DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE"

Transkript

1 D - CA - IV - AA - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 4 DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE Sommersemester 2003 Leitung: Prof. Dr. Miroslaw Malek

2 D - CA - IV - AA - 2 Einige grundlegende Informationstypen Information Daten Befehle Nichtnumerische Daten Zahlen Festkomma Fließkomma Binär Dezimal Binär Dezimal

3 D - CA - IV - AA - 3 Daten und Instruktionsformate Adressierungsmethoden und maschinensprachliche Programmierungskonzepte Formate (PDP-11, Motorola 68000, Pentium, PowerPC) Adressen Adressierungsarten Einfache E/A Programmierung Vergleich: Kellerspeicher und Registerverwaltung

4 Datenformate D - CA - IV - AA - 4 Bei der Auswahl der Darstellung von Zahlen sollten folgende Faktoren berücksichtigt werden. 1. Typen der Zahlen, die dargestellt werden müssen, z.b. ganze Zahlen, reelle Zahlen, komplexe Zahlen. 2. Der Wertebereich, der abgedeckt werden soll 3. Die Genauigkeit der Zahlen 4. Die Kosten der Hardware für Speicherung und Verarbeitung der Zahlen

5 D - CA - IV - AA - 5 Befehlsformate Bei der Auswahl der Befehlsformate sollten die folgenden Faktoren berücksichtigt werden. 1. Die Anzahl der zu repräsentierenden Befehle. 2. Adressierung und Adressierungsart. 3. Leichte Dekodierung. 4. Typ des Befehlsfeldes (fest oder variabel) 5. Die Kosten der Hardware zum Dekodieren und Ausführen der Befehle

6 Befehls- und Datenformate der PDP - 11 D - CA - IV - AA - 6 Befehlsformate Befehlscode Adresse 1-Adresse 10 BIT 6 BIT 8 Adressierungsarten Mode R N 8 Register Befehlscode ADR. 1 ADR. 2 2-Adresse 4 bit 6 bit 6 bit SRC DST Sprung Mode R n Mode R n Befehlscode Offset 8 bit 8 bit Sprungadresse = [ aktualisierter PC ] + 2 x Offset Datenformate 16 bit 2er-KOMPLEMENT 8 bit 8 bit Zeichen Zeichen

7 D - CA - IV - AA - 7 Befehlsformate des PowerPC (1) OP code RD/RS RA VAL (2) OP code RD/RS RA RB XO FL (3) OP code BO BI Branch Destination (4) OP code Target FL FL (5) OP code RS / RD RA / VAL RB / VAL RC / VAL VAL / XO 31 FL RD: Zielregister, RS: Quellregister, RA: Zusätzliches Register, RB: Drittes Register, FL: Flags, XO: Extra Opcode, VAL: Direktwert (als Zahl, Offset, Maske etc.), BO / BI : Sprungbedingungen

8 D - CA - IV - AA - 8 Datenformate für PowerPC Byte 0 Byte 1 Byte 7 Halbwort 0 Halbwort 2 Wort 0 Wort 1 Doppelwort 0 Big-Endian ist der voreingestellte Modus. Little-Endian ist auch möglich.

9 Grundbefehlsformat & PDP-11 Adressfeld D - CA - IV - AA - 9 OP CODE ADRESSE ADRESSE MODUS R n MODUS RN Register (0) R 0 (RN)+ Autoinc. (2) R 1 -(RN) Autodec. (4) X(RN) Index (6) R 7 wenn "1, dann indirekt

10 Der Mikroprozessor Adressierungsarten & Befehle 68000, 68020, 68030, & (zwei Architekturen) 16-bit extern & 32-bit intern - 64 Pins (16 Daten, 24 Adress.) 32, 16 & 8 Bit Worte (Operanden) (Byte Operand) (Andere Modelle besitzen 32 Bit Daten und Addressen) byte word long word 8 DATENREGISTER, (USER STACK POINTER 8 ADRESSREGISTER SUPERVISOR STACK POINTER) BEFEHLSZÄHLER STATUS REGISTER ( Supervisor oder Trace Mode Auswahl, Interruptmaske, X extended, N negative, Z zero, V overflow, C carry) 0 byte 0 byte 1 long word 0 2 byte 2 byte 3 long word byte byte D - CA - IV - AA - 10

11 D - CA - IV - AA - 11 Befehlsformat Operation Word (Erstes Wort bestimmt Befehlsart und Adressierungsarten) Immediate Operand (Wenn vorhanden, ein oder zwei Worte) Source Effective Address Extension (Wenn vorhanden, ein oder zwei Worte) Destination Effective Address Extension (Wenn vorhanden, ein oder zwei Worte) Einzelne Effektive Adresse Befehlswort - Allgemeines Format X X X X X X X X X X Modus Effektive Adresse Register

12 0 Vorzeichen Pentium: Integer Datenformate Byte Signed Integer Vorzeichen 76 Word Signed Integer Vorzeichen Doubleword Signed Integer Byte Unsigned Integer 7 Word Unsigned Integer 15 Doubleword Unsigned Integer Segment Selektor 31 BCD Integers X BCD... X BCD Packed BCD Integers BCD BCD... BCD BCD 31 Near Pointer Offset oder Lineare Adresse Far Pointer oder Logische Adresse Offset X BCD BCD BCD D - CA - IV - AA - 12

13 D - CA - IV - AA - 13 Pentium: Allgemeines Befehlsformat Befehls- Prefixe Opcode ModR/M SIB Bis zu 4 1 oder 2 Byte 1 Byte (falls Befehlsprefixe benötigt) zu je 1 Byte (optional) 1 Byte (falls benötigt) Displacement Adressdisplacement 0, 1, 2 oder 4 Bytes Immediate Immediate data 0, 1, 2, oder 4 Bytes Mod Reg/ Opcode R/M Scale Index Base

14 Pentium: Allgemeines Befehlsformat (ii) Opcode Das Haupt-Opcode-Feld kann noch in kleinere Felder unterteilt sein. Diese Felder definieren Richtung der Operation, die Größe des Displacement- Feldes, Register-Kodierung, Condition Codes oder Vorzeichenerweiterung. Die Kodierung der Felder in Opcode richtet sich nach der Klasse des Befehls. D - CA - IV - AA - 14 ModR/M and SIB Bytes Mit mod und r/m können 32 Werte dargestellt werden: 8 Register und 24 Adressierungsarten. Das reg/opcode-feld is entweder eine Register-Nummer oder enthält 3 weitere Opcode-Bits, abhängig vom Haupt-Opcode-Feld. Das r/m-feld spezifiziert ein Register als Operand oder zusammen mit dem mod-feld eine Adressierungsart. Bestimmte Kodierungen des ModR/M-Bytes verlangen ein zweites Feld, das SIB-Byte, um die Adressierungsart vollständig zu kodieren, z.b. die 32-Bit Adressierungsarten Base+Index oder Scale+Index. Das SIB- Byte enthält folgende Felder: Das scale-feld spezifiziert einen Skalierungsfaktor. Das index-feld spezifiziert eine Registernummer für das Index-Register. Das base-feld spezifiziert eine Registernummer für das Base-Register.

15 D - CA - IV - AA - 15 Pentium: Adressierungsarten 1) Direkt-kodierte Operanden 2) E/A-Port Adressierung 3) Register-Operanden 4) Speicher-Operanden

16 D - CA - IV - AA - 16 Verarbeitungs- und Busbreiten einiger 16-, 16/32-Bit-CISC- Mikroprozessoren Prozessor Motorola Intel Nat. Semiconductor MC68000 MC68010 MC68020 MC68030 MC i386 i486 Pentium NS32016 NS32032 NS32332 NS32532 MC68040 MC68060 Typ 16/ /32 16/32 32 Verarbeitung Datenbus Adreßbus

17 Ein- und Zwei-Adressrechner D - CA - IV - AA - 17 X = A x B + C x C Befehl LOAD A MULTIPLY B STORE T LOAD C MULTIPLY C ADD T STORE X Kommentar Transferiert A in den Akkumulator AC AC AC x B Transferiert AC zur Speicherstelle T Transferiert C in den Akkumulator AC AC AC x C AC AC + T Transferiert Ergebnis zur Speicherstelle X Befehl Kommentar MOVE A, T MULTIPLY B,T MOVE C, X MULTIPLY C, X ADD T,X T T X X X A T x B C X x C X + T

18 D - CA - IV - AA - 18 Drei- und Null-Adressrechner X = A x B + C x C Befehl Kommentar MULTIPLY A, B,T MULTIPLY C, C, X ADD X, T,X T X X A x B C x C X + T Befehl PUSH A PUSH B MULTIPLY PUSH C PUSH C MULTIPLY ADD POP X Kommentar Transferiert A auf den Stapel Transferiert B auf den Stapel Holt A, B vom Stapel und ersetzt sie durch A x B Transferiert C auf den Stapel Transferiert zweite Kopie von C auf den Stapel Holt C, C vom Stapel und ersetzt sie durch C x C Holt CxC, AxB vom Stapel, ersetzt sie durch Summe Transferiert Ergebnis vom Stapel nach X

19 D - CA - IV - AA - 19 Generelle Adressierungsmethoden des PowerPCs Indexadressierter Modus (Immediate Index Addressing Mode) -Die effektive Adresse des Operanden ist die Summe der Inhalte des Registers benannt in dem Befehl und einem vorzeichenbehafteten 16 bit Offset, welcher auch in dem Befehl enthalten ist. Die effektive Adresse wird folgendermaßen berechnet: A eff = X + [Rquelle]. Wobei Rquelle eines der Allzweckregister R 0 bis R 31 ist. Registerindizierter Adressierungsmodus (Register Index Addressing Mode) - Die effektive Adresse des Operanden ist die Summe der Inhalte der zwei Allzweck Register, die in dem Befehl aufgeführt sind. Die effektive Adresse wird folgendermaßen berechnet: A eff = [Ri] + [Rj]. Register Direkt - Die Operanden befinden sich in den angegebenen Registern.

20 D - CA - IV - AA - 20 Adressierungsmodi für Sprungbefehle des PowerPC Relativ - Der Abstand zwischen den Sprungbefehlen und der Zieladresse ist in dem Befehl enthalten. Absolut - Die Zieladresse ist im Befehl angegeben. Registerindirekt - Die Zieladresse ist der Inhalt des Link Registers(LR) oder des Count Registers(CTR). Dafür gibt es die Befehle (bcctr: branch cond. to count register und bclr: branch cond. to link register)

21 D - CA - IV - AA - 21 Adressierungsmethoden am Beispiel der Adressierungsmodi der PDP-11 ABSOLUTE (DIREKTE) ADRESSIERUNG - Die Adresse des Operanden ist explizit als Teil des Befehles angegeben. IMPLIZITE ADRESSIERUNG - Die Adresse ergibt sich aus dem Befehl (z. B. wird in einem Einadressrechner der Akkumulator als Adresse des zweiten Operanden angesehen). UNMITTELBARE ADRESSIERUNG - Der Operand wird explizit im Befehl angegeben. Es ist kein Speicherzugriff erforderlich. Der Operand kann auch direkt nach dem Befehl stehen. INDIREKTE ADRESSIERUNG - Die effektive Adresse des Operanden steht in dem Register oder Hauptspeicherplatz, dessen Adresse im Befehl angegeben ist. Dies kann in mehreren Stufen erfolgen. INDIZIERTE ADRESSIERUNG - Die effektive Adresse (EA) des Operanden wird aus der Addition des Wertes eines Indexregister (x) und der direkten Adresse (DA) berechnet. - EA = X + DA BASIS ADRESSIERUNG - Die effektive Adresse des Operanden wird berechnet durch die Addition des Wertes eines Basisregisters und der Adresse. - EA = B + DA

22 D - CA - IV - AA - 22 Adressierungsmethoden am Beispiel der Adressierungsmodi der PDP-11 (forts.) RELATIVE ADRESSIERUNG - Die effektive Adresse ist die Summe der direkten Adresse und des Inhalts des Befehlszählers. (PC) EA = DA + PC SEGMENTIERTE ADRESSIERUNG - Die effektive Adresse ergibt sich aus dem Zusammenfügen des Inhalts des Segment- Adressregisters (SAR) und der direkten Adresse. EA = SAR DA (SAR spezifiziert dabei eine Speicherseite und DA ist eine Adresse innerhalb dieser speziellen Seite.) BLOCK ADRESSIERUNG - Die Adresse des ersten Wortes im Block ist gegeben. Die Länge des Wortes wird gewöhnlich durch den Befehl bestimmt; oder es kann auch die letzte Adresse angegeben werden; oder ein besonderes end-of-block Zeichen kann angegeben werden; oder Blöcke können eine feste Länge haben. Sehr nützlich bei der Verwaltung des Sekundärspeichers.

23 D - CA - IV - AA - 23 PDP-11 Adressierungsarten B 5 B 4 B 3 DEZ. NAME SYNTAX BEDEUTUNG REGISTER RN EA = RN (d.h., Operand = [RN]) AUTOINCREMENT (RN)+ EA = [RN] ERHÖHE RN AUTODECREMENT - (RN) VERRINGERE RN EA = [RN] INDEX X(RN) HOLE X; ERHÖHE PC EA = X + [RN} REGISTER INDIRECT AUTOINCREMENT INDIRECT @-(RN) EA = [RN] EA = [[RN]] ERHÖHE RN VERRINGERE RN; EA = [[RN]] INDEX HOLE X; ERHÖHE PC EA = [X+[PC]] EA = Effektive Adresse [RN] = Inhalt der Speicherzelle, auf die RN zeigt [[RN]] = Inhalt der Speicherzelle, deren Adresse in der Speicherzelle steht, auf die RN zeigt.

24 D - CA - IV - AA - 24 PDP-11 Adressierungsarten mit RN = PC B5 B4 B3 Dez. Name Syntax Bedeutung Immediate (Autoinkrement) Absolute (Autoinkrement Indirekt) Relative (Index) A EA = [PC]; (d.h., Operand folgt der Anweisung EA = [PC]; (d.h., die EA des Operanden folgt der Anweisung Hole X; Inkrementiere PC; EA = X + [PC]; (d.h. EA ist PC + Offset X; X steht direkt nach der Anweisung) Relative Indirekt (Index Hole X; Inkrementiere PC; EA = [X + [PC]]; (d.h. EA ist Inhalt des [PC] + X; X steht hinter der Anweisung) EA = effektive Adresse [RN] = Inhalt der Speicherzelle, auf die RN zeigt [[RN]] = Inhalt der Speicherzelle, deren Adresse in der Speicherzelle steht, auf die RN zeigt.

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

10. Die Adressierungsarten des MSP 430

10. Die Adressierungsarten des MSP 430 10. Die Adressierungsarten 10.1 Übersicht über die Adressierungsarten 10.2 -Operanden 10.3 Indexregister mit Distanz 10.4 Symbolische (relativ zum ) 10.5 Absolute 10.6 Indirekte 10.7 Indirekte Adressierung

Mehr

Mikrocomputertechnik. Adressierungsarten

Mikrocomputertechnik. Adressierungsarten Adressierungsarten Ein Mikroprozessor bietet meist eine Reihe von Möglichkeiten, die Operanden für eine Rechenoperation zu bestimmen. Diese Möglichkeiten bezeichnet man als Adressierungsarten. unmittelbare

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Technische Informatik 2 Maschinenprogrammierungskonzepte

Technische Informatik 2 Maschinenprogrammierungskonzepte Technische Informatik 2 Maschinenprogrammierungskonzepte Prof Dr Miroslaw Malek Sommersemester 2005 wwwinformatikhu-berlinde/rok/ca Thema heute Ausführung von Befehlen Ein-/Ausgabeprogrammierung Architekturen

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Assembler - Adressierungsarten

Assembler - Adressierungsarten Assembler - Adressierungsarten Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Adressierungsarten 1/31 2008-04-01

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Assembler-Programmierung

Assembler-Programmierung Assembler-Programmierung Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Assembler-Programmierung 1/48 2012-02-29 Assembler-Programmierung

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

Hinweise 80x86-Architektur

Hinweise 80x86-Architektur Hinweise 80x86-Architektur Rainer Müller Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 R. Müller Hinweise 80x86-Architektur

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Compiler und Codegenerierung. Hw-Sw-Co-Design

Compiler und Codegenerierung. Hw-Sw-Co-Design Compiler und Codegenerierung Hw-Sw-Co-Design Wo sind wir? System Verhalten Modul Architektur Block SW HW Logik Struktur Compiler und Codegenerierung Compiler - Aufbau Codegenerierung Codeoptimierung Codegenerierung

Mehr

Befehlssatz der Mikrocontroller der 51er -Familie

Befehlssatz der Mikrocontroller der 51er -Familie Befehlssatz der Mikrocontroller der 51er -Familie Abkürzungen: Mikrocontrollerfamilie 8051 Befehlssatz A : Akkumulator Rn : Register R0..R7 Ri : R0 oder R1 dadr : direkte Byte-Adresse im int. Speicher

Mehr

x86-assemblerprogrammierung

x86-assemblerprogrammierung x86-assemblerprogrammierung von Michael Röhrs (Ergänzend zum Vortrag am 25.04.01) Einleitung Die Familie der x86-prozessoren gehört zur Klasse der CISC-Prozessoren ( Complex Instruction Set Computer ).

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC)

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) Steuerungen 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) VPS - Funktion der Steuerung in der Schaltungstopologie

Mehr

7 Ein einfacher CISC-Prozessor

7 Ein einfacher CISC-Prozessor 7 Ein einfacher CISC-Prozessor In diesem Kapitel wird ein einfacher Prozessor vorgestellt. Die Architektur, die wir implementieren, wurde von R. Bryant und D. O Hallaron entworfen und verwendet eine Untermenge

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 -

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikrocomputertechnik Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikroprozessor-Achritekturen Folie 2 Mikroprozessor-Achritekturen Klassifizierung anhand Wortbreite CPU-Architektur und Busleitungen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Tutorübung 7: Mikroprogrammierung I

Tutorübung 7: Mikroprogrammierung I Tutorübung 7: Mikroprogrammierung I Vorlesung Einführung in die Technische Informatik (ETI) Lehrstuhl für Rechnertechnik und Rechnerorganisation Institut für Informatik 10 Technische Universität München

Mehr

Rechnersysteme. Speicherorganisation und Adressierungsarten. Otto-von-Guericke-Universität Magdeburg

Rechnersysteme. Speicherorganisation und Adressierungsarten. Otto-von-Guericke-Universität Magdeburg Rechnersysteme Speicherorganisation und Adressierungsarten Otto-von-Guericke-Universität Magdeburg Speicherorganisation Wort-orientierter Speicher Wort 00 Wort 01 Wort 02 Wort 03 2 n -1 0 Bit Wort 2 k

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler

Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler 1. Oktober 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Wiederholung / Diskussion 1.

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur Wintersemester 2016/2017 Tutorübung

Mehr

Daniel Betz Wintersemester 2011/12

Daniel Betz Wintersemester 2011/12 Daniel Betz Wintersemester 2011/12 Digitally signed by daniel.betz@daniel-betz.com Date: 2011.12.04 17:24:40 +01'00' Insgesamt 16 Register von je 16 Bit (=WORD) Breite Untere 8 Register auch als 2 Register

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen 2.5 Unterbrechungen

Mehr

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur 0. Assembler-Programmierung Datenstrukturen des ATMega32 Literatur mikrocontroller.net avr-asm-tutorial.net asm Alles über AVR AVR-Assembler-Einführung Assembler AVR-Aufbau, Register, Befehle 2008: ouravr.com/attachment/microschematic/index.swf

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1 Organisatorisches Die Großübung findet zweimal mit gleichen Inhalt statt: Montag 16-18 und Mittwoch 14-16 jeweils im MA001. Betreute Rechnerzeit: Donnerstag 10-18 und Freitag 10-16 jeweils FR2516 Code:

Mehr

Assembler-Programme. Systemprogrammierung (37-023) Elementare Komponenten eines Assembler-Programmes

Assembler-Programme. Systemprogrammierung (37-023) Elementare Komponenten eines Assembler-Programmes Systemprogrammierung (37-023) Assemblerprogrammierung Betriebssystemgrundlagen Maschinenmodelle Dozent: Prof. Thomas Stricker krankheitshalber vertreten durch: Felix Rauch WebSite: http://www.cs.inf.ethz.ch/37-023/

Mehr

MOP: Befehlsliste für den Mikrocontroller 8051

MOP: Befehlsliste für den Mikrocontroller 8051 Beuth Hochschule Berlin FB VI, Labor für Digitaltechnik MOP: Befehlsliste für den Mikrocontroller 8051 Erläuterung der Operanden Operand A addr11 addr16 bit /bit C #data #data16 direct DPTR PC Ri Rn rel

Mehr

2. Rechnerarchitektur 2.1 einfache Computer

2. Rechnerarchitektur 2.1 einfache Computer Fakultät Informatik Institut Systemarchitektur Professur Rechnernetze WS 2012 LV Informatik-I für Verkehrsingenieure 2. Rechnerarchitektur 2.1 einfache Computer Dr. rer.nat. D. Gütter Mail: WWW: Dietbert.Guetter@tu-dresden.de

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 22: Mima-X Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

3. Grundlagen der Rechnerarchitektur

3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiel: der Prozessor

Mehr

Pentium. Die Intel-Pentium CPU. AK Pentium. Packaging. Pentium Busse. RISC oder CISC?

Pentium. Die Intel-Pentium CPU. AK Pentium. Packaging. Pentium Busse. RISC oder CISC? Pentium Die Intel-Pentium CPU Äußerst komplexes Ding IA-32 Intel Architecture Software Developer s Manual Vol 1: Basic Architecture: 426 Seiten Vol 2: Instruction Set Reference: 976 Seiten Vol 3: System

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Thema 3. von Neumann Architektur, CPU, Befehle

Thema 3. von Neumann Architektur, CPU, Befehle Thema 3 von Neumann Architektur, CPU, Befehle zus. Literaturempfehlungen /1/ John von Neumann: First draft of a report on the EDVAC. /2/ Meiling, Fülle: Mikroprozessoren und Mikrorechner. Akademie-Verlang

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

1.7 Assembler Programmierung

1.7 Assembler Programmierung 1.7 Assembler Programmierung Die nach außen sichtbare Programmierschnittstelle eines Prozessors ist der Befehlscode. Dies ist eine binäre Dateninformation, die vom Prozessor Byte für Byte abgearbeitet

Mehr

1 Einleitung zum RISC Prozessor

1 Einleitung zum RISC Prozessor 1 Einleitung zum RISC Prozessor Wesentliche Entwicklungsschritte der Computer-Architekturen [2, 3]: Familienkonzept von IBM mit System/360 (1964) und DEC mit PDP-8 (1965) eingeführt: Gleiche Hardware-Architekturen

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren.

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. Ein Programm liegt der CPU in binärer Form vor und wird durch den Assembler in einer primitiven

Mehr

ERA-Zentralübung Maschinenprogrammierung

ERA-Zentralübung Maschinenprogrammierung Marcel Meyer LRR TU München 04.11.2016 Inhalt Aufgabe 1.1 Aufgabe 1.2 Speicherzugriffe Unbedingte Sprünge Stapelspeicher Unterprogramme Aufgabe 1.1 Quellregister AX, BX, CX Konstante deklarieren Werte

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Die Daten (Befehle und numerische Daten) werden in Form von BIT-Folgen verarbeitet.

Die Daten (Befehle und numerische Daten) werden in Form von BIT-Folgen verarbeitet. Übung Nr. 1b: MIKROPROZESSOR, Hewlett - Packard µ-lab en sind kleine Computer, die mit externen Geräten Daten austauschen können. Sie verfügen über Speicher, um Programme und Daten zu speichern und Eingangsund

Mehr

Datentypen in C. Informatik Universität Hamburg Proseminar: C-Grundlagen und Konzepte Jan Branitzki

Datentypen in C. Informatik Universität Hamburg Proseminar: C-Grundlagen und Konzepte Jan Branitzki Datentypen in C Informatik Universität Hamburg Proseminar: C-Grundlagen und Konzepte Jan Branitzki 31.05.13 Inhalt 1. Der Aufzählungstyp enum 2. Bit Shifting/Bitweise Operatoren a. Beispiel: Int b. Nutzen

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013. Vorlesung 9, Dienstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013. Vorlesung 9, Dienstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013 Vorlesung 9, Dienstag 18. Dezember 2012 (Performance Tuning, Profiling, Maschinencode) Prof. Dr.

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 1 / 53 Inhaltsverzeichnis 1 Einführung 2 Assembler Syntax, Register und Flags 3 Hauptspeicher 4 Stack 5 Assemblerbefehle

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian

Mehr

Vorwort 8. Kap. 1: Grundlagen 10

Vorwort 8. Kap. 1: Grundlagen 10 Inhaltsverzeichnis Vorwort 8 Kap. 1: Grundlagen 10 1.1 Analogie zwischen der Spieluhr und einem Prozessor 10 1.2 Unterschiede zwischen Mikroprozessor und Spieluhr 11 1.3 Die Programmierung eines Mikroprozessors

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

System z Assembler z/os Lehrgang 2008/09 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 1 Einführung

System z Assembler z/os Lehrgang 2008/09 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 1 Einführung System z Assembler z/os Lehrgang 2008/09 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 1 Einführung 7 1 3 Hauptspeicher aufgeteilt in Blöcke (Rahmen) 4 zu je 4096 Bytes 4 Jedem Block wird vom Kernel eine Speicherschutznummer

Mehr

Neue Prozessor-Architekturen für Desktop-PC

Neue Prozessor-Architekturen für Desktop-PC Neue Prozessor-Architekturen für Desktop-PC Bernd Däne Technische Universität Ilmenau Fakultät I/A - Institut TTI Postfach 100565, D-98684 Ilmenau Tel. 0-3677-69-1433 bdaene@theoinf.tu-ilmenau.de http://www.theoinf.tu-ilmenau.de/ra1/

Mehr

Mikrocomputertechnik 2.Mikroprozessor

Mikrocomputertechnik 2.Mikroprozessor 2.3 Programmiermodell des 68000 Aus Sicht des Programmierers besteht der Prozessor aus Registersatz Befehlssatz Adressierungsarten Registersatz des 68000 8 universelle Datenregister (32 Bit) D0 D7 8 Adress-Register

Mehr

Übersicht. Race Conditions Buffer Overflows Heap Overflows Exkurs: Stackaufbau bei Intel x86 Exkurs: Shellcode Stack Overflows

Übersicht. Race Conditions Buffer Overflows Heap Overflows Exkurs: Stackaufbau bei Intel x86 Exkurs: Shellcode Stack Overflows Übersicht Race Conditions Buffer Overflows Heap Overflows Exkurs: Stackaufbau bei Intel x86 Exkurs: Shellcode Stack Overflows Integer Overflows Format-String-Angriffe (SQL) Injection Cross Site Scripting

Mehr

COMPILER & CODE ANALYSE. Eine Einführung in die Code Analyse auf Grundlage von Compilern und deren Optimierung. 1

COMPILER & CODE ANALYSE. Eine Einführung in die Code Analyse auf Grundlage von Compilern und deren Optimierung. 1 1 COMPILER & CODE ANALYSE Eine Einführung in die Code Analyse auf Grundlage von Compilern und deren Optimierung. 1 INHALT Einleitung Werkzeuge Compiler Aufbau Optimierung Beispiel Code Analyse Einführung

Mehr

Vorlesung "Struktur von Mikrorechnern" (SMR)

Vorlesung Struktur von Mikrorechnern (SMR) 2 16-Bit Bit-Prozessoren 2.4 Datentypen in PASCAL 2.5 PIN-Funktionen beim I 8086 2.5.1 Adressbus 2.5.2 Multiplexbus 2.5.3 Interruptlogik 2.5.4 Betriebsmodi 2.6 Mehrrechnerkonzept Inhaltsverzeichnis Kapitel

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 4. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

F Ein einfacher Modellprozessor

F Ein einfacher Modellprozessor F ein einfacher Modellprozessor F Ein einfacher Modellprozessor Einordnung in das Schichtenmodell:. Prozessor 2. Aufbau des Modellprozessors 3. Organisation eines SRAM 4. Beschreibung in RTL 5. Adresspfad

Mehr

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS RISC: Reduced Instruction Set Computer 1 The CMOS Generations: Speedup through Miniaturization 10-fache Leistungssteigerung 2 Was ist ein Reduced Instruction Set Computer (RISC*)? * Der Begriff RISC wurde

Mehr

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Eine Einführung in Aufbau, Funktionsweise, Programmierung und Nutzen von Mikroprozessoren Teil II: Wat iss ene Bit, Byte un Word?

Mehr

Einführung. Übungen zur Vorlesung Virtuelle Maschinen. Stefan Potyra. SoSe 2009

Einführung. Übungen zur Vorlesung Virtuelle Maschinen. Stefan Potyra. SoSe 2009 Einführung Übungen zur Vorlesung Virtuelle Maschinen Stefan Potyra Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg SoSe 2009 Übungsaufgaben 1 Entwickeln

Mehr

1 Einleitung. 1.1 Zielgruppe. 1.2 Konzept des Handbuchs

1 Einleitung. 1.1 Zielgruppe. 1.2 Konzept des Handbuchs Einleitung Zielgruppe 1 Einleitung In diesem Handbuch sind alle Assemblerbefehle aus dem Befehlsvorrat der vom Betriebssystem BS2000 unterstützten Zentraleinheiten einzeln und ausführlich beschrieben Die

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

z/architektur von IBM

z/architektur von IBM von IBM Grundzüge einer modernen Architektur Von Matthias Fäth Gliederung Geschichtlicher Überblick Neuestes Flaggschiff Namensgebung Überblick Warum 64-Bit große Register Kompatibilität zu älteren Systemen

Mehr

Betriebssysteme Teil 6: Hardware-Schicht II

Betriebssysteme Teil 6: Hardware-Schicht II Betriebssysteme Teil 6: Hardware-Schicht II 13.11.15 1 Literatur [6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, 214-224, 239-242, S. 267-299,304-313 [6-2]

Mehr

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor.

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor. Rechnerstrukturen 6. System Systemebene 1 (Monoprozessor) 2-n n (Multiprozessor) s L1- in der L2- ( oder Motherboard) ggf. L3- MMU Speicher Memory Controller (Refresh etc.) E/A-Geräte (c) Peter Sturm,

Mehr

7. Aufbau und Arbeitsweise einer mikroprogrammierten CPU

7. Aufbau und Arbeitsweise einer mikroprogrammierten CPU 7. Aufbau und Arbeitsweise einer mikroprogrammierten CPU 245 Takte und Phasen Register und Busse ALU Hauptspeicher Mikrobefehle ROM-Speicher Adressberechnung Mikroprogramme Maschinenbefehle Load-Increment-Execute

Mehr

4 Speichern und Adressieren

4 Speichern und Adressieren 4 Speichern und Adressieren Schaltwerke, Register, Puffer, Paging Gedächtnis in Schaltungen Rückkopplung Schaltwerke I N P U T x 1 x 2 x n Schaltnetz y 1 y 2 y m O U T P U T Z K Speicher Z K Z! z 1 2 Flipflops

Mehr

4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen

4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen 4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen Ein Rechner besteht aus den folgenden Bestandteilen: Rechenwerk Rechenoperationen wie z.b. Addition, Multiplikation logische Verknüpfungen

Mehr

DIGITALE SCHALTUNGEN II

DIGITALE SCHALTUNGEN II DIGITALE SCHALTUNGEN II 3. Sequentielle Schaltkreise 3.1 Vergleich kombinatorische sequentielle Schaltkreise 3.2 Binäre Speicherelemente 3.2.1 RS Flipflop 3.2.2 Getaktetes RS Flipflop 3.2.3 D Flipflop

Mehr

TIn 1: Feedback Laboratories. Lecture 4 Data transfer. Question: What is the IP? Institut für Embedded Systems. Institut für Embedded Systems

TIn 1: Feedback Laboratories. Lecture 4 Data transfer. Question: What is the IP? Institut für Embedded Systems. Institut für Embedded Systems Mitglied der Zürcher Fachhochschule TIn 1: Lecture 4 Data transfer Feedback Laboratories Question: What is the IP? Why do we NEED an IP? Lecture 3: Lernziele Moving data, the why s and wherefores Moving

Mehr

Neues vom STRIP Forth-Prozessor

Neues vom STRIP Forth-Prozessor Neues vom STRIP Forth-Prozessor Tagung der Forth-Gesellschaft April 2013 in Garmisch-Partenkirchen Willi Stricker 1 STRIP Forth-Prozessor STRIP32 32 Bit-Version Eigenschaften: Die 32-Bit-Version ist nahezu

Mehr

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister)

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische Universität Clausthal November 5, 2014 1/18 Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische

Mehr

Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst

Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst Hardwarearchitekturen und Rechensysteme Sommersemester 2009 Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst Dieses Dokument erhebt keinen Anspruch auf Vollständigkeit, sondern

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

Compiler: Vom Code zum Maschinen-Code. C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg

Compiler: Vom Code zum Maschinen-Code. C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg Compiler: Vom Code zum Maschinen-Code C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg Prof. Dr. Jan Dünnweber Zusammenhänge: C und Assembler Hochsprachen

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

3.0 8051 Assembler und Hochsprachen

3.0 8051 Assembler und Hochsprachen 3.0 8051 Assembler und Hochsprachen Eine kurze Übersicht zum Ablauf einer Programmierung eines 8051 Mikrocontrollers. 3.1 Der 8051 Maschinencode Grundsätzlich akzeptiert ein 8051 Mikrocontroller als Befehle

Mehr

Motivation und Überblick

Motivation und Überblick Motivation und Überblick Drei große Bereiche der Vorlesung: Darstellung von Zahlen in Rechnern Verarbeitung von Binärdaten auf der Ebene digitaler Schaltungen Programmierung auf Maschinenebene und relativ

Mehr

B1 Stapelspeicher (stack)

B1 Stapelspeicher (stack) B1 Stapelspeicher (stack) Arbeitsweise des LIFO-Stapelspeichers Im Kapitel "Unterprogramme" wurde schon erwähnt, dass Unterprogramme einen so genannten Stapelspeicher (Kellerspeicher, Stapel, stack) benötigen

Mehr

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c 1 Transportbefehle 1.1 Verwendung nur Akku und Register (R0, R1,... R7) 1.1.1 Kopieren Sie den Wert aus Register1 nach

Mehr

Übung -- d001_7-segmentanzeige

Übung -- d001_7-segmentanzeige Übung -- d001_7-segmentanzeige Übersicht: Der Steuerungsablauf für die Anzeige der Ziffern 0 bis 9 mittels einer 7-Segmentanzeige soll mit einer speicherprogrammierbaren Steuerung realisiert werden. Lehrziele:

Mehr