Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung"

Transkript

1 Vorlesung Geometrische Algorithmen Bewegungsplanung fur Roboter (Robot Motion Planning) Sven Schuierer

2 Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung mit Translationen 7. Bewegungsplanung mit Translationen und Rotationen 1

3 1 Problemstellung Zentrale Aufgabe fur einen Roboter: Planung einer Bewegung (Bewegungsplanungsproblem) Informationen uber die Umgebung: Beispiel: autonomer Roboter in einer Fabrik Grundri fur Wande und Maschinen Sensoren fur Menschen Problemstellung 2

4 Arten von Robotern Autonomer mobiler Roboter Roboterarm Problemstellung 3

5 Problemstellung der Vorlesung Vereinfachung: 2-dimensionales Bewegungsplanungsproblem Umgebung (Arbeitsraum): planarer Bereich mit polygonalen Hindernissen H statisch vollstandig bekannt Roboter R: einfaches Polygon in alle Richtungen beweglich Problemstellung 4

6 2 Arbeits- und Kongurationsraum Arbeitsraum: Menge H von Hindernissen fp 1 ;:::;P t g Arbeits- und Kongurationsraum 5

7 3 Kongurationsraum Konguration R(~x): Spezikation der Position des Roboters durch Parameter Beispiel: Translatorischer Roboter R(x; y) R(0; 0) = (v 1 ;v 2 ;:::;v r ) ) R(x; y) = (v 1 + (x; y);:::;v r +(x; y)) R(6; 4) R(0; 0) 6 4 Alternative: Referenzpunkt Ursprung (0; 0) des Koordinatensystems Kongurationsraum 6

8 Kongurationen Rotation: zusatzlicher Parameter ' R(x; y; ') = Roboter mit Referenzpunkt auf (x; y) und rotiert um ' Grad R(6; 4;=4) R(0; 0; 0) 6 4 Allgemein: Freiheitsgrade 3-dimensionaler Roboter: Translation: drei Freiheitsgrade Translation und Rotation: sechs Freiheitsgrade Kongurationsraum 7

9 Kongurationsraum Menge aller Parameter eines Roboters R heit Kongurationsraum C(R) p 2 C(R)! R(p) Beispiele: 2-dimensionaler Roboter R mit Translation und Rotation: (x; y; ') 2 C(R) = IR 2 [0; 2) 7! R(x; y; ') 2-dimensionaler Roboter R mit Translation: (x; y) 2 C(R) = IR 2 7! R(x; y) Kongurationsraum 8

10 Verbotener und freier Raum Verbotener Kongurationsraum C forb (R;H): C forb (R;H) = fp 2 C(R) j Es gibt ein P 2 H : R(p) \ P 6= ;g Freier Kongurationsraum C free (R,H): C free (R;H) = C(R) n C forb (R;H) Kongurationsraum 9

11 Arbeits- und Kongurationsraum Beobachtung Jeder (kollisionsfreie) Weg W des Roboters im Arbeitsraum korrespondiert zu einem Weg C(W ) im (freien) Kongurationsraum und umgekehrt. Kongurationsraum 10

12

13 4 Punktroboter Annahmen: punktformiger Roboter R polygonale, disjunkte Hindernisse H = fp 1 ;:::;P t g mit insgesamt n Eckpunkten Rechteck B enthalt die Hindernisse C free = C free (R;H) = B n t[ i=1 P i P 6 R P 1 P 3 B P 4 P 5 P 2 C free Punktroboter 11

14 Der freie Raum Trapez-Zerlegung: for all v Eckpunkt in H do zeichne ein vertikales Liniensegment in v nach oben und eines nach unten die Liniensegmente enden beim ersten Hindernis oder bei B Algorithmus BerechneFreienRaum(H) Input: Eine Menge H von disjunkten, polygonalen Hindernissen Output: Die vertikale Dekomposition von C free (R,H) fur einen Punktroboter R 1 Sei E die Menge der Kanten in H 2 Berechne die Trapez-Zerlegung T (E) von E 3 Entferne die Trapeze im inneren der Hindernisse von H 4 Gebe die entstehende Unterteilung T (C free ) zuruck Punktroboter 12

15 Der freie Raum Lemma Die Trapez-Zerlegung des freien Kongurationsraumes kann in O(n log n) erwarteter Zeit berechnet werden. Punktroboter 13

16 Berechnung eines Weges Gegeben: p s der Startpunkt und p e der Zielpunkt Gesucht: Ein kollisionsfreier Weg von p s nach p e 1. Fall: p s und p e gehoren zum gleichen Trapez p e p s 2. Fall: p s und p e gehoren zu verschiedenen Trapezen )?? Punktroboter 14

17 Die Straenkarte (Road map) einge- Straenkarte G road : planarer, in C free better Graph Knoten von G road : Trapez- und vertikale Kanten-Mittelpunkte Kanten von G road : for all Trapeze T do fuge Kanten von dem Mittelpunkt von T zu den Mittelpunkten der T begrenzenden vertikalen Kanten ein Punktroboter 15

18 Die Straenkarte (Road map) Zeit zur Konstruktion der Straenkarte: O(n) Punktroboter 16

19 Algorithmus zur Wegeberechnung Algorithmus BerechneWeg Input: vertikale Dekomposition T (C free ), Straenkarte G road, Start- und Zielpunkt p s und p e Output: Ein Weg von p s nach p e, falls einer existiert; ansonsten eine Meldung, da kein Weg existiert 1 Bestimme Trapeze s und e, die p s und p e enthalten 2 if s oder e existiert nicht 3 then melde, da p s oder p e in C forb 4 else seien v s und v e Mittelpunkte von s bzw. e 5 berechne Weg W von v s nach v e in 6 G road if W existiert nicht 7 then melde, da kein Weg existiert 8 else return W = p s v s W v e p e Punktroboter 17

20 Beispiel Punktroboter 18

21 Korrektheit von BerechneWeg Lemma Algorithmus BerechneWeg gibt einen kollisionsfreien Weg zuruck gdw es einen solchen Weg gibt. Beweis: ): W ist kollisionsfrei (: Sei W 0 kollisionfreier Weg von p s nach p e W 0 schneidet eine Folge F von benachbarten Trapezen: mit F = ( 1 ; 2 ;:::; k ) 1 = s und k = e 5pe 1 ps Punktroboter 19

22 Korrektheit von BerechneWeg Beweis: (Fortsetzung) Sei v i Mittelpunkt von i i und i+1 sind benachbart ) Es gibt einen Weg von v i nach v i+1 in G road ) Es gibt einen Weg von v 1 nach v k in G road ) Der Algorithmus ndet einen Weg von v s nach v e ) Der Algorithmus ndet einen Weg von p s nach p e 1 4 5pe p s 2 3 Zeitkomplexitat von BerechneWeg: O(n log n) (erwartet) Punktroboter 20

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.07.2011 Bewegungslanung für Roboter Ideen?? Problem: Gegeben

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Zusammenfassung Verallgemeinerungen VD Segmente/Pledge Algorithmus

Zusammenfassung Verallgemeinerungen VD Segmente/Pledge Algorithmus Zusammenfassung Verallgemeinerungen VD Segmente/Pledge Algorithmus Elmar Langetepe University of Bonn Algorithmische Geometrie VD Segmente/Pledge 29.06.11 c Elmar Langetepe SS 11 1 Voronoi Diagramm von

Mehr

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie Übung Algorithmische Geometrie Sichtbarkeitsgraph LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 19.07.2012 Ablauf Nachtrag Sichtbarkeitsgraph WSPD

Mehr

Liniensegmentschnitt. Doppelt verkettete Kantenliste. Überlagerung von 2 ebenen Graphen. Boolsche Operatoren für einfache Polygone (LEDA)

Liniensegmentschnitt. Doppelt verkettete Kantenliste. Überlagerung von 2 ebenen Graphen. Boolsche Operatoren für einfache Polygone (LEDA) Liniensegmentschnitt Motivation, Überlagerung von Karten, Problemformulierung Ein einfaches Problem und dessen Lösung mit Hilfe des Sweep-Line Prinzips Output-sensitiver Liniensegmentschnittalgorithmus

Mehr

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 20. Januar 2005

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 20. Januar 2005 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 8. Programmierung auf Aufgabenebene und......461 Transformation

Mehr

Wegeplanung: Wegekartenverfahren

Wegeplanung: Wegekartenverfahren Wegeplanung: Wegekartenverfahren Idee Sichtbarkeitsgraph Voronoi-Diagramm Probabilistische Wegekarten Rapidly-Exploring Random Tree Prof. Dr. O. Bittel, HTWG Konstanz Autonome Roboter - Wegekartenverfahren

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Bewegungsplanung bei unvollständiger Information

Bewegungsplanung bei unvollständiger Information Bewegungsplanung bei unvollständiger Information Sebastian Hempel Aktuelle Forschungsthemen in der Algorithmik Überblick 1. Einleitung 2. Auswege aus einem Labyrinth 3. Finden eines Ziels in unbekannter

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 43 Punkt-in-Polygon-Suche Übersicht! Praxisbeispiel/Problemstellung! Zählen von Schnittpunkten " Schnitt einer Halbgerade mit der Masche " Aufwandsbetrachtung! Streifenkarte " Vorgehen und

Mehr

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung Punktlokalisation 1. Trapez-Zerlegungen 2. Eine Suchstruktur 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung 4. Analyse Punktlokalisation Einteilung in Streifen Anfragezeit:

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der

Mehr

Methoden der Offline Bewegungsplanung für Roboter

Methoden der Offline Bewegungsplanung für Roboter Methoden der Offline Bewegungsplanung für Roboter Mögliche Prüfungsfragen Vorlesung von Elmar Langetepe WS 16/17 Beachtet bitte: Diese Liste hat keinen Anspruch auf Vollständigkeit! Manchmal werden auch

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Einführung in die Robotik. Jianwei Zhang

Einführung in die Robotik. Jianwei Zhang - Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 28. Juni 2011 J. Zhang 324 Programmierung auf Aufgabenebene

Mehr

Gliederung. Gliederung (cont.) Grundlage zur Programmierung auf Aufgabenebene

Gliederung. Gliederung (cont.) Grundlage zur Programmierung auf Aufgabenebene - Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 28. Juni 2011 Allgemeine Informationen Einführung

Mehr

Seminar und Proseminar - WS 2007/ Perlen der Theoretischen Informatik. Friedhelm Meyer auf der Heide

Seminar und Proseminar - WS 2007/ Perlen der Theoretischen Informatik. Friedhelm Meyer auf der Heide Seminar und Proseminar - WS 2007/2008 - Perlen der Theoretischen Informatik Friedhelm Meyer auf der Heide Kontakt Friedhelm Meyer auf der Heide Universität Paderborn Institut für Informatik und Heinz Nixdorf

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Begriffsklärung: Dominanz

Begriffsklärung: Dominanz Einführung Begriffsklärung: Dominanz Gegeben: d-dimensionaler Raum, jeder Punkt p im Raum hat d Attribute: (p 1,,p d ) Definition Dominanz: 1 i d : p i p i und 1 i d : p i < p i Begriffsklärung: Dominanz

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y x x0 Bisher

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Einführung in die Robotik. Jianwei Zhang

Einführung in die Robotik. Jianwei Zhang - Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 26. Juni 2012 J. Zhang 296 Programmierung auf Aufgabenebene

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Einführung & Konvexe Hülle

Einführung & Konvexe Hülle Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.04.2012 AlgoGeom-Team Dozent Martin Nöllenburg noellenburg@kit.edu

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

10.1 Geometrische Wegplanung im Konfigurationsraum

10.1 Geometrische Wegplanung im Konfigurationsraum 10 Pfadplanung 10.1 Geometrische Wegplanung im Konfigurationsraum Vorausetzungen Roboter bewegt sich in der Ebene, ohne sich zu drehen Hindernisse sind konvexe Polygone Beispiel Grundgedanke Problem wird

Mehr

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme Folie 1 von 32 Geometrische Algorithmen Voronoi-Diagramme Folie 2 von 32 Voronoi-Diagramme Übersicht Problemstellung Animation zur Konstruktion eines Voronoi-Diagramms Definition, Eigenschaften eines Voronoi-Diagramms

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.06.2014 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 21.06.2011 Motivation: Meshing von Platinenlayouts Zur Simulation

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Lineare Programmierung

Lineare Programmierung Übung Algorithmische Geometrie Lineare Programmierung LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 14.05.2014 Übersicht Übungsblatt 4 Lineares

Mehr

6. Triangulation von Polygonen

6. Triangulation von Polygonen 1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Teile-und-Herrsche-Algorithmen: Bäume und serienparallele Graphen 3. Vorlesung Sommersemester 2013 (basierend auf Folien von Martin Nöllenburg und Robert Görke, KIT) 2 Ankündigung

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Algorithmische Geometrie. Prof. Dr. Thomas Ottmann. Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp

Algorithmische Geometrie. Prof. Dr. Thomas Ottmann. Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp Algorithmische Geometrie Prof. Dr. Thomas Ottmann Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp Literatur: M. de Berg, M. van Krefeld, M. Overmars O. Schwarzkopf: Computational Geometry (Algorithms

Mehr

Kanonische Ordnungen und die Mondshein-Sequenz

Kanonische Ordnungen und die Mondshein-Sequenz Kanonische Ordnungen und die Mondshein-Sequenz a.k.a. (2,)-Order 2 8 0 9 5 7 6 2 Überblick Geradlinige Zeichnungen Kanonische Ordnungen + Shift-Algorithmus Erweiterungen durch Ohrendekompositionen Mondshein-Sequenz

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

2.7.1 Inside-Test Konvexe Hülle Nachbarschaften Schnittprobleme

2.7.1 Inside-Test Konvexe Hülle Nachbarschaften Schnittprobleme 2.7 Geometrische Algorithmen 2.7.1 Inside-Test 2.7.2 Konvexe Hülle 2.7.3 Nachbarschaften 2.7.4 Schnittprobleme 1 2.7 Geometrische Algorithmen 2.7.1 Inside-Test 2.7.2 Konvexe Hülle 2.7.3 Nachbarschaften

Mehr

für n-elementige Punktmenge jedenfalls Ω(n log n), da mit VD die konvexe Hülle in linearer Zeit bestimmbar.

für n-elementige Punktmenge jedenfalls Ω(n log n), da mit VD die konvexe Hülle in linearer Zeit bestimmbar. Konstruktion des Voronoi-Diagramms Untere Schranke für den Zeitaufwand: für n-elementige Punktmenge jedenfalls Ω(n log n), da mit VD die konvexe Hülle in linearer Zeit bestimmbar. Wenn man die n Punkte

Mehr

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer mafi@upb.de Vorlesung 2 10.4.2012 Matthias Fischer 59 Übersicht = Binary Space Partitions Motivation Idee Anwendungsbeispiel:

Mehr

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie Übung Algorithmische Geometrie Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 02.07.2014 Übersicht Übungsblatt 11 - Quadtrees Motivation:

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Einführung in Approximative Algorithmen und Parametrisierte Komplexität

Einführung in Approximative Algorithmen und Parametrisierte Komplexität Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition

Mehr

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j,

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j, 6.2 Boolesche Matrixmultiplikation und Transitive Hülle Wir ersetzen nun im vorhergehenden Abschnitt die Distanzmatrix durch die (boolesche) Adjazenzmatrix und (min, +) durch (, ), d.h.: n C = A B; c ij

Mehr

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill Konvexe Hülle Hierbei handelt es sich um ein klassisches Problem aus der Algorithmischen Geometrie, dem Teilgebiet der Informatik, in dem man für geometrische Probleme effiziente Algorithmen bestimmt.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Der Pledge-Algorithmus

Der Pledge-Algorithmus Der Pledge-Algorithmus Benjamin Kahl 22. Juni 2017 Inhaltsverzeichnis 1 Einführung 1.1 Modelldefinition...2 2 Naiver Ansatz 2.1 Zufällige Wegwahl...3 2.2 Rechte-Hand-Methode...3 3 Pledge-Algorithmus 3.1

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

7. Triangulation von einfachen Polygonen

7. Triangulation von einfachen Polygonen 1 7. Triangulation von einfachen Polygonen 2 Ziel Bessere Laufzeit als O(n log n) durch schnelleres Berechnen der Trapezzerlegung des Polygons. 3 Idee Finde Methode, den Anfangspunkt einer Strecke in der

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 10 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 10 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 11. Mai

Mehr

Wann sind Codes eindeutig entschlüsselbar?

Wann sind Codes eindeutig entschlüsselbar? Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

5.4 Das Rucksackproblem

5.4 Das Rucksackproblem Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum

Mehr

2.4. Triangulierung von Polygonen

2.4. Triangulierung von Polygonen Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition

Mehr

Dualität + Quad-trees

Dualität + Quad-trees Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

Vorwärtskinematik und inverse Kinematik. Andreas Schmidtke

Vorwärtskinematik und inverse Kinematik. Andreas Schmidtke Vorwärtskinematik und inverse Kinematik Andreas Schmidtke Übersicht 1. Vorwärtskinematik 2. Standardframes 3. Inverse Kinematik 4. Bemerkungen zur Numerik Übersicht 1. Vorwärtskinematik 1. Modellierung

Mehr

Musterlösung zu Übungsblatt 6

Musterlösung zu Übungsblatt 6 Fakultät für Informatik Übungen zu Kognitive Systeme Sommersemster 2016 M. Sperber (matthias.sperber@kit.edu) T. Nguyen (nguyen@kit.edu) S. Speidel (stefanie.speidel@kit.edu) D. Katic (darko.katic@kit.edu)

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie Teil 2 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 11.06.2013 Die Ära der dynamischen Karten Die meisten

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Pfadgenerierung/Polygone/Polygonoffsetting

Pfadgenerierung/Polygone/Polygonoffsetting Pfadgenerierung/Polygone/Polygonoffsetting Jan Stenzel 17. Juni 2015 Proseminar: 3D-Druck-Verfahren 1 / 42 Gliederung I 1 Polygone Definition konkav, konvex und überschlagen 2 Clipping Was kann passieren?

Mehr

Präfix-Summe. Das Schweizer Offiziersmesser der Parallelen Algorithmen. Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen

Präfix-Summe. Das Schweizer Offiziersmesser der Parallelen Algorithmen. Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen Präfix-Summe Das Schweizer Offiziersmesser der Parallelen Algorithmen Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen Parallele Rechenmodelle Beispiel: Summieren von Zahlen Verlauf des Rechenprozesses:

Mehr

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009 December 1, 2009 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Gesucht:

Mehr