Datum: 30.11.12 Laborteam: Nicole Schai, Cristina Mercandetti, Marcel Janser, Pascal Oberholzer Assistent: Dominik Jaeger 1. Abstract Die Textur eines

Mehr

Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18

Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18 Gefüge und Eigenschaften metallischer Werkstoffe WS 7/8 Übung 5 Musterlösung 0..07 Aufgabe Welche Bravais-Gittertypen gibt es? Welche Modifikationen besitzen Sie? Nennen Sie Materialbeispiele zu jedem

Mehr

Festkörperphysik I. Wintersemester 2006/07

Festkörperphysik I. Wintersemester 2006/07 Festk060701.doc 1 10/20/2006 Festkörperphysik I Wintersemester 2006/07 Peter Böni Physik-Department E21 Technische Universität München D-85747 Garching Vorlesungsnotizen, Übungsblätter und Lösungen: http://www.ph.tum.de/lehrstuehle/e21

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 7 Abiturprüfung 2011 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Der Doppelspalt 1.1 Interferenzen bei Licht In einem ersten Experiment untersucht man Interferenzen von sichtbarem Licht,

Mehr

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Grundlagen-Vertiefung PW3 Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Kristalle besitzen einen geordneten und periodischen Gitteraufbau. Die überwiegende Mehrzahl der anorganischen Festkörper

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A10 - AVOGADRO-Konstante» Martin Wolf Betreuer: Herr Decker Mitarbeiter: Martin Helfrich Datum:

Mehr

Physikalisches Anfängerpraktikum Teil 1. Protokollant: Versuch 1/1 Poisson-Statistik. Sebastian Helgert, Sven Köppel

Physikalisches Anfängerpraktikum Teil 1. Protokollant: Versuch 1/1 Poisson-Statistik. Sebastian Helgert, Sven Köppel Physikalisches Anfängerpraktikum Teil 1 Protokoll Versuch 1/1 Poisson-Statistik Sebastian Helgert Meterologie Bachelor 3. Semester Physik Bachelor 3. Semester Versuchsdurchführung: Do. 12. November 2009,

Mehr

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Festkörper, ausgewählte Beispiele spezieller Eigenschaften von Feststoffen, Kohlenstoffmodifikationen, Nichtstöchiometrie, Unterscheidung kristalliner und amorpher

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2 Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am 1.06.018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 6.06.018 Aufgabe

Mehr

Kristallographie. Walter Borchardt-Ott. Eine Einführung für Naturwissenschaftler. Springer. Sechste, überarbeitete und erweiterte Auflage

Kristallographie. Walter Borchardt-Ott. Eine Einführung für Naturwissenschaftler. Springer. Sechste, überarbeitete und erweiterte Auflage Walter Borchardt-Ott Kristallographie Eine Einführung für Naturwissenschaftler Sechste, überarbeitete und erweiterte Auflage Mit 290 Abbildungen und 44 Tabellen Springer Inhaltsverzeichnis 1 Einleitung

Mehr

Festkörperphysik. Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe. LD Handblätter Physik P Ste

Festkörperphysik. Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe. LD Handblätter Physik P Ste Festkörperphysik Kristalleigenschaften Röntgenstrukturanalyse LD Handblätter Physik P7.1.2.2 Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe Versuchsziele Auswertung der Laue-Aufnahmen

Mehr

Physik ea Klausur Nr Oktober 2013

Physik ea Klausur Nr Oktober 2013 Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 1 Kristallstruktur und Teil I Scripte Mikrostruktur http://www.uni-stuttgart.de/mawi/aktuelles_lehrangebot/lehrangebot.html 2 Wiederholung Koordinatensysteme

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik September 2016 2 Versuch 24 Beugung von Röntgenstrahlung Röntgenstrahlen

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

Röntgenbeugung. 1. Grundlagen, Messmethode

Röntgenbeugung. 1. Grundlagen, Messmethode Röntgenbeugung 1. Grundlagen, Messmethode Beim Aufprall schneller Elektronen auf ein metallisches Anodenmaterial (hier: Kupfer) entsteht Röntgenstrahlung. Diese wird nach der Drehkristallmethode spektral

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen.5: Kleine Skalen Chemische Bindung Aggregatszustände Kristallstrukturen und Streuung Bildung des Lebens Kovalente Molekülbindungen Ladungsdichteverteilungen: CH 4 NH 3 H

Mehr

Versuch O

Versuch O 1 Grundlagen Plancksches Wirkungsquantum Das Plancksche Wirkungsquantum gibt den Zusammenhang zwischen Energie und Frequenz wieder und verknüpft damit die Welleneigenschaft mit der Teilcheneigenschaft.

Mehr

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit hexagonaler Gitterstruktur (Bragg-Brentano-Geometrie)

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit hexagonaler Gitterstruktur (Bragg-Brentano-Geometrie) Diffraktometrisches Debye-Scherrer Diagramm einer TEP 5.4.3- Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung, Kristallstrukturen, Bravais-Gitter, Reziproke

Mehr

A. N. Danilewsky 1. Inhalt des 1. Kapitels

A. N. Danilewsky 1. Inhalt des 1. Kapitels A. N. Danilewsky 1 Inhalt des 1. Kapitels 1 Vom Raumgitter zur Kristallstruktur... 2 1.1 Definition und Nomenklatur... 2 1.2 Gittergerade...4 1.3 Gitterebene...4 1.4 Raumgitter...5 1.5 Kristallsysteme...

Mehr

Mechanisch-thermische. Materialeigenschaften VL # 2

Mechanisch-thermische. Materialeigenschaften VL # 2 Mechanisch-thermische Materialeigenschaften VL # 2 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen

Mehr

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode Strukturbestimmung von Einkristallen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Bravais-Gitter, Reziproke Gitter, Millersche-Indizes, Atomfaktor, Strukturfaktor, Bragg- Streuung. Prinzip

Mehr

F CT1 Verschiedene Abtastverfahren in der Computertomographie

F CT1 Verschiedene Abtastverfahren in der Computertomographie F CT1 Verschiedene Abtastverfahren in der Computertomographie AB CT1 Prinzip der Computertomographie AB CT1 Prinzip der Computertomographie - Musterlösung Kollimatoren blenden ein etwa bleistiftdickes

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

2. Kristallstrukturen 2.1 Bindungsarten

2. Kristallstrukturen 2.1 Bindungsarten 2. Kristallstrukturen 2.1 Bindungsarten Bindungskräfte zwischen den Atomen ermöglichen systematische und geordnete Anlagerung der Atome Entstehung von Kristallstrukturen Metall-Ion (+) Metallische Bindung

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Festkörperchemie

Mehr

Unterrichtsmaterial zum Modul Symmetrie

Unterrichtsmaterial zum Modul Symmetrie Unterrichtsmaterial zum Modul Symmetrie Inhalt (je 4x) Alkalifeldspat (Prisma - monoklin) Kalkspat/Calcit (Rhomboeder - trigonal) Apatit (Prisma & Pyramide - hexagonal) Quarz (Prisma & Pyramide - trigonal)

Mehr

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung VL 20 VL 18 18.1. Mehrelektronensysteme VL 19 19.1. Periodensystem VL 20 20.1. Röntgenstrahlung Wim de Boer, Karlsruhe Atome und Moleküle, 27.06.2013 1 Vorlesung 20: Roter Faden: Röntgenstrahlung Folien

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Festkörperphysik.1 Aggregatszustände. Kristallstrukturen.3 Chemische Bindung.4 Gitterschwingungen.5 Elektronen im Festkörper Phasendiagramm von CO Klassisches

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert FK02 Röntgenstrahlung & Kristallanalyse (Pr_PhII_FK02_Röntgen_7, 25.10.2015) 1. 2. Name

Mehr

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Vorlesung: Hörsaal 10.01 Daran anschließend Physikalische Chemie 2 (Prof. Falcaro, TU): Materie im elektr./magn. Feld, Wechselwirkungen,

Mehr

Fortgeschrittenen Praktikum, SS 2008

Fortgeschrittenen Praktikum, SS 2008 Röntgenbeugung (RBE) Fortgeschrittenen Praktikum, SS 2008 Alexander Seizinger, Michael Ziller, Philipp Buchegger, Tobias Müller Betreuer: Prof. Jörg Ihringer Tübingen, den 15. Juli 2008 1 Theorie 1.1 Erzeugung

Mehr

Festkörperelektronik 2008 Übungsblatt 4

Festkörperelektronik 2008 Übungsblatt 4 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 4. Übungsblatt 12. Juni 2008 Die

Mehr

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch.

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung, Röntgenröhre,

Mehr

Röntgen- Pulverdiagramme

Röntgen- Pulverdiagramme Röntgen- Pulverdiagramme Prof. Dr. Martin U. Schmidt Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Str. 7 60438 Frankfurt am Main m.schmidt@chemie.uni-frankfurt.de

Mehr

Charakteristische Röntgenstrahlung von Kupfer

Charakteristische Röntgenstrahlung von Kupfer Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen 1.2 Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen Inhaltsvrzeichnis 1.2 Prof. Dr. Christian Blendl 1.2.1 Erzeugung ionisierender

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 1 Kristallstruktur und Teil I Scripte Mikrostruktur http://www.uni-stuttgart.de/mawi/aktuelles_lehrangebot/lehrangebot.html 2 Wiederholung Koordinatensysteme

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.

Mehr

Anleitung zum Praktikum für Fortgeschrittene. Versuch: X-ray Photoelectron Spectroscopy. Betreuer: Dipl.-Phys. Florian Voigts

Anleitung zum Praktikum für Fortgeschrittene. Versuch: X-ray Photoelectron Spectroscopy. Betreuer: Dipl.-Phys. Florian Voigts Anleitung zum Praktikum für Fortgeschrittene Versuch: X-ray Photoelectron Spectroscopy Betreuer: Dipl.-Phys. Florian Voigts Institut für Physik und Physikalische Technologien Technische Universität Clausthal

Mehr

Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik

Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik Alexander Komarek, Sebastian Bleikamp, Martin Valldor Raum 326 im II. Physikalischen Institut der Universität zu Köln 1 Einleitung

Mehr

(DF) wird als. Löcher. Die durch. der Röhre. dass die

(DF) wird als. Löcher. Die durch. der Röhre. dass die Röntgendiffraktometrie (DF) Elektromagnetische Strahlung im Wellenlängenbereich von etwa 0.005-1 nm wird als Röntgenstrahlung bezeichnet. Röntgenstrahlen sind sehr energiereich und haben Photonenenergien

Mehr

3. Beugung am Kristall 3.1 Beugung mit Photonen, Neutronen, Elektronen

3. Beugung am Kristall 3.1 Beugung mit Photonen, Neutronen, Elektronen 3. Beugung am Kristall 3.1 Beugung mit Photonen, Neutronen, Elektronen Analyse von Kristallstrukturen durch die Beugung von: Photonen, Neutronen und Elektronen Wellenlänge in A 10 1.0 0.1 1 10 100 Voraussetzung:

Mehr