Mikrocomputertechnik 2.Mikroprozessor

Größe: px
Ab Seite anzeigen:

Download "Mikrocomputertechnik 2.Mikroprozessor"

Transkript

1 2.3 Programmiermodell des Aus Sicht des Programmierers besteht der Prozessor aus Registersatz Befehlssatz Adressierungsarten Registersatz des universelle Datenregister (32 Bit) D0 D7 8 Adress-Register (32 Bit) A0 A7 A7 ist der Stackpointer Statusregister (16 Bit), bestehend aus Controlregister und Condition Code Register ProgramCounter (32-Bit) PC Auf die Datenregister kann Byteweise (Bit 0- Bit7), Wortweise (Bit0 Bit 15) und als Langwort (Bit 0 Bit 31) zugegriffen werden. Auf Adress-Register wird wortweise oder Langwortweise zugegriffen. MCT 2-33

2 Folie Register MCT 2-34

3 Befehlsatz des /2 Arithmetische Operationen mit ganzen Zahlen Logische Befehle Mnemonik Befehlsbedeutung Mnemonik Befehlsbedeutung ADD ADDA ADDI ADDQ ADDX CLR CMP CMPA CMPI CMPM DIVS DIVU EXT MULS MULU NEG NEGX SUB SUBA SUBI SUBA SUBX TST BCD-Befehle ABCD NBCD SBCD Binäre Addition Binäre Addition von Adressen Addition einer Konstanten Schnelle Addition einer Konstanten Addition mit Extendbit (Übertrag) Löschen eines Operanden Vergleichen zweier Operanden Vergleichen zweier Adressen Vergleichen mit einer Konstanten Vergleichen zweier operanden Division mit Vorzeichen Division ohne Vorzeichen Vorzeichenrichtige Erweiterung Multiplikation mit Vorzeichen Multiplikation ohne Vorzeichen Negation eines Operanden (2er Komplt) Negation eines Operanden mit Extendbit Binäre Subtraktion Binäre Subtraktion von Adressen Subtraktion einer Konstanten Schnelle Subtraktion einer Konstanten Subtraktion mit Extendbit (Borgen) Testen eines Operanden gegen Null Addition zweier BCD-Zahlen Negation einer BCD-Zahl Subtraktion zweier BCD-Zahlen AND Logisches UND ANDI Logisches UND mit einer Konstanten EOR Exklusiv-ODER EORI Exklusiv-ODER mit einer Konstanten NOT Einer-Komplement (Invertieren) OR Logisches ODER ORI Logisches ODER mit einer Konstanten TAS Prüfe und setze ein bestimmtes Bit Schiebe- und Rotiere-Befehle ASL Arithmetische Verschiebung links ASR Arithmetische Verschiebung rechts LSL Logische Verschiebung links LSR Logische Verschiebung rechts ROL Rotation nach links ROR Rotation nach rechts ROXL Rotation mit Extendbit nach links ROXR Rotation mit Extendbit nach rechts Bitmanipulationsbefehle BCHG Verändere ein bestimmtes Bit BCLR Lösche ein bestimmtes Bit BSET Setze ein bestimmtes Bit BTST Prüfe ein bestimmtes Bit MCT 2-35

4 Befehlsatz des /2 Datenübertragungsbefehle Steuer- und Verzweigungsbefehle Mnemonik Befehlsbedeutung Mnemonik Befehlsbedeutung EXG Austauschen von Registerinhalten LEA Lade eine effektive Adresse LINK Baue Stackbereich auf MOVE Übertrage ein Datum MOVE fr SR Übertrage den Inhalt des Statusregisters MOVE to CCR Lade die Flags MOVE to SR Lade das Statusregister MOVE USP Lade den User Stack Pointer MOVEA Übertrage eine Adresse MOVEM Übertrage mehrere Register MOVEP Übertrage Daten von und zur Peripherie MOVEQ Übertrage schnell eine Konstante PEA Lege eine Adresse auf den Stack ab SWAP Vertausche zwei Registerhälften UNLK Baue Stackbereich ab Bcc Verzweige bedingt BRA Verzweige unbedingt BSR Verzweige in ein Unterprogramm (relativ) CHK Prüfe ein Datenregister gegen Grenzen DBcc Prüfe Bedingung. dekrementiere und verzweige JMP Springe an absolute Adresse JSR Springe an ein Unterprogramm NOP Keine Operation RESET Rücksetzen der Peripherie RTE Rückkehr von einer Exception RTR Rückkehr mit Laden der Flags RTS Rückkehr aus einem Unterprogramm Scc Setze ein Byte abhängig von einer Bedingung STOP Halte in der Verarbeitung an TRAP Gehe in eine Exception (Softwareinterrupt) TRAPV Prüfe, ob Flag gesetzt, evtl. Exception MCT 2-36

5 Adressierungsarten Die Art und Weise, wie auf die Operanden eines Befehls zugegriffen wird, bezeichnet man als Adressierungsarten. Die Kombinationsmöglichkeiten von Befehlen und Adressierungsarten bestimmt, wie einfach oder kompliziert ein Prozessor zu programmieren ist. Orthogonaler Befehlsatz Im Idealfall kann jede Adressierungsart für jeden Befehl angewendet werden. Eine solche Kombinationsmöglichkeit wird als orthogonaler Befehlsatz bezeichnet. MCT 2-37

6 Adressierungsarten des unmittelbare Adressierung (immediate) Bei dieser Adressierungsart ist der Operand eine Konstante, die direkt hinter dem OpCode im steht. MOVE.W #123,D1 Lade D1 mit 123 OpCode Operand Befehl Beispiel: MOVE #123, D1 Eine Konstante kann nur als Quelloperand auftreten, nie als Ergebnis einer Rechenoperation. Häufig wird diese Adressierung verwendet, um Register des Prozessors mit Startwerten oder Adressen vorzubelegen. In Assemblerschreibweise wird der Konstanten beim das Zeichen # vorangestellt. MCT 2-38

7 absolute Adressierung (direct, absolute) Die effektive Adresse des Operanden befindet sich als absolute Adresse direkt im Anschluß an den Opcode im. In der Assemblersyntax (68000) steht die Adresse ohne spezielle Kennzeichnung als Zahlenwert direkt hinter dem Opcode. OpCode $10000 Beispiel: MOVE $10000, D1 $10000 Operand MCT 2-39

8 Registeradressierung (register direct) Der Operand steht in einem der Prozessorregister. Die Adresse steht als kurze Registeradresse im OpCode. Als Register können universelle Register wie z.b. Datenregister oder Adreßregister, aber auch spezielle Register wie Stackpointer, Statusregister usw. angesprochen werden. Register OpCode D1 Beispiel: CLR D1 CLR D1 Lösche D1 MCT 2-40

9 Adressierungsarten, die auf Adressregister basieren: Registerindirekte Adressierung (register indirect) Die effektive Adresse steht in einem Register, üblicherweise in einem Adreßregister, der Operand steht im. Diese Adressierungsart hat gegenüber der absoluten Adressierung den Vorteil, daß beim Holen des Befehls die Operandenadresse nicht gelesen werden muß. Sie wird eingesetzt, wenn innerhalb eines Programmteils häufig auf dieselbe Operandenadresse zugegriffen wird. In Assemblersyntax wird der Name des zur Adressierung verwendeten Registers in Klammern geschrieben. MOVE D1,(A1) Lade die stelle, mit der Adresse in A1 mit D1. Register OpCode A1 Operand Beispiel: MOVE D1, (A1) MCT 2-41

10 Registerindirekte Adressierung mit Postinkrement Bei der Adressierung wird der Inhalt des verwendeten Adressregisters verändert. Beim Postinkrement wird nach der Verwendung der Adresse der Inhalt des Registers inkrementiert, wobei das Inkrement abhängig von der Datenbreite des adressierten Operanden die Werte 1, 2 oder 4 annehmen kann. Diese Anpassung der Schrittweite nennt man Skalierung, da das Inkrement mit dem skalaren Faktor 1,2 oder 4 multipliziert wird. Wird zum Beispiel mit dem Befehl MOVE.B D1, (A1)+ ein Byte vom Datenregister D1 in den kopiert, so wird A1 anschließend um den Wert 1 erhöht. Wird mit MOVE.L D1, (A1)+ ein Langwort, also 4 Byte kopiert, so wird A1 entsprechend um den Wert 4 inkrementiert. Nach der Befehlausführung zeigt daher das Adreßregister immer auf das nächste Datenwort im. Register Berechnung OpCode A1 + Skalierung 1, 2 oder 4 Operand Beispiel: MOVE D1, (A1)+ Diese Adressierungsart eignet sich für die Bearbeitung von Datenfeldern in einer Schleife, wie das folgende Beispiel zeigt. Soll das Feld nicht byteweise, sondern wortweise mit 1 belegt werden, so muß nur move.b durch move.w ersetzt werden, die Adreßberechnung passt sich automatisch an. MCT 2-42

11 Beispiel zur Verwendung der Adressierung mit Postinkrement Im folgenden Programmausschnitt werden die Elemente eines Feldes mit dem ; Wert 1 vorbelegt. FELDANF equ ; Startadresse des Feldes FELDEND equ FELDANF+100 ; Endadresse des Feldes move.l #FELDANF,A1 ; Startadresse ins Register A1 LOOP move.b #1, (A1)+ ; 1 in das akt. Feldelement cmp.l FELDEND, A1 ; Vergleich auf Feldende ble LOOP ; Verzweigung zu LOOP, falls ; Feldende noch nicht erreicht ist MCT 2-43

12 Registerindirekte Adressierung mit Prädekrement Das Gegenstück zum Postinkrement ist die Adressierung mit Prädekrement. Hierbei wird vor dem zugriff der Inhalt des Adressregisters dekrementiert. Diese Adressierungsart wird durch ein Minuszeichen vor dem Adreßregister symbolisiert. Wird als Adreßregister der Stackpointer verwendet, so ersetzen diese beiden Adressierungsarten die Befehle PUSH und POP zur Stackverwaltung Register Berechnung OpCode A1 - Skalierung 1, 2 oder 4 Operand Beispiel: MOVE D1, -(A1) MCT 2-44

13 Registerindirekte Adressierung mit Displacement Bei der Adressierung mit Displacement wird die effektive Adresse aus dem Inhalt eines Adreßregisters und einer konstanten Adreßdistanz (Displacement) berechnet. Das Displacement ist vorzeichenbehaftet (2er-Komplement) und erlaubt so eine positive und negative Adreßdistanz zur Basisadresse im Adreßregister. Diese Methode wird beim Zugriff auf Daten verwendet, die in einer festen Struktur im vorliegen. In der Assemblersyntax steht das Displacement als eine Zahl vor dem Adressregister. Register Berechnung OpCode Displacement A1 + Operand Beispiel: MOVE D1, $20(A1) MCT 2-45

14 Indizierte Adressierung mit Displacement Wird neben einer Konstanten noch eine variable Adreßdistanz benötigt, die erst zur Laufzeit eines Programms feststeht, so wird die indizierte Adressierung verwendet. Die effektive Adresse wird hier aus der Basisadresse in einem Adreßregister, einem konstanten und einem variablen Adreßversatz aus einem weiteren Register berechnet Register Berechnung OpCode Displacement A1 D0 + Operand + Beispiel: MOVE D1, $5(A1,D0) MCT 2-46

15 PC-relative Adressierung Eine interessante Variante ist die Verwendung des Befehlszählers (program counter) als Adreßregisters. Die effektive Adresse wird hier immer mit Bezug zum aktuellen Befehlszähler gebildet, d.h. alle Adressen werden nur mehr als relativer Adreßabstand zum Befehlszähler abgespeichert. Die befehlszählerrelative Adressierung ermöglicht es, ein übersetztes Programm mitsamt Daten und Konstanten im zu verschieben. Der Befehlszähler darf dabei natürlich nicht verändert werden, da sonst das Programm nicht mehr korrekt ablaufen würde. Von den bisher vorgestellten Methoden eignen sich daher nur die indizierte Adressierung oder die Adressierung mit Displacement zur PC-relativen Adressierung. Die Assemblersyntax verwendet die bereits besprochene Schreibweise, statt einem Adreßregister steht in Klammern das Symbol PC für ProgramCounter. (PC) disp Move $10(PC), D1 Beispiel: MOVE $10(PC), D1 Operand MCT 2-47

16 Mikrocomputertechnik 2.Mikroprozessor MCT 2-48

Mikrocomputertechnik. Adressierungsarten

Mikrocomputertechnik. Adressierungsarten Adressierungsarten Ein Mikroprozessor bietet meist eine Reihe von Möglichkeiten, die Operanden für eine Rechenoperation zu bestimmen. Diese Möglichkeiten bezeichnet man als Adressierungsarten. unmittelbare

Mehr

Mikrocomputertechnik. Adressierungsarten. Ein Mikroprozessor bietet meist eine Reihe von. Möglichkeiten, die Operanden für eine Rechenoperation zu

Mikrocomputertechnik. Adressierungsarten. Ein Mikroprozessor bietet meist eine Reihe von. Möglichkeiten, die Operanden für eine Rechenoperation zu Adressierungsarten Ein Mikroprozessor bietet meist eine Reihe von Möglichkeiten, die Operanden für eine Rechenoperation zu bestimmen. Diese Möglichkeiten bezeichnet man als Adressierungsarten. -Software.pdf

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

Mikrocomputertechnik - Programmierung

Mikrocomputertechnik - Programmierung 3 Programmierung Assembler Aufgaben: Übersetzt mnemotechnische Abkürzungen (z.b. move, add...) in die Maschinenbefehle des Prozessors Ermöglicht die Vergabe von Namen für Speicheradressen (Label) Berechnet

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

68000 Assembler J. Teepe

68000 Assembler J. Teepe 68 Assembler J. Teepe 2 J. Teepe 68 Assembler Inhaltsverzeichnis I N H A L T S V E R Z E I C H N I S Kapitel Einführung... 7. Übersicht der Computersprachen... 7.. Maschinencode - Assembler... 8..2 Höhere

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Mikrocomputertechnik 2.Mikroprozessor

Mikrocomputertechnik 2.Mikroprozessor 2.2 Die Elemente eines Mikroprozessors 2.2.1 Struktur eines 16/32 Bit µp Um den Datenfluß bei der Befehlsbearbeitung innerhalb eines µp zu betrachten, gehen wir von einem Modell eines 16/32 Bit µ aus.

Mehr

Assembler - Adressierungsarten

Assembler - Adressierungsarten Assembler - Adressierungsarten Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Adressierungsarten 1/31 2008-04-01

Mehr

Befehlssatz der Mikrocontroller der 51er -Familie

Befehlssatz der Mikrocontroller der 51er -Familie Befehlssatz der Mikrocontroller der 51er -Familie Abkürzungen: Mikrocontrollerfamilie 8051 Befehlssatz A : Akkumulator Rn : Register R0..R7 Ri : R0 oder R1 dadr : direkte Byte-Adresse im int. Speicher

Mehr

MOP: Befehlsliste für den Mikrocontroller 8051

MOP: Befehlsliste für den Mikrocontroller 8051 Beuth Hochschule Berlin FB VI, Labor für Digitaltechnik MOP: Befehlsliste für den Mikrocontroller 8051 Erläuterung der Operanden Operand A addr11 addr16 bit /bit C #data #data16 direct DPTR PC Ri Rn rel

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Befehlssatz der Mikrocontroller der 51er -Familie

Befehlssatz der Mikrocontroller der 51er -Familie Befehlssatz der Mikrocontroller der 51er -Familie Abkürzungen: Mikrocontrollerfamilie 8051 Befehlssatz A : Akkumulator Rn : Register R0..R7 Ri : R0 oder R1 dadr : direkte Byte-Adresse im int. Speicher

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.3.1 Befehlsklassen 2.3.2

Mehr

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur 0. Assembler-Programmierung Datenstrukturen des ATMega32 Literatur mikrocontroller.net avr-asm-tutorial.net asm Alles über AVR AVR-Assembler-Einführung Assembler AVR-Aufbau, Register, Befehle 2008: ouravr.com/attachment/microschematic/index.swf

Mehr

Der Intel 8086 Reto Gurtner 2005

Der Intel 8086 Reto Gurtner 2005 Der Intel 8086 Reto Gurtner 2005 1 1. DIE INTERNEN REGISTER... 3 1.1 ALLGEMEINE REGISTER AX, BX, CX UND DX... 3 DAS AX-REGISTER... 4 DAS BX-REGISTER... 4 DAS CX-REGISTER... 5 DAS DX-REGISTER... 5 1.2 DIE

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

TI2 Übung 2. Hauptspeicher, 6809-Prozessor. 23. November 2004 (WS 2004) Andreas I. Schmied Universität Ulm Fakultät für Informatik

TI2 Übung 2. Hauptspeicher, 6809-Prozessor. 23. November 2004 (WS 2004) Andreas I. Schmied Universität Ulm Fakultät für Informatik Universität Ulm Fakultät für Informatik Abteilung Verteilte Systeme Projektgruppe AspectIX TI2 Übung 2 Hauptspeicher, 6809-Prozessor 23. November 2004 (WS 2004) Andreas I. Schmied (schmied@inf...) 1 Hauptspeicher

Mehr

Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst

Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst Hardwarearchitekturen und Rechensysteme Sommersemester 2009 Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst Dieses Dokument erhebt keinen Anspruch auf Vollständigkeit, sondern

Mehr

F Ein einfacher Modellprozessor

F Ein einfacher Modellprozessor F ein einfacher Modellprozessor F Ein einfacher Modellprozessor Einordnung in das Schichtenmodell:. Prozessor 2. Aufbau des Modellprozessors 3. Organisation eines SRAM 4. Beschreibung in RTL 5. Adresspfad

Mehr

Assembler-Programmierung

Assembler-Programmierung Assembler-Programmierung Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Assembler-Programmierung 1/48 2012-02-29 Assembler-Programmierung

Mehr

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1 Organisatorisches Die Großübung findet zweimal mit gleichen Inhalt statt: Montag 16-18 und Mittwoch 14-16 jeweils im MA001. Betreute Rechnerzeit: Donnerstag 10-18 und Freitag 10-16 jeweils FR2516 Code:

Mehr

Befehle zur Verarbeitung von Daten ( data processing ):

Befehle zur Verarbeitung von Daten ( data processing ): ARM: Befehlssatz Befehle zur Verarbeitung von Daten ( data processing ): Register/Register-Befehle: ,, (Achtung! Andere Interpretation: ) Transport-Befehl: MOV ,

Mehr

Daniel Betz Wintersemester 2011/12

Daniel Betz Wintersemester 2011/12 Daniel Betz Wintersemester 2011/12 Digitally signed by daniel.betz@daniel-betz.com Date: 2011.12.04 17:24:40 +01'00' Insgesamt 16 Register von je 16 Bit (=WORD) Breite Untere 8 Register auch als 2 Register

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Vorwort 8. Kap. 1: Grundlagen 10

Vorwort 8. Kap. 1: Grundlagen 10 Inhaltsverzeichnis Vorwort 8 Kap. 1: Grundlagen 10 1.1 Analogie zwischen der Spieluhr und einem Prozessor 10 1.2 Unterschiede zwischen Mikroprozessor und Spieluhr 11 1.3 Die Programmierung eines Mikroprozessors

Mehr

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c 1 Transportbefehle 1.1 Verwendung nur Akku und Register (R0, R1,... R7) 1.1.1 Kopieren Sie den Wert aus Register1 nach

Mehr

HC680 PROGRAMMER'S REFERENCE MANUAL

HC680 PROGRAMMER'S REFERENCE MANUAL HC680 PROGRAMMER'S REFERENCE MANUAL Programmieranleitung Mnemonic Assembler Maschinenbefehl Wirkung /Bedeutung Register (0 bis 3 allg. Reg.) Ope- Opcode/Binärcode - Adressierungsart - Nr Bez. xx Bin Art

Mehr

Prozessor HC680 fiktiv

Prozessor HC680 fiktiv Prozessor HC680 fiktiv Dokumentation der Simulation Die Simulation umfasst die Struktur und Funktionalität des Prozessors und wichtiger Baugruppen des Systems. Dabei werden in einem Simulationsfenster

Mehr

Wer in der Grundschule ein wenig aufgepasst hat, sollte in der Lage sein schriftlich eine Zahl durch eine zweite zu teilen.

Wer in der Grundschule ein wenig aufgepasst hat, sollte in der Lage sein schriftlich eine Zahl durch eine zweite zu teilen. Teilen binär Teil 1 - Vorzeichenlose Ganzzahlen ============ Irgendwann steht jeder Programmieren vor diesem Problem. Wie teile ich eine Binärzahl durch eine zweite? Wer in der Grundschule ein wenig aufgepasst

Mehr

10. Die Adressierungsarten des MSP 430

10. Die Adressierungsarten des MSP 430 10. Die Adressierungsarten 10.1 Übersicht über die Adressierungsarten 10.2 -Operanden 10.3 Indexregister mit Distanz 10.4 Symbolische (relativ zum ) 10.5 Absolute 10.6 Indirekte 10.7 Indirekte Adressierung

Mehr

10. Der Befehlssatz des MSP 430

10. Der Befehlssatz des MSP 430 1. Der Befehlssatz des MSP 43 1.1 Befehlsformate 1.2 Zweiadressbefehle 1.3 Einadressbefehle 1.4 Sprungbefehle 1.5 Emulierte Befehle Programmierkurs II Wolfgang Effelsberg 1. Befehlssatz des MSP 43 1 1

Mehr

Geräteentwurf mit Mikroprozessoren 1

Geräteentwurf mit Mikroprozessoren 1 Geräteentwurf mit Mikroprozessoren 1 Vorlesung am Institut für Elektronik der TU Graz Dipl.-Ing. Dr. Gerhard Stöckler SS 2003 Vorausgesetzte Kenntnisse: Grundlagen der Digitaltechnik Binäre Informationsdarstellung

Mehr

PC/XT/AT ASSEMBLER-BUCH

PC/XT/AT ASSEMBLER-BUCH PC/XT/AT ASSEMBLER-BUCH Alle Befehle + Makro-Assembler KLAUS-DIETER THIES t

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Informatikgrundlagen I Grundlagen der Informatik I

Informatikgrundlagen I Grundlagen der Informatik I Informatikgrundlagen I Grundlagen der Informatik I Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 1 Inhalt 1. Einführung,

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 -

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikrocomputertechnik Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikroprozessor-Achritekturen Folie 2 Mikroprozessor-Achritekturen Klassifizierung anhand Wortbreite CPU-Architektur und Busleitungen

Mehr

DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE

DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE D - CA - IV - AA - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 4 DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE Sommersemester 2003 Leitung:

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Assembler Aufgaben: Übersetzt mnemotechnische Abkürzungen (z.b. move, add...) in die Maschinenbefehle des Prozessors Ermöglicht die Vergabe von Namen für Speicheradressen (Label) Berechnet relative Adressedistanz

Mehr

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister)

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische Universität Clausthal November 5, 2014 1/18 Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de pascal.libuschewski [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2016 Übungsblatt 10 (Block C 2) (16

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Praktikum Mikrorechner 1 (Einführung)

Praktikum Mikrorechner 1 (Einführung) G. Kemnitz Institut für Informatik, Technische Universität Clausthal November 5, 2014 1/16 Praktikum Mikrorechner 1 (Einführung) G. Kemnitz Institut für Informatik, Technische Universität Clausthal November

Mehr

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren.

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. Ein Programm liegt der CPU in binärer Form vor und wird durch den Assembler in einer primitiven

Mehr

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 95 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

Assembler Integer-Arithmetik

Assembler Integer-Arithmetik Assembler Integer-Arithmetik Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Integer-Arithmetik 1/23 2008-04-01 Arithmetik

Mehr

Zusammenfassung der Assemblerbefehle des 8051

Zusammenfassung der Assemblerbefehle des 8051 Zusammenfassung der Assemblerbefehle des 8051 Seite 1 von 5 Befehl Bezeichnung Syntax Wirkung / Beispiel Befehle zum Datentransfer MOV Move MOV [Ziel],[Quelle] MOV P1,P3 Kopiert den Inhalt von P3 nach

Mehr

x86-assemblerprogrammierung

x86-assemblerprogrammierung x86-assemblerprogrammierung von Michael Röhrs (Ergänzend zum Vortrag am 25.04.01) Einleitung Die Familie der x86-prozessoren gehört zur Klasse der CISC-Prozessoren ( Complex Instruction Set Computer ).

Mehr

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen:

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: 1 ADRESSIERUNG IN MMIX Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: no base address is close enough to the address A! relative address

Mehr

PIC16 Programmierung in HITECH-C

PIC16 Programmierung in HITECH-C PIC16 Programmierung in HITECH-C Operatoren: Arithmetische Operatoren - binäre Operatoren + Addition - Subtraktion * Multiplikation / Division % Modulo + - * / sind auf ganzzahlige und reelle Operanden

Mehr

Aufbau eines Taschenrechners

Aufbau eines Taschenrechners siehe Skizze Aufbau einer Waage siehe Skizze Speichermöglichkeit Aufbau eines Taschenrechners Speichermöglichkeit Adressbus 65536 (2 16 ) (2 wegen der Zustände =aus und 1=an) => 65536 Möglichkeiten =>

Mehr

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ]

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ] 2.1.2 Behandlung von Unterbrechungen (Interrupts) Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S. 582-585] t 1 : MAR (PC) t 2 : MBR Memory[MAR] PC

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Allgemeine Struktur eines Digitalrechners

Allgemeine Struktur eines Digitalrechners 2. Allgemeine Struktur eines Digitalrechner In diesem Skript soll im wesentlichen die maschinennahe Programmierung von Digitalrechnern behandelt werden. Deshalb wird auf die hardwaremäßige Realisierung

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur Wintersemester 2016/2017 Zentralübung

Mehr

Name: ES2 Klausur Thema: ARM Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 75 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

3. Grundlagen der Rechnerarchitektur

3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiel: der Prozessor

Mehr

Teil III: Wat macht ene Mikrokontroller?

Teil III: Wat macht ene Mikrokontroller? Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Eine Einführung in Aufbau, Funktionsweise, Programmierung und Nutzen von Mikroprozessoren Teil III: Wat macht ene Mikrokontroller?

Mehr

x86-assemblerprogrammierung

x86-assemblerprogrammierung x86-assemblerprogrammierung Inhalt Literatur Register Speicherverwaltung Adressierung Stackverwaltung Datentypen und Befehlssatz Befehlskodierung Dandamudi : Intruduction to Assembly Language Programming

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Stack, Stackpointer, Unterprogramm HP: 0 * 1 * 2 * 3 CAL UP1 4 * 5 * 6 CAL UP2 7 *... UP1: 30 * 33 RET UP2: 40 * 41 CAL UP1 42 * 43 RET

Stack, Stackpointer, Unterprogramm HP: 0 * 1 * 2 * 3 CAL UP1 4 * 5 * 6 CAL UP2 7 *... UP1: 30 * 33 RET UP2: 40 * 41 CAL UP1 42 * 43 RET Stack, Stackpointer, Unterprogramm HP: 0 * 1 * 2 * 3 CAL UP1 4 * 5 * 6 CAL UP2 7 *... UP1: 30 * 33 RET UP2: 40 * 41 CAL UP1 42 * 43 RET Stack, Stackpointer, UP Stack (Stapel, FIFO) wird benötigt UP-Ruf:

Mehr

Inhalt. 4.5 Arbeit mit Zeigern (engl. Pointer)

Inhalt. 4.5 Arbeit mit Zeigern (engl. Pointer) Inhalt Inhalt: 4. Programmiersprache C 4.1 Programmaufbau in C 4.2 Basisdatentypen und einfache Anweisungen 4.3 Steuerfluss-Konstrukte 4.4 Arbeit mit indizierten Größen (Felder) 4.5 Arbeit mit Zeigern

Mehr

16/32 bit- Mikroprozessor- Systeme

16/32 bit- Mikroprozessor- Systeme 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. 16/32 bit- Mikroprozessor- Systeme Von Dr.-Ing. Manfred Rubel Akademischer

Mehr

EDT-REFERAT Adressierungsarten

EDT-REFERAT Adressierungsarten EDT-Referat BÜLBÜL Erkan 2ANB 95 /96 Seite 1 EDT-REFERAT Adressierungsarten INHALTSVERZEICHNIS 1.Theoretische Grundlagen 1.0 Einführung 1.1 Programm- & Datenspeicheradressierbereiche 2.Adressierungsarten

Mehr

SMP Übung 9 - Lösungsvorschlag

SMP Übung 9 - Lösungsvorschlag 1. Aufgabe: Sieben Segment Anzeigen, Multiplexing, a) Bestimmung der Zeichenkodierung Bei der Zeichenkodierung ist zu beachten, dass ein Low-Pegel auf der Leitung PDA(j) (in Verbindung mit einem Low- Pegel

Mehr

B1 Stapelspeicher (stack)

B1 Stapelspeicher (stack) B1 Stapelspeicher (stack) Arbeitsweise des LIFO-Stapelspeichers Im Kapitel "Unterprogramme" wurde schon erwähnt, dass Unterprogramme einen so genannten Stapelspeicher (Kellerspeicher, Stapel, stack) benötigen

Mehr

Mikrocontroller-Programmierung

Mikrocontroller-Programmierung Mikrocontroller-Programmierung Anhand des HC12 Fabian Wiesel Überblick Überblick Mikrocontroller Überblick HC12 CPU Peripherie des DG128 Assemblerprogrammierung Mikrocontroller Leistungsfähigkeit: zwischen

Mehr

H Hypothetischer Prozessor

H Hypothetischer Prozessor 1 Einordnung H Hypothetischer Prozessor Ebene 6 Ebene 5 Ebene 4 Ebene 3 Ebene 2 Ebene 1 Ebene 0 Problemorientierte Sprache Assemblersprache Betriebssystem ISA (Instruction Set Architecture) Mikroarchitektur

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

MOTOROLA MC Befehlssatz

MOTOROLA MC Befehlssatz Rechnersysteme MOTOROLA MC 689 Befehlssatz Otto-von-Guericke-Universität Magdeburg Unzulänglichkeiten des Modellrechners sehr kleiner Instruktionssatz keine Konstanten viele Speicherzugriffe nur eine Bedingung

Mehr

Aufbau des Speichers. Interrupt Vektoren. 0xFFE0-0xFFFF. 16 Adressen f. Unterprog. ca. 60 kbyte Flash-ROM für Firmware, Programme, Daten, Tabellen

Aufbau des Speichers. Interrupt Vektoren. 0xFFE0-0xFFFF. 16 Adressen f. Unterprog. ca. 60 kbyte Flash-ROM für Firmware, Programme, Daten, Tabellen 16 Adressen f. Unterprog. Wird i.d.r. einmal vor Inbetriebnahme beschrieben, kann jedoch in 512 Byte Bänken während Betr. verändert werden. Zwei kl. Bänke f. Programm. via Scatt.Fl. Nur 2kB schnelles RAM

Mehr

6. Intel IA-32 Prozessoren Aufbau und Adressierungsarten

6. Intel IA-32 Prozessoren Aufbau und Adressierungsarten 6. Intel IA-32 Prozessoren Aufbau und Adressierungsarten 6.1 Gegenstand der Vorlesung Interne Organisation - Architektur - Register - Statusbits - Speicherstruktur Basis-Adressierungsarten - direct - absolute

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten, Operatoren und Ausdrücke Anweisungen und Kontrollstrukturen (Steuerfluss)

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 3 C-Ausdrücke...3-2 3.1 Arithmetische Ausdrücke...3-3 3.2 Wertzuweisungen...3-5 3.3 Inkrementieren und Dekrementieren...3-6 3.4 Logische Ausdrücke (Bedingungen)...3-7 3.5 Bedingte Ausdrücke...3-8

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Aufgabe 1: Sie haben in der Vorlesung einen hypothetischen Prozessor kennen

Mehr

[6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, , , S.

[6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, , , S. Literatur [6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, 214-224, 239-242, S. 267-299,304-313 [6-2] Hübscher, Heinrich et al.: IT-Handbuch, IT-System-elektroniker/-

Mehr

Zeiger (engl. Pointer)

Zeiger (engl. Pointer) Zeiger (engl. Pointer) Zeiger Ein Zeiger (engl. Pointer) speichert eine Adresse, unter der ein Wert im Speicher des Computers gespeichert werden kann. Eine Variable im Gegensatz speichert einen Wert. Der

Mehr

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller SS 2004 VAK 18.004 Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller Aufgabenblatt 2.5 Lösung 2.5.1 Befehlszähler (Program Counter, PC) enthält Adresse des nächsten auszuführenden

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44 Aufgabe 33 a) Der Pseudobefehl move $rd,$rs wird als addu $rd,$0,$rs übersetzt. Dabei macht sich SPIM zunutze, dass das Register $0 immer Null ist. Somit wird das Register $rd ersetzt durch $rd=0+$rs=$rs,

Mehr

1. Rechnersysteme (Einführung) VL1 2. Komponenten. 3. Daten und Informationen VL2 4. Von Neumann Maschine. 5. Computer und Software VL3

1. Rechnersysteme (Einführung) VL1 2. Komponenten. 3. Daten und Informationen VL2 4. Von Neumann Maschine. 5. Computer und Software VL3 Vorlesungsinhalte WI-109 Teil 3: Rechnersysteme VL2 1. Rechnersysteme (Einführung) VL1 2. Komponenten 3. Daten und Informationen VL2 4. Von Neumann Maschine 5. Computer und Software VL3 6. Einführung in

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

11. Die PC-Schnittstelle

11. Die PC-Schnittstelle PC-Schnittstelle Funktion -1. Die PC-Schnittstelle.1. Funktion Die folgenden Angaben gelten ohne Einschränkung für den PC, PC-XT, PC-AT, AT-386, AT-486 und kompatible Rechner. Sie sind nur für jene interessant,

Mehr

Stichwortverzeichnis. Matthias Sturm. Mikrocontrollertechnik. Am Beispiel der MSP430-Familie. ISBN (Buch):

Stichwortverzeichnis. Matthias Sturm. Mikrocontrollertechnik. Am Beispiel der MSP430-Familie. ISBN (Buch): Stichwortverzeichnis Matthias Sturm Mikrocontrollertechnik Am Beispiel der MSP430-Familie ISBN (Buch): 978-3-446-42231-5 ISBN (E-Book): 978-3-446-42964-2 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42231-5

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Betriebssysteme Teil 6: Hardware-Schicht II

Betriebssysteme Teil 6: Hardware-Schicht II Betriebssysteme Teil 6: Hardware-Schicht II 13.11.15 1 Literatur [6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, 214-224, 239-242, S. 267-299,304-313 [6-2]

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 22: Mima-X Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online

Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online Themen heute Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online Besprechung des 3. Übungsblattes Aufgabe 3 Speicherplätze für Mikrocode-Anweisungen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr