Dominik Pretzsch TU Chemnitz 2011

Größe: px
Ab Seite anzeigen:

Download "Dominik Pretzsch TU Chemnitz 2011"

Transkript

1 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern ihre nicht mehr zu bewältigende Flut charakterisiert die Epoche. Georg Franck

2 Definition KDD Knowledge Discovery in Databases Data Mining - Einordnung Geschichte Abgrenzung zu OLAP Wissensbedarf Data Mining als Prozess Data Mining Verfahren Anwendungsgebiete Beispiel (Direkt-Marketing/Direkt-Mailing)

3 Extraktion von Impliziter Bislang unbekannter Potenziell nützlicher Information aus Daten Systematische Anwendung von, meist statistischen, Methoden auf einen Datenbestand Ziel ist das Aufspüren von Regeln und Mustern bzw. statistischen Auffälligkeiten

4 Erkenntnisgewinnung aus Datenbanken Umfasst Data Mining Ziel ist die Erkennung von unbekannten fachlichen Zusammenhängen aus vorhandenen Datenbeständen Vorgehensmodell: CRISP-DM

5 Bereitstellung von Hintergrundwissen Datenauswahl Datenreduktion Data Mining Definition der Ziele Datenbereinigung Modellbildung Interpretation

6

7 1990 OLAP / Warehousing 2000 Data Mining 1980 Datenbanksysteme 1960/70 Sammeln von Daten

8 Was ist OLAP? Online Analytical Processing Wie Data Mining eine Methode der analytischen Informationssysteme Analyst stellt (vorher bekannte) Anfrage an OLAP- System Hypothese wird widerlegt oder bestätigt

9 Wo liegt der Unterschied? OLAP-Systeme beantworten Fragen nach dem Schema: Welche Region hat wann am meisten Umsatz gemacht? Data Mining beantwortet Fragen nach dem Schema: Warum ist dort am meisten verkauft worden und wie kann ich meine Umsätze weiter steigern?

10 Data Mining bietet also eine Prognose für die Zukunft Ist damit gut geeignet um im Umfeld von Unternehmen einen Wettbewerbsvorteil zu erlangen und höhere Gewinne zu erzielen

11 Anteil der tatsächlich analysierten Datenbestände in Unternehmen: 7 % 93 %

12 Heutige Märkte sind gekennzeichnet durch: weitestgehende Angebots- und Produktgleichheit der Anbieter extrem hoher Margendruck Durch steigende Kosten; sinkende Preise (Umsatz) zunehmend sinkende Loyalität der Kunden Warum bei einem Produzenten bleiben? Einsatz neuester Informationstechnologien damit verbundene noch schnellere Globalisierung

13 Ziele festlegen Daten aufbereiten Bewertung der Ergebnisse Daten verstehen Modellbildung Individuelle Lösung

14 Verstehen der Unternehmensziele und Beurteilung der momentanen Situation Aufgaben Dekomposition Aufgaben festlegen und Zerlegung in Teilaufgaben Identifikation von Grenzen Festlegen von Erfolgskriterien

15 Datenerfassung Interne und externe Quellen Einbeziehung eines Domain-Experten Domain-driven Data Mining (D³M) Fragen des Datenzugriffs Datenbeschreibung Datenqualität Berechnung grundlegender Statistiken Datenexploration Untersuchung von Attributkorrelationen fehlenden Attributwerten merkwürdigen, sonderbaren Verteilungen

16 Datenintegration Zusammenführen aus verschiedenen Datenbeständen Problematisch, wenn Daten aus heterogenen Quellen Datenselektion Teilmenge der Attribute Stichprobenentnahme Datentransformation Normalisierung Diskretisierung, Binarisierung Datenbereinigung fehlende Attributwerte ergänzen Ausreißer finden Datenkonstruktion abgeleitete Merkmale

17 Auswahl eines geeigneten Data-Mining Verfahrens Entwicklung eines Testregimes In scientific discussions, a regime is a class of physical conditions, usually parameterized by some specific measures, where a particular physical phenomenon or boundary condition is significant. Erstellen eines Data-Mining Modells Beurteilung des Modells Ggf. müssen vorhergehende Schritte korrigiert bzw. noch ein Mal durchlaufen werden

18 Modellvalidierung menschliche Bewertung durch Domain Experten Nützlichkeit des Modells bzgl. des Unternehmensziels Überprüfung des Prozesses Festlegung nächster Schritte Implementation der Ergebnisse beim Kunde

19 Clusterverfahren Ähnliche Objekte bilden Cluster Visualisierungstechniken 3D-Grafiken und Diagramme Entscheidungsbaumverfahren Baum, hierarchisch aufeinander folgender Entscheidungen Assoziationsanalysen und Assoziationsregeln veranschaulichen Korrelation zw. Gemeinsam auftretenden Dingen Krawatte, Hemd, Jackett Konnektionistische Systeme (Künstliche Neuronale Netze) Aufdecken von nicht offensichtlichen Beziehungen

20 Im Handel: Warenkorb-Analysen Auswertung der Nutzung von Kunden/Rabatt- Karten Im Finanzbereich: Kredit-Bewertung Betrugsprävention/-Aufdeckung In der Produktion: Optimierung von Produktionsparametern Qualitätssicherung In der Telekommunikation Kündigerprävention

21 Fixkosten für das Mailing: EUR Strategie Design/Layout Textentwurf Fotokosten Variable Kosten für Mailing: 1,50 EUR pro M Nachfassen: 1,50 EUR pro NF Telefonische Bestellannahme: 5,00 EUR pro IP Porto Adressmiete Telefonkosten Druck Fulfillment Erwarteter Gewinn: 500 EUR pro Response

22 NF (#98.500) Reagierer (#1000) Z (#1000) Kunden DB Gesamt (#2500) IP (#2500) Summe (#1000) M (# ) Reagierer (#1500)

23 Fixkosten EUR = EUR Kosten für M * 1,50 EUR = EUR Kosten für NF * 1,50 EUR = EUR Kosten für IP * 5,00 EUR = EUR Gesamtkosten = EUR Einnahmen * 500 EUR = EUR Gewinn = EUR Break-Even-Point: 721 Responder

24 NF (#38.600) Response Reagierer (#700) Z (#950) Gesamt (#2100) IP (#950) Summe (#950) Reagierer (#1400) M (#40.000) Data Mining Response-Analyse

25 Fixkosten EUR = EUR Kosten für M * 1,50 EUR = EUR Kosten für NF * 1,50 EUR = EUR Kosten für IP * 5,00 EUR = EUR Gesamtkosten = EUR Einnahmen * 500 EUR = EUR Gewinn = EUR Break-Even-Point: 357 Responder

26 https://www.tu-chemnitz.de/wirtschaft/wi2/lehre/2008ws/damu/dm_in_mss.pdf

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Präsentation zur Diplomprüfung. Thema der Diplomarbeit:

Präsentation zur Diplomprüfung. Thema der Diplomarbeit: Präsentation zur Diplomprüfung Thema der Diplomarbeit: Analyse der Einsatzmöglichkeiten von Data Mining- Verfahren innerhalb einer Unternehmens - Balanced Scorecard und Entwicklung eines Empfehlungskatalogs.

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Data Mining als Arbeitsprozess

Data Mining als Arbeitsprozess Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Data Mining für die industrielle Praxis

Data Mining für die industrielle Praxis Data Mining für die industrielle Praxis von Ralf Otte, Viktor Otte, Volker Kaiser 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22465 0 Zu Leseprobe schnell und

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein Alles für den Kunden Analyse von Kundendaten Katrin Plickert, Heiko Hartenstein Zum Verständnis 9. Februar 2007 Heiko Hartenstein, Katrin Plickert 2 Quelle: Heilmann, Kempner, Baars: Business and Competitive

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Analytisches CRM in der Automobilindustrie

Analytisches CRM in der Automobilindustrie Analytisches CRM in der Automobilindustrie Dr. Frank Säuberlich Practice Manager European Customer Solutions Urban Science International GmbH Automobilhersteller müssen neue Wege gehen Anforderungen in

Mehr

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh?

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? best-reactions GmbH Hirschberger Straße 33 D 90559 Burgthann Alle Rechte vorbehalten HRB 23679, Amtsgericht Nürnberg Geschäftsführer Alexander P.

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation?

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation? 1. Konferenz der A Benutzer KFE in Forschung und Entwicklung Data Mining - Marketing-chlagwort oder ernstzunehmende Innovation? Hans-Peter Höschel,, Heidelberg 1. Konferenz der A Benutzer KFE in Forschung

Mehr

Big Data Alter Wein in neuen Schläuchen? 27.11.2013 Josef Schmid M.A. Dynelytics AG

Big Data Alter Wein in neuen Schläuchen? 27.11.2013 Josef Schmid M.A. Dynelytics AG Big Data Alter Wein in neuen Schläuchen? 27.11.2013 Josef Schmid M.A. Dynelytics AG 2 Big Data Gartner prognostiziert, dass Unternehmen im laufenden Jahr für IT-Lösungen im Big-Data- Bereich 34 Milliarden

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)

Mehr

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken Profilbezogene informatische Bildung in den Klassenstufen 9 und 10 Schwerpunktthema Robby Buttke Fachberater für Informatik RSA Chemnitz Fachliche Einordnung Phasen relationaler Modellierung Fachlichkeit

Mehr

Knowledge Discovery. Lösungsblatt 1

Knowledge Discovery. Lösungsblatt 1 Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: hotho@cs.uni-kassel.de Tel.: ++49 561 804-6252 Dr.

Mehr

Steuerungsverfahren und ihre Datenstrukturen 02 - Datenmanagement

Steuerungsverfahren und ihre Datenstrukturen 02 - Datenmanagement Steuerungsverfahren und ihre Datenstrukturen 02 - Datenmanagement 1 Übersicht - Datenmanagement 1 Übersicht - Datenmanagement...1 2 Übersicht: Datenbanken - Datawarehouse...2 3 Übersicht: Data Mining...11

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825 Folien zum Textbuch Kapitel 6: Managementunterstützungssysteme Teil 2: Managementunterstützung auf strategischer Ebene Datenverwaltung und -auswertung Textbuch-Seiten 794-825 WI 1 MUS MUS auf strategischer

Mehr

Data-Mining in Unternehmen die rechtliche Sicht

Data-Mining in Unternehmen die rechtliche Sicht Data-Mining in Unternehmen die rechtliche Sicht 15. Symposium on Privacy and Security, 31. August 2010 Dr. Alois Rimle, Ruoss Vögele Partner, Zürich Übersicht Begriff des Data-Mining 3 Anwendung und Auswirkungen

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Einordnung der Begriffe Business Intelligence Strategic Association Management Controlling and Data Warehousing Data Mining, Knowledge

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

Verborgene Schätze heben

Verborgene Schätze heben Verborgene Schätze heben Data Mining mit dem Microsoft SQL Server Martin Oesterer Leiter Vertrieb HMS Analytical Software GmbH Data Mining. Was ist eigentlich wichtig? Data Mining ist: die Extraktion von

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Dr. Thomas Bernard 6. Karlsruher Automations-Treff (KAT) Leit- und Automatisierungstechnik der Zukunft Karlsruhe,

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr.

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr. LEIBNIZ UNIVERSITÄT HANNOVER FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIK INSTITUT FÜR PRAKTISCHE INFORMATIK FACHGEBIET DATENBANKEN UND INFORMATIONSSYSTEME Masterarbeit im Studiengang Informatik Kombinationen

Mehr

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch?

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch? Oberseminar Data Mining 07. April 2010 Methodik des Data Mining Knowledge Discovery In Databases oder auch Data Mining - Der moderne Goldrausch? Data Mining...? Hochleistungsrechnen Geoinformationssysteme

Mehr

Visualisierung der Imperfektion in multidimensionalen Daten

Visualisierung der Imperfektion in multidimensionalen Daten Visualisierung der Imperfektion in multidimensionalen Daten Horst Fortner Imperfektion und erweiterte Konzepte im Data Warehousing Betreuer: Heiko Schepperle 2 Begriffe (1) Visualisierung [Wikipedia] abstrakte

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

Datenbanken-Themen im OS "Data Mining" SS 2010

Datenbanken-Themen im OS Data Mining SS 2010 Prof. Dr.-Ing. Thomas Kudraß HTWK Leipzig, FIMN Datenbanken-Themen im OS "Data Mining" SS 2010 Die Vorträge sollten eine Dauer von 60 Minuten (Einzelvortrag) bzw. 45 Minuten (Doppelvortrag) haben. Nachfolgend

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Informationsintegration I Einführung

Informationsintegration I Einführung Informationsintegration I Einführung Felix Naumann Integrierte Informationssysteme Anfrage Integriertes Informationssystem Oracle, DB2 Anwendung Dateisystem Web Service HTML Form Integriertes Info.-system

Mehr

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval Kapitel IR:I I. Einführung Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval IR:I-1 Introduction STEIN 2005-2010 Retrieval-Szenarien Liefere Dokumente, die die Terme «Information» und

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

Intelligente Systeme zur Gewinnung führungsrelevanter Informationen aus großen Datenmengen Systematisierung und Bewertung von Data Mining Verfahren

Intelligente Systeme zur Gewinnung führungsrelevanter Informationen aus großen Datenmengen Systematisierung und Bewertung von Data Mining Verfahren Intelligente Systeme zur Gewinnung führungsrelevanter Informationen aus großen Datenmengen Systematisierung und Bewertung von Data Mining Verfahren Claudia Heidsieck Technische Universität Dresden (Claudia.Heidsieck@mailbox.tu-dresden.de)

Mehr

Die Integration von Data-Mining in die Geschäftsprozesse von Versicherungsunternehmen

Die Integration von Data-Mining in die Geschäftsprozesse von Versicherungsunternehmen Die Integration von Data-Mining in die Geschäftsprozesse von Versicherungsunternehmen Systematische Potenzialanalyse und ein generisches Prozessmodell Berlin, 22.03.2006 Andreas Reuß Universität Ulm Sektion

Mehr

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note:

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note: Fakultät für Wirtschaftswissenschaft Matrikelnr: Name: Vorname: : Modul 32711 Business Intelligence Termin: 28.03.2014, 9:00 11:00 Uhr Prüfer: Univ.-Prof. Dr. U. Baumöl Aufbau und Bewertung der Aufgabe

Mehr

Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008. Wintersemester 2008/2009

Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008. Wintersemester 2008/2009 Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008 1. Übung Knowledge Discovery Wintersemester 2008/2009 Vorbemerkungen Vorlesungsfolien und Übungsblätter können Sie im Internet

Mehr

Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden

Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden Dr. Thomas Bernard Fraunhofer-Institut für Systemtechnik, Optronik und Bildauswertung Karlsruhe HANNOVER

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von

Mehr

Seminar im Sommersemester 2005 DATA WAREHOUSING. Data Mining. Christian Knappe. Fachrichtung Wirtschaftsinformatik Friedrich-Schiller-Universität Jena

Seminar im Sommersemester 2005 DATA WAREHOUSING. Data Mining. Christian Knappe. Fachrichtung Wirtschaftsinformatik Friedrich-Schiller-Universität Jena Seminar im Sommersemester 2005 DATA WAREHOUSING Data Mining Christian Knappe Fachrichtung Wirtschaftsinformatik Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Lehrstuhl für

Mehr

Data Mining. Data Warehousing und analytische Datenbanken. Naim Tamtam. Betreuer: K. Büchse. Seminar

Data Mining. Data Warehousing und analytische Datenbanken. Naim Tamtam. Betreuer: K. Büchse. Seminar Friedrisch Schiller Universität Jena Fakultät für Mathematik und Informatik Lehrstuhl für Datenbanksysteme und Informationssysteme Prof. Dr. Klaus Küspert Seminar Data Warehousing und analytische Datenbanken

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

6 Vorverarbeitung. Kapitel 6 Vorverarbeitung. Einführung der Vorverarbeitung. Einführung in die Vorverarbeitung

6 Vorverarbeitung. Kapitel 6 Vorverarbeitung. Einführung der Vorverarbeitung. Einführung in die Vorverarbeitung 6 Vorverarbeitung 6.1 Einführung in die Vorverarbeitung Zweck der Vorverarbeitung Kapitel 6 Vorverarbeitung Transformiere die Daten so, dass sie optimal vom Miner verarbeitet werden können. Problem: -

Mehr

Automatische Gesprächsauswertung im Callcenter

Automatische Gesprächsauswertung im Callcenter Einleitung Forschungsbeitrag Automatische Gesprächsauswertung im Callcenter Projekt CoachOST Dipl.-Wirtsch.-Inf. Mathias Walther Prof. Dr. Taïeb Mellouli Lehrstuhl für Wirtschaftsinformatik und Operations

Mehr

Auswertung für Warenwirtschaft/ERP, Interbase und ODBC... 2

Auswertung für Warenwirtschaft/ERP, Interbase und ODBC... 2 Cubix O.L.A.P... 2 Auswertung für Warenwirtschaft/ERP, Interbase und ODBC... 2 Datenverbindung über ODBC... 4 Datenbereitstellung über SQL... 5 Festlegung der Dimensionen... 6 Festlegung der Summen...

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels TDWI Konferenz München, 24.06.2014 M.Sc.Susann Dreikorn Institut für Wirtschaftsinformatik, 2014 Agenda

Mehr

Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion

Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion Frank Effenberger, Marco Fischer, 22.06.2015, München Agenda Firmenpräsentation Einführung Anwendungsfall Fazit Zahlen und

Mehr

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg Hussein.Waly@urz.uni-heidelberg.de SAS Mining Challenge Generelle

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

CARL HANSER VERLAG. Karsten Oehler. OLAP Grundlagen, Modellierung und betriebswirtschaftliche Lösungen 3-446-21309-0. www.hanser.

CARL HANSER VERLAG. Karsten Oehler. OLAP Grundlagen, Modellierung und betriebswirtschaftliche Lösungen 3-446-21309-0. www.hanser. CARL HANSER VERLAG Karsten Oehler OLAP Grundlagen, Modellierung und betriebswirtschaftliche Lösungen 3-446-21309-0 www.hanser.de 1 Einleitung Die Entwicklung der Bereitstellung von Informationen zur Entscheidungsunterstützung

Mehr

Oberseminar Data Mining. Systeme und Tools zum Data Mining: RapidMiner

Oberseminar Data Mining. Systeme und Tools zum Data Mining: RapidMiner Folie 2 von 56 Motivation Folie 3 von 56 Inhalt 1 Das Projekt RapidMiner 2 Funktionen 3 KDD-Prozess 4 Weitere Werkzeuge von Rapid-I 5 Zusammenfassung Folie 4 von 56 Das Projekt RapidMiner Entwicklung Entwicklung

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE. 1. Konferenz der SAS Benutzer in Forschung und Entwicklung

Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE. 1. Konferenz der SAS Benutzer in Forschung und Entwicklung Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE 1. Konferenz der SAS Benutzer in Forschung und Entwicklung Unterschiedliche Geschäftsprozesse Operativer Dispositve Geschäftsbetrieb

Mehr

Einsatz von Datenbanken im Forschungslabor. Workflow und Data Mining

Einsatz von Datenbanken im Forschungslabor. Workflow und Data Mining Einsatz von Datenbanken im Forschungslabor Friedrich-Alexander-Universität Erlangen-Nürnberg Technische Fakultät, Institut für Informatik Lehrstuhl für Informatik 6 (Datenbanksysteme) Datenbanken weshalb?

Mehr

Data Mining - Clustering. Sven Elvers

Data Mining - Clustering. Sven Elvers Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 2 Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 3 Data Mining Entdecken versteckter Informationen, Muster und Zusammenhänge

Mehr

Analysen sind nur so gut wie die Datenbasis

Analysen sind nur so gut wie die Datenbasis Analysen sind nur so gut wie die Datenbasis Datenaufbereitung und Sicherung der Datenqualität durch den kontextbasierten MIOsoft Ansatz. Daten gelten längst als wichtiger Produktionsfaktor in allen Industriebereichen.

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

Räumliches Data Mining

Räumliches Data Mining Räumliches Data Mining Spatial Data Mining Data Mining = Suche nach "interessanten Mustern" in sehr großen Datensätzen => explorative Datenanlyse auch: Knowledge Discovery in Databases (KDD) verbreitete

Mehr

Virtual Roundtable: Business Intelligence - Trends

Virtual Roundtable: Business Intelligence - Trends Virtueller Roundtable Aktuelle Trends im Business Intelligence in Kooperation mit BARC und dem Institut für Business Intelligence (IBI) Teilnehmer: Andreas Seufert Organisation: Institut für Business Intelligence

Mehr

Analytisches CRM und Data Mining

Analytisches CRM und Data Mining Analytisches CRM und Data Mining Magische Zahlen für das Marketing Computerwoche Initiative CRM 2009 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Mitglied im CRM Expertenrat

Mehr