Realtime (Big) Data als Fundament für moderne Social CRM-Systeme

Größe: px
Ab Seite anzeigen:

Download "Realtime (Big) Data als Fundament für moderne Social CRM-Systeme"

Transkript

1 v Realtime (Big) Data als Fundament für moderne Social CRM-Systeme DATUM Dr. Klaus Brachmann Reinhard Stiefel

2 Vorstellung der WGV 66,7 % Württembergische Gemeinde-Versicherung a.g. WGV- Stiftung WGV-Beteiligungsgesellschaft mbh WGV Holding AG 33,3 % WGV- Versicherung AG WGV- Lebensversicherung AG (74 %) WGV Rechtsschutz Schadenservice GmbH WGV- Informatik und Media GmbH E + S Rückversicherung AG (7 %) S-Pensionskasse AG (2 %)

3 Vorstellung der WGV Unternehmen Gründung Geschäftsgebiet Kunden Produkte Württemb. Gemeinde- Versicherung a.g 1921, mit dem Ziel, Versicherungsschutz für Städte, Gemeinden und Landkreise zum Selbstkostenpreis zu bieten Gebiet des früheren Landes Württemberg und Hohenzollern Personen des öffentlichen Rechts und deren Einrichtungen sowie den Angehörigen des öffentlichen Dienstes Kompositversicherungen (SHUK) u. Kommunalversicherung WGV- Versicherung AG 1978, mit dem Ziel, die aus dem öffentlichen Dienst ausgeschiedene Versicherungsnehmer weiterhin preiswert zu schützen. Bundesrepublik Deutschland Alle Privatpersonen und Personen des öffentlichen Dienstes ohne regionale Begrenzung Kompositversicherungen (SHUK), Rechtschutz nicht-substitutive Krankenversicherung WGV- Lebensversicherung AG 1989, Erweiterung des Gesamtportfolios Bundesrepublik Deutschland Alle Privatpersonen und Personen des öffentlichen Dienstes ohne regionale Begrenzung Kapital- und Fondsgebundene Lebens- und Rentenversicherungen Risikoversicherungen Berufsunfähigkeit

4 Agenda Big Data und die Auswirkungen auf die Systemarchitekturen Unstrukturierte Daten analysieren und Hypothesen ableiten - sind das die neuen Herausforderungen für die IT? Szenarien Big Data & Analytics? FAQ 4

5 Big Data und die Auswirkungen auf die Systemarchitekturen Haben Sie gewusst, dass das digitale Datenwachstum im vergangenen Jahr bereits die Zettabyte-Barriere erreicht hat? Ein Zettabyte ist eine 1 mit 21 Nullen:

6 Big Data und die Auswirkungen auf die Systemarchitekturen Im Sekundentakt werden wir mit einer Fülle an Informationen überschüttet, ohne dass wir in der Lage sind, diese zu verarbeiten. Wir haben immer mehr Informationen, aber trotz allem nicht mehr detailliertes Wissen. 6

7 Big Data und die Auswirkungen auf die Systemarchitekturen Das DWH ist die Basis für die Offline-Analytik mit historischen Daten, die Geschehenes erklären! 7

8 Big Data und die Auswirkungen auf die Systemarchitekturen WGV DWH Modell: OLAP (online analytic processing) Bestand Produk Schaden Transformer Transformer.lnk Datum Produkt PBS Produktart Partner Gruppe Nettobetrag DWH FI, Operative Daten externe Daten 8

9 Big Data und die Auswirkungen auf die Systemarchitekturen Big Data ist mehr als das Speichern von riesigen Datenvolumen! Neue Ansätze für das Datenmanagement sind notwendig! 9

10 Big Data und die Auswirkungen auf die Systemarchitekturen Big Data ist der Rohstoff zum Agierenauf Ereignisse von gestern, jetzt und morgen! 10

11 Business Intelligence 2.0 Daten als Wertschöpfungspotenzial für eine zielgruppenspezifische Segmentierung Produkte, Dienstleistungen, Marketing, die Entscheidungsfindung Risikoanalyse, Hypothesen, neue Geschäftsmodelle Trends, Stimmungsanalysen, 11

12 Business Intelligence 2.0 Vorsprung mit ad-hoc Wissen was geschah? was geschieht jetzt? was wird geschehen? 12

13 Agenda Big Data und die Auswirkungen auf die Systemarchitekturen? Unstrukturierte Daten analysieren und Hypothesen ableiten - sind das die neuen Herausforderungen für die IT? Szenarien Big Data & Analytics? FAQ 13

14 wo ist das Problem? 14

15 Die Analyse neuer Datenquellen schafft neue Einsichten Transactional & Application Data Machine Data Social Data Enterprise Content Volumen steigt Geschwindigkeit Variabilität Variabilität strukturierte Daten Semi-strukturiert sehr unstrukturiert sehr unstrukturiert Performance Schnittstellen Wahrhaftigkeit Volumen Quell 2012 IBM Corporation 15 15

16 Unstrukturierte Daten ~ 75 % + x der gespeicherten Daten sind unstrukturiert! Methoden und Verfahren werden benötigt, die es uns ermöglichen, unstrukturierte Daten zu analysieren und Wissen zu initiieren! 16

17 Framework UIMA [you_ee_muu] (Unstructured Information Management Architecture) ist ein Frameworkzur Programmierung von NLP-Anwendungen. Quelle:.wikipedia.org/wiki/UIMA

18 UIMA Open Source Module: UIMA Framework Core AE (Analysis Engines) CAS (Common Analysis Structur) CPE (Collection Processing Engine) CPM (Collection Processing Management) Weitere Informationen finden Sie: 18

19 UIMA + IBM Content Analytics Tool 19

20 Agenda Big Data und die Auswirkungen auf die Systemarchitekturen? Unstrukturierte Daten analysieren und Hypothesen ableiten - sind das die neuen Herausforderungen für die IT? Szenarien Big Data & Analytics? FAQ 20

21 Woher kommt die K-Intelligenz? Wissen archivieren und abrufen! Wissen initiieren! Bezugsquell: 2011 IBM Corporation 21

22 Wie entsteht Wissen? 22

23 Big Date & Analytics Risiken aufzuspüren! Mustererkennung zur Analyse und Prüfung von Zeitreihen auf Anomalien. Damit lassen sich Tausende von Transaktionen pro Sekunde auf Auffälligkeiten prüfen. Kreditkartenbetrug Devisen- und Aktienkursmanipulation Libor - Zinsmanipulation 23

24 Libor Zinsmanipulation So oder ähnlich könnte ein Mailtext gewesen sein: Hallo Tom, ich habe mit dem Abteilungsleiter von der xy Bank in London gesprochen. Er ist mit 0,50 % LIBOR einverstanden. Annotation: Namen (Personen, Orte, Sachen): Tom, Müller, xy Bank, London, WER/ Was - Subjekt: ich, er, sie, Chef, Boss, CEO,.. WAS - Prädikat / Verb: gesprochen, einverstanden, vereinbart WEM/WAS/WEN - Objekt: Abteilungsleiter, Chef,.. Fachbegriffe: LIBOR, Zins, Diskont, Swap, Zahlen, Dimension: 0,50, %, EUR, $,, 24

25 Big Data & Analytics Real Time Monitoring (im Netz) Der Blick in die Zukunft durch die Früherkennung von Problemfeldern, um geeignete Gegenmaßnahmen zur Abwendung oder Abschwächung einzuleiten. Frühwarnsystem komplexer technischer Anlagen Steuerung von Verkehrsströmen zur Vermeidung von Staus Einsatzplanung bei Großveranstaltung (z.b. Facebook Party in Backnang Juni 2012, ). 25

26 Big Data & Analytics Real Time Segmentierung. Unterstützung in der Lead-Generierung durch die Bildung von Kundensegmenten, um individuelle bedarfsgerechte Angebote zu erstellen. Altersversorgung (Renten-, Lebensversicherung, ) Finanzanlagen nach Alter und Risikobereitschaft 26

27 Lead-Generierung..? Sehr geehrte.. zum tt.mm.jj möchte ich meine BU kündigen. Ende dieses Monats in Vorruhestand. meine neue Adresse ist MfG Fritz Müller 27

28 Big Data & Analytics Empfehlungsmanagement Real Time Analyse der Daten. Ergebnistypen sind Hypothesen oder konkrete Aussagen für die next best Action. Amazon, Facebook,... empfehlen ihren Usern gezielt Produkte, Freunde, Events,, online, bezogen auf die aktuelle Situation. 28

29 Big Data Use Case Empfehlungsmanagement 1. Empfehlung für den Agenten: Strukturierte Bestandsdaten Hans Müller, Köln 48 Jahre Hausbesitzer BJ 1988 Gebäudeversicherung ohne LW keine Gewässerhaftpflicht Versichert nach dem 14-Wert Ölheizung PKW Audi Q5 Unstrukturierte externe Daten Unwetter in Köln ist Vorstand im Hundesportverein Ad-hoc Meldung von Audi Informationen auf die aktuelle Situation Neuwertversicherung pro u. contra!? Tankart u.-volumen > X Ltr. Gewässserhaftpflicht! Leitungswasser Risko? Hundehaftpflicht? 29

30 Big Data Use Case Empfehlungsmanagement 2. Empfehlung für den Agenten: Hinweis auf die aktuelle Rückrufaktion: Strukturierte Bestandsdaten Hans Müller, Köln 48 Jahre Hausbesitzer BJ 1988 Gebäudeversicherung ohne LW keine Gewässerhaftpflicht Versichert nach dem 14-Wert Ölheizung PKW Audi Q5 Unstrukturierte externe Daten Unwetter in Köln ist Vorstand im Hundesportverein Ad-hoc Meldung von Audi AUDI RUFT FAHRZEUGE ZURÜCK. Q5kann Glasdach reißen. Der Fehler eines Zulieferers zwingt Audi weltweit zum Rückruf von Q5. Bei Fahrzeugen mit Glasdach besteht die Gefahr, dass es bei extremer Kälte reißt und auf die Insassen als Glaskrümel niederregnet. 30

31 ICIS+ Social CRM UIMA + ICM PoC: Potential, Risiko, 31

32 ICIS+ SocialCRM 32

33 ICIS+ SocialCRM 33

34 PoC Phase: 1. Textanalysen 2. Tool: SWOT Analyse (Stärken, Schwächen, Chancen u. Risiken) 3. Anforderung an das Architekturmodell 4. Best Praxis 4.1 Einsatz ICM IBM Content Analytics. 4.2 Vorgehensmodell Textanalyse 4.3 Modellierung Wissensbausteine 4.4 Integration in ICIS+ Social CRM JEE 5. Tests im Kundenservice 6. Feedbackrunden mit den Agenten 34

35 Test it!

36 Fragen zum 1. Textanalysen z. B. diverser AVB`s 2. SWOT Analyse (Stärken, Schwächen, Chancen u. Risiken) 3. Anforderung an das Architekturmodell 4. Best Praxis 4.1 Einsatz IBM Content Analytics. 4.2 Vorgehensmodell Textanalyse 4.3 Modellierung Wissensbausteine 4.4 Integration in ICIS+ Social CRM JEE 5. Tests im Kundenservice

37 Big Data ICIS+ SocialCRM WGV-Informatik und Media GmbH Stuttgart Tel.:

Event Recognition Engine

Event Recognition Engine Event Recognition Engine Eine Analysis Engine im UIMA Framework Hauptseminar Information Retrieval Tobias Beck 10.01.2011 2 Übersicht: Einordnung UIMA Komponenten einer UIMA Pipeline Selbst erstellte Event

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Direktmarketing im Zentrum digitaler Vertriebsstrategien

Direktmarketing im Zentrum digitaler Vertriebsstrategien Direktmarketing im Zentrum digitaler Vertriebsstrategien Standortbestimmung und Key Learnings für Verlage Hamburg, September 2014 Im Zentrum digitaler Vertriebsstrategien steht zunehmend die Analyse komplexer

Mehr

SOA im Zeitalter von Industrie 4.0

SOA im Zeitalter von Industrie 4.0 Neue Unterstützung von IT Prozessen Dominik Bial, Consultant OPITZ CONSULTING Deutschland GmbH Standort Essen München, 11.11.2014 OPITZ CONSULTING Deutschland GmbH 2014 Seite 1 1 Was ist IoT? OPITZ CONSULTING

Mehr

Maximieren Sie Ihr Informations-Kapital

Maximieren Sie Ihr Informations-Kapital Maximieren Sie Ihr Informations-Kapital Zürich, Mai 2014 Dr. Wolfgang Martin Analyst, Mitglied im Boulder BI Brain Trust Maximieren des Informations-Kapitals Die Digitalisierung der Welt: Wandel durch

Mehr

wgv Versicherungen Überzeugend gut, gnadenlos günstig wgv.de

wgv Versicherungen Überzeugend gut, gnadenlos günstig wgv.de wgv Versicherungen Überzeugend gut, gnadenlos günstig wgv.de Einige können vielleicht besser Hochdeutsch. Aber bestimmt nicht besser rechnen. Zugegeben wenn über die reinste Form unserer Sprache diskutiert

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen Big Data Modewort oder echter Mehrwert freenet Group Dr. Florian Johannsen freenet Group 2 Titel der Präsentation 07.07.2015 Mobilfunkgeschäft der freenet Group Austausch von Daten und Informationen Im

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Social CRM - Hype oder Notwendigkeit? www.steria.com. Dr. Elmar Stenzel, Steria

Social CRM - Hype oder Notwendigkeit? www.steria.com. Dr. Elmar Stenzel, Steria Social CRM - Hype oder Notwendigkeit? Dr. Elmar Stenzel, Steria Agenda Die richtige Quellen jenseits Facebook & Co. Herausforderungen bei der Datenselektion und extraktion Beispielreports und Kennzahlen

Mehr

Data Driven Performance Marketing

Data Driven Performance Marketing Data Driven Performance Marketing 2 INTRODUCTION ÜBER METAPEOPLE Sven Allmer seit 2009 bei metapeople Business Development Manager verantwortlich für New Business, Markt- und Trendanalysen, Geschäftsfeld-Entwicklung

Mehr

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Beratung Business Analytics Software Entwicklung Datenmanagement AGENDA Der Kreislauf für die Betrugserkennung

Mehr

DIGITALE TRENDS. Worauf das Marketing schon jetzt reagieren muss. Ingo Notthoff, Leiter Marketing T-Systems Multimedia Solutions

DIGITALE TRENDS. Worauf das Marketing schon jetzt reagieren muss. Ingo Notthoff, Leiter Marketing T-Systems Multimedia Solutions DIGITALE TRENDS Worauf das Marketing schon jetzt reagieren muss Ingo Notthoff, Leiter Marketing T-Systems Multimedia Solutions Stellvertretender Vorsitzender der Fokusgruppe Social Media im BVDW OB IST

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Operational Intelligence

Operational Intelligence Operational Intelligence Eric Müller Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt

Mehr

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Textanalyse mit UIMA und Hadoop Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Über mich seit 2014: Big Data Scientist @ Inovex 2011-2013: TU Darmstadt, UKP Lab Etablierung der Hadoop-Infrastruktur Unterstützung

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Risk Management for Banking Herausforderungen für einen integrierten Approach

Risk Management for Banking Herausforderungen für einen integrierten Approach Risk Management for Banking Herausforderungen für einen integrierten Approach Frank Hansen Risk Practice Leader, SAS Deutschland Agenda Situation und Herausforderungen - Integrierte Risikosteuerung Stresstests

Mehr

Kann man Big Data managen?

Kann man Big Data managen? Kann man Big Data managen? Information Governance in Retail-Unternhmen Uwe Nadler Senior Managing Consultant Big Data Architect Sales Leader Information Governance D-A-CH Themen Die Bedeutung von Information

Mehr

BIG DATA Impulse für ein neues Denken!

BIG DATA Impulse für ein neues Denken! BIG DATA Impulse für ein neues Denken! Wien, Januar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust The Age of Analytics In the Age of Analytics, as products and services become

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd. Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Insight Driven Health. Effizientes Versorgungsmanagement durch Gesundheitsanalytik. conhit Berlin, 24. April 2012

Insight Driven Health. Effizientes Versorgungsmanagement durch Gesundheitsanalytik. conhit Berlin, 24. April 2012 Insight Driven Health Effizientes Versorgungsmanagement durch Gesundheitsanalytik conhit Berlin, 24. April 2012 Agenda Vorstellung Accenture und Trends der Gesundheitsanalytik Beispiel Analytik Krankenversicherung

Mehr

CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden. Stefan Jamin, Leiter ECM Zürich, 25.11.2014

CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden. Stefan Jamin, Leiter ECM Zürich, 25.11.2014 CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden Stefan Jamin, Leiter ECM Zürich, 25.11.2014 Beschwerden allgemein Beschwerden können in vielen verschiedenen Bereichen auftreten

Mehr

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von

Mehr

wgv Versicherungen Wertvolles günstig versichert. wgv.de

wgv Versicherungen Wertvolles günstig versichert. wgv.de wgv Versicherungen Wertvolles günstig versichert. wgv.de Einige können vielleicht besser Hochdeutsch. Aber bestimmt nicht besser rechnen. Zugegeben wenn über die reinste Form unserer Sprache diskutiert

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Oracle Fusion Middleware Ordnung im Ganzen Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Begriffe & Ordnung Fusion Middleware Wann, was, warum Beispiel für

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

Neue Möglichkeiten analytischer Lösungen für gesetzliche Krankenversicherungen

Neue Möglichkeiten analytischer Lösungen für gesetzliche Krankenversicherungen BITMARCK Kundentag am 04.11.2013 Neue Möglichkeiten analytischer Lösungen für gesetzliche Krankenversicherungen Stefan Sander; Senior Client Technical Specialist IBM Software Group Mascha Minou Lentz ;

Mehr

Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence

Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence Conny Dethloff Bonn, 28. Januar 2015 Process Excellence im Kontext Big Data bedeutet, Komplexität in internen Prozessen nicht

Mehr

Business Analytics in der Big Data-Welt

Business Analytics in der Big Data-Welt Business Analytics in der Big Data-Welt Frankfurt, Juni 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data-Analytik "The way I look at big data analytics is it's not a technology,

Mehr

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011 Roundtable Dashboards und Management Information Rüdiger Felke / Christian Baumgarten 29.11.2011 Agenda Behind the Dashboards Was ist ein Dashboard und was ist es nicht? SAP BusinessObjects Dashboards

Mehr

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan 2011 Agenda Was ist arcplan Edge? Komponenten von arcplan Edge arcplan Edge Roadmap Live Demo arcplan

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Sicherheits- & Management Aspekte im mobilen Umfeld

Sicherheits- & Management Aspekte im mobilen Umfeld Sicherheits- & Management Aspekte im mobilen Umfeld Einfach war gestern 1 2012 IBM Corporation Zielgerichtete Angriffe erschüttern Unternehmen und Behörden 2 Source: IBM X-Force 2011 Trend and Risk Report

Mehr

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Security Operations Center

Security Operations Center Nadine Nagel / Dr. Stefan Blum Security Operations Center Von der Konzeption bis zur Umsetzung Agenda Bedrohungslage Security Operations Center Security Intelligence Herausforderungen Empfehlungen 2 Bedrohungslage

Mehr

Analyse und Feedback in Echtzeit

Analyse und Feedback in Echtzeit Analyse und Feedback in Echtzeit Die Daten-Strategie von IDG Michael Beilfuß, Verlagsleiter Stefan Huegel, VP Digital 20.11.2014 / VDZ Tech Summit 2014 in Hamburg // BIG DATA - der Game-Changer Paradigmenwechsel

Mehr

Innovative IT-Lösung für die Bedarfsplanung von Kindergartenplätzen oder Wie werden aus Daten Informationen?

Innovative IT-Lösung für die Bedarfsplanung von Kindergartenplätzen oder Wie werden aus Daten Informationen? Innovative IT-Lösung für die Bedarfsplanung von Kindergartenplätzen oder Wie werden aus Daten Informationen? Ihr Ansprechpartner bei EITCO Johannes Schabel Head of Business Unit BI Fon +49 (228) 33 88

Mehr

Foto: violetkaipa - Fotolia

Foto: violetkaipa - Fotolia Die D kön Foto: violetkaipa - Fotolia 10 IT-Trend Big Data atenflut steigt wie nen wir sie nutzen? Ständig erhöht sich die Masse der uns umgebenden Daten, Informationen werden immer schneller generiert.

Mehr

Die zentralen Erfolgsfaktoren für mehr Werberelevanz: Smart statt Big Data

Die zentralen Erfolgsfaktoren für mehr Werberelevanz: Smart statt Big Data Die zentralen Erfolgsfaktoren für mehr Werberelevanz: Smart statt Big Data dmexco Night Talk Wolfhart Fröhlich 24.06.2014, Hamburg intelliad Media GmbH Daten gibt es wie Sand am Meer Bild: Alexandr Ozerov

Mehr

Neuaufbau des Online-Vertriebskanals und Analyse der Conversion Rate bei einer Krankenversicherung - saracus consulting@tdwi Kongress.

Neuaufbau des Online-Vertriebskanals und Analyse der Conversion Rate bei einer Krankenversicherung - saracus consulting@tdwi Kongress. Neuaufbau des Online-Vertriebskanals und Analyse der Conversion Rate bei einer Krankenversicherung - saracus consulting@tdwi Kongress München 2014 Agenda 1 2 3 saracus stellt sich vor Der Online Vertriebskanal

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

HP Big Data Anwendungsfälle

HP Big Data Anwendungsfälle HP Big Data Anwendungsfälle Bernd Mussmann, Strategist & Senior Principal HP Analytics & Data Management Services Agenda HP Day @TDWI 1 09:00-10:15 - BI Modernization: BI meets unstructured data 2 10.45-12.00

Mehr

Social Media Intelligence - eine neue Form der Informationsbeschaffung

Social Media Intelligence - eine neue Form der Informationsbeschaffung Social Media Intelligence - eine neue Form der Informationsbeschaffung 25.3.2015 Schweizer Polizei Informatik Kongress Dr. Pascal Bettendorff, Senior Business Consultant, AWK Group Philipp Kronig, Chef

Mehr

SharePoint, Liferay & Co.: Social Business Integration in der Praxis. Dr. Christoph Tempich Webinar, 04.07.2013

SharePoint, Liferay & Co.: Social Business Integration in der Praxis. Dr. Christoph Tempich Webinar, 04.07.2013 SharePoint, Liferay & Co.: Social Business Integration in der Praxis Dr. Christoph Tempich Webinar, 04.07.2013 Social Business bei inovex Unser Experte: Dr. Christoph Tempich (Head of Consulting) Dr. Christoph

Mehr

Complex Event Processing. Sebastian Schmidbauer 18.01.2011

Complex Event Processing. Sebastian Schmidbauer 18.01.2011 Complex Event Processing Sebastian Schmidbauer 18.01.2011 Cirquent im Profil Zahlen Kompetenzen 350 300 250 200 150 100 50 0 1748 1747 1722 1515 1041 1180 286 266 247 260 165 139 2003 2004 2005 2006 2007

Mehr

Datability. Prof. Dieter Kempf, Präsident BITKOM Oliver Frese, Vorstand Deutsche Messe AG. Hannover, 9. März 2014

Datability. Prof. Dieter Kempf, Präsident BITKOM Oliver Frese, Vorstand Deutsche Messe AG. Hannover, 9. März 2014 Datability Prof. Dieter Kempf, Präsident BITKOM Oliver Frese, Vorstand Deutsche Messe AG Hannover, 9. März 2014 Bürger fordern verantwortungsvollen Umgang mit Daten Inwieweit stimmen Sie den folgenden

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN

SOZIALES BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN CHRISTIAN KÖNIG BUSINESS EXPERT COMPETENCE CENTER CUSTOMER INTELLIGENCE Copyr i g ht 2012, SAS Ins titut e Inc. All rights res

Mehr

Big Data Herausforderungen für Rechenzentren

Big Data Herausforderungen für Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Big Data Herausforderungen für Rechenzentren RA Dr. Flemming Moos

Mehr

BI@T-Mobile: Enabling Closed-Loop Capabilities

BI@T-Mobile: Enabling Closed-Loop Capabilities BI@T-Mobile: Enabling Closed-Loop Oracle Terabyte, Heinz Sandermann Business Intelligence, TMD Barbara Jansen BI Framework & Data Architecture, TMD Die Geschäftsfelder der Deutschen Telekom at home on

Mehr

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG Inhalt Globale und unternehmensspezifische Herausforderungen Von Big Data zu Smart Data Herausforderungen und Mehrwert von Smart Data 2

Mehr

POWER ALS BIG DATA PLATTFORM. Vom klassischen Data Warehouse zum Big Data Ansatz

POWER ALS BIG DATA PLATTFORM. Vom klassischen Data Warehouse zum Big Data Ansatz POWER ALS BIG DATA PLATTFORM Vom klassischen Data Warehouse zum Big Data Ansatz IBM COGNOS VORSTELLUNG Stefan Held Software Architekt PROFI GS Bochum Schwerpunkte: Business Intelligence & Analytics Big

Mehr

Web-Marketing und Social Media

Web-Marketing und Social Media Web-Marketing und Social Media Trends & Hypes Stephan Römer 42DIGITAL GmbH Web-Marketing und Social - stephan.roemer@42digital.de - Berlin, 05/2013 - Seite 1 K u r z v i t a Studierter Medieninformatiker

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

LC Systems. Christian Günther Head of Data Analytics

LC Systems. Christian Günther Head of Data Analytics LC Systems Christian Günther Head of Data Analytics Agenda» Kurzvorstellung LC Systems» Verständnis «Big Data» aus der Sicht LC Systems» Best Practice Ansätze Do s and dont s» Projektbeispiele 2 Über LC

Mehr

Business Analytics verbessert die Wertschöpfungskette

Business Analytics verbessert die Wertschöpfungskette Pressemitteilung Hamburg, 05. September 2013 Business Analytics verbessert die Wertschöpfungskette accantec zeigt auf dem SAS Forum in Mannheim vom 11.- 12.09.2013, wie Unternehmen mit SAS Visual Analytics

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL

BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL Am Beispiel der OTTO GmbH & Co KG Dortmund, 09. September 2015 Conny Dethloff (OTTO GmbH & CO. KG) 1 Anliegen des heutigen Dialogs Über mich Inhalt des Dialogs

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Michael Bauer Niederlassungsleiter Köln

Michael Bauer Niederlassungsleiter Köln Click to edit Master title style 1 Michael Bauer Niederlassungsleiter Köln Hamburg, 18. Juni 2009 2009 IBM Corporation Agenda Click to edit Master title style 2 zur Person Wo, Warum.., Was - CPM liefert

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Wissen intelligent suchen & schneller nutzen. Semantic Enterprise Search & Information Discovery

Wissen intelligent suchen & schneller nutzen. Semantic Enterprise Search & Information Discovery Wissen intelligent suchen & schneller nutzen Semantic Enterprise Search & Information Discovery CID GmbH CID Consulting GmbH Pattern Science AG 200 Mitarbeiter 1997 gegründet 4 Standorte Hauptsitz in Freigericht,

Mehr

KOMPLEXITÄT BEGREIFEN. LÖSUNGEN SCHAFFEN. viadee crm. Transparente Prozesse und vertrauenswürdige Daten als Fundament Ihrer Entscheidungen

KOMPLEXITÄT BEGREIFEN. LÖSUNGEN SCHAFFEN. viadee crm. Transparente Prozesse und vertrauenswürdige Daten als Fundament Ihrer Entscheidungen KOMPLEXITÄT BEGREIFEN. LÖSUNGEN SCHAFFEN. viadee crm Transparente Prozesse und vertrauenswürdige Daten als Fundament Ihrer Entscheidungen VIADEE CRM VIEL MEHR ALS EIN STÜCK SOFTWARE Eine Vielzahl von unterschiedlichen

Mehr

Digitale Analyse: Erfolgsmessung in digitalen Medien

Digitale Analyse: Erfolgsmessung in digitalen Medien Internet für Existenzgründer: Digitale Analyse: Erfolgsmessung in digitalen Medien IHK Bonn/Rhein-Sieg, 8. September 2015 Internet für Existenzgründer Digitale Analyse: Erfolgsmessung in digitalen Medien

Mehr

CRM vs CEM. Was unterscheidet beide voneinander? Präsentiert von Metrinomics. Juni 2015. 2015 Metrinomics GmbH CRM vs CEM 1

CRM vs CEM. Was unterscheidet beide voneinander? Präsentiert von Metrinomics. Juni 2015. 2015 Metrinomics GmbH CRM vs CEM 1 CRM vs CEM Was unterscheidet beide voneinander? Präsentiert von Metrinomics Juni 2015 2015 Metrinomics GmbH CRM vs CEM 1 Hans Jürgen Schmolke Geschäftsführer +49 30 695 171-0 +49 163 511 04 89 h.schmolke@metrinomics.com

Mehr

Big Data und Social Media Analyse. Baden, 11.06.2013 Arne Weitzel, Senior Solution Architect Samuel Rentsch, CEO Julian Götz, Head of Sales

Big Data und Social Media Analyse. Baden, 11.06.2013 Arne Weitzel, Senior Solution Architect Samuel Rentsch, CEO Julian Götz, Head of Sales Big Data und Social Media Analyse Baden, 11.06.2013 Arne Weitzel, Senior Solution Architect Samuel Rentsch, CEO Julian Götz, Head of Sales Big Data & Social Media Analyse werden in Zukunft zentrale Business

Mehr

Standardsoftware-Angebote für die Versicherungswirtschaft WGV ICIS

Standardsoftware-Angebote für die Versicherungswirtschaft WGV ICIS Standardsoftware-Angebote für die Versicherungswirtschaft WGV ICIS Eine moderne und erprobte Standardsoftware für den nationalen und internationalen Versicherungsmarkt WGV Informatik und Media GmbH WGV

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

Business Intelligence Governance

Business Intelligence Governance Business Intelligence Governance von der Vision zur Realität im Unternehmensalltag Webinar September 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das intelligente Unternehmen

Mehr

PBS Ergänzungslösungen

PBS Ergänzungslösungen PBS Ergänzungslösungen Von der klassischen Archivierung bis zum Information Lifecycle Management mit SAP HANA Prof. Dr. Detlev Steinbinder Agenda Wo geht die Reise hin? Informationen im SAP-Umfeld Big

Mehr

Nutzen und Nutzung aktueller Trends in der BI: Schwerpunkt Self Service BI. Hannover, 10. März 2014 Patrick Keller, Senior Analyst

Nutzen und Nutzung aktueller Trends in der BI: Schwerpunkt Self Service BI. Hannover, 10. März 2014 Patrick Keller, Senior Analyst Nutzen und Nutzung aktueller Trends in der BI: Schwerpunkt Self Service BI Hannover, 10. März 2014 Patrick Keller, Senior Analyst Business Application Research Center BARC Historie BARC ist der führende

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

COGNOS PERFORMANCE MANAGEMENT. Jörg Fuchslueger, COGNOS Austria Manager Professional Services

COGNOS PERFORMANCE MANAGEMENT. Jörg Fuchslueger, COGNOS Austria Manager Professional Services COGNOS PERFORMANCE MANAGEMENT Jörg Fuchslueger, COGNOS Austria Manager Professional Services Agenda Cognos Performance Management Unternehmensweites Berichtswesen AdHoc Analysen Überwachung und Steuerung

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

AustroFeedr. Pushing the Realtime Web. Projektplan. erstellt von: DI Klaus Furtmüller, DI Wolfgang Ziegler Version 1.0 Datum: 05.10.

AustroFeedr. Pushing the Realtime Web. Projektplan. erstellt von: DI Klaus Furtmüller, DI Wolfgang Ziegler Version 1.0 Datum: 05.10. AustroFeedr Pushing the Realtime Web Projektplan erstellt von: DI Klaus Furtmüller, DI Wolfgang Ziegler Version 1.0 Datum: 05.10.2010 gefördert durch die Internet Privatstiftung Austria (IPA) 1 Projektbeschreibung

Mehr

Business Intelligence Center of Excellence

Business Intelligence Center of Excellence Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).

Mehr

Business Activity Monitoring Overall, Real Time Monitoring Daniel Jobst, TietoEnator Michael Herr, Deutsche Post SOPSOLUTIONS

Business Activity Monitoring Overall, Real Time Monitoring Daniel Jobst, TietoEnator Michael Herr, Deutsche Post SOPSOLUTIONS Business Activity Monitoring Overall, Real Time Monitoring Daniel Jobst, TietoEnator Michael Herr, Deutsche Post SOPSOLUTIONS CITT Expertengespräch TietoEnator 2006 Page 1 Data Freshness and Overall, Real

Mehr

Big Data Projekte richtig managen!

Big Data Projekte richtig managen! Big Data Projekte richtig managen! Stuttgart, Oktober 2014 Praktische Herausforderungen eines Big Data Projektes Definition: Was ist Big Data? Big data is a collection of data sets so large and comple

Mehr

Analytisches CRM und Data Mining

Analytisches CRM und Data Mining Analytisches CRM und Data Mining Magische Zahlen für das Marketing Computerwoche Initiative CRM 2009 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Mitglied im CRM Expertenrat

Mehr

Corporate Performance Management als Weiterentwicklung von Business Intelligence

Corporate Performance Management als Weiterentwicklung von Business Intelligence Martin Kobrin Corporate Performance Management als Weiterentwicklung von Business Intelligence Grundlagen, Implementierungskonzept und Einsatzbeispiele Diplomica Verlag Martin Kobrin Corporate Performance

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Launch Microsoft Dynamics AX 4.0 Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Sonia Al-Kass Partner Technical

Mehr

Die Rolle des Stammdatenmanagements im digitalen Unternehmen

Die Rolle des Stammdatenmanagements im digitalen Unternehmen Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Die Rolle des Stammdatenmanagements im digitalen Unternehmen Frankfurt, April 2015 Die Digitalisierung der Welt Nach der Globalisierung

Mehr

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen 01000111101001110111001100110110011001 Volumen 10 x Steigerung des Datenvolumens alle fünf Jahre Big Data Entstehung

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Social Media trifft Business

Social Media trifft Business Social Media trifft Business Intelligence Social Media Analysis als Teil der Unternehmenssteuerung Tiemo Winterkamp, VP Global Marketing Agenda Social Media trifft Business Intelligence Business Intelligence

Mehr

Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle. CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle. CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Unternehmen Beratung Strategie

Mehr

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO innovation@work Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO thinkbetter AG Florian Moosmann 8. Mai 2013 1 Agenda Prädiktive Analyse Begriffsdefinition Herausforderungen Schwerpunktbereiche

Mehr