Lösungsskizzen zur Präsenzübung 04

Größe: px
Ab Seite anzeigen:

Download "Lösungsskizzen zur Präsenzübung 04"

Transkript

1 Lösungsskizzen zur Präsenzübung 04 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 09. Mai 204 Keine Gewähr auf vollständige Richtigkeit und Präzision aller (mathematischen) Aussagen. Das Dokument hat lediglich den Anspruch, eine Hilfestellung für die Tutanden beim Verständnis der Vorlesungsinhalte zu sein und Lösungsideen für die Aufgaben möglichst vollständig (bis auf Ausnahmen) zu skizzieren. Eine Veröffentlichung oder Vervielfältigung ist nur nach Rücksprache mit dem Urheber dieses Dokuments erlaubt. Tutor der Analysis II im SoSe 4

2 Lösungsskizzen zur Präsenzübung 04 Es folgen zunächst einige Bemerkungen, welche zum Verständnis des Banach schen Fixpunktsatzes beitragen sollen. Bemerkung Man bezeichnet einen vollständigen, normierten Vektorraum auch als Banachraum. Dieser Begriff wurde in der Vorlesung zwar nicht eingeführt, ist jedoch für weitergehende Veranstaltungen elementar. Bemerkung 2 In der vierten Präsenzübung wurde unter anderem der Banach sche Fixpunktsatz thematisiert. Dieser ist für euch nur in vollständigen metrischen Räumen anwendbar, da er nur für solche Räume bewiesen wurde. Im Allgemeinen lässt sich - mit einigen anderen mathematischen Hilfsmitteln - der Banach sche Fixpunktsatz auch für nicht vollständige metrische Räume zeigen. Bemerkung 3 In den meisten Anwendungen des Fixpunktsatzes habt ihr die Vollständigkeit des metrischen Raumes ohnehin schon gegeben, so dass ihr nur noch nachweisen müsst, dass die gegebene Abbildung f : X X im metrischen Raum (X, d) eine Kontraktion ist, d.h. dass die jeweilige Abbildung die Kontraktionsbedingung α ]0, [: d(f(x), f(y)) αd(x, y) x, y X () erfüllt. Man kann sich Kontraktionen also so vorstellen, dass sie die Elemente des metrischen Raumes auf einen kleineren Bereich zusammenstauchen, das heißt die Abstände der Bilder unter der Abbildung sind gleich oder kleiner als die Abstände der Urbilder. Das folgende Bild veranschaulicht dieses Zusammenstauchen um den Stauchungsfaktor α sehr deutlich, so ist das Ausgangsbild (hier: X) größer als das erste Bild im Bild. Die weiteren Bilder in den Bildern werden schließlich immer kleiner, es erscheint, als würden alle Bilder in einem Punkt zusammenlaufen. Dieser Punkt entspricht tatsächlich dem Fixpunkt, den man eindeutig mittels Banach schen Fixpunktsatzes erhält. Die Abbildung folgt auf der letzten Seite dieses Dokuments. 2

3 2 Aufgabenbearbeitung Aufgabe Sei X die Projektion der Universität Bielefeld auf die Ebene (Vogelansicht). Eine Person erstellt innerhalb von X am Schreibtisch eine Karte (bezeichnet durch X n ) von X (samt des Schreibtisches) mit dem Abbildungsverhältnis : n, n N, n >. Erklären Sie anhand dieses Beispiels das Kontraktionsprinzip des Banach schen Fixpunktsatzes und beschreibe die Position des Fixpunktes. Lösung: In Analogie zu den vorangegangenen Bemerkungen betrachten wir nun das Beispiel, dass wir auf die Universität senkrecht herab blicken. Das heißt, wir sehen den Umriss der Universität, haben aber für keinen Punkt in unserer Betrachtung die Information der Höhe des jeweiligen Punktes. Diese Betrachtung liefert uns die Projektion X R 2 der Universität vom Dreidimensionalen ins Zweidimensionale. So unterscheidet sich beispielsweise im Umriss (also in der Projektion) der Turm des V-Zahns keinesfalls von der Haupthalle, welche bekanntlicher Weise eine niedrigere Höhe besitzt, als der Turm. Wir finden nun innerhalb der Universität (auf einem Schreibtisch) eine Karte X n R 2, welche den Abbildungsmaßstab : n für ein festes n N, n > besitzt. Nun lässt sich jeder Ort auf unserer ausgehenden Projektion X mit dem gleichen Ort auf der Karte X n mit einer Geraden verbinden. Eine Gerade ist eine affin lineare Abbildung der Form F (x) = mx + b (vgl. Geradengleichungen aus der Schule). Wir wollen nun für einen beliebigen Ort y 0 X die Gerade finden, welche auf denselben Ort y X n abbildet, d.h. es gelte F (y 0 ) = y. Die Steigung m der gesuchten Gerade ist offenbar m = n aufgrund des Abbildungsmaßstabs. Nun müssen wir noch den Y-Achsenabschnitt x 0 der affin linearen Abbildung F : X X, F (x) := x 0 + n x bestimmen. Damit F (y 0) = y gilt, wähle x 0 := y n y 0 für einen festen Ort y 0 X, welcher in der Karte X n mit dem Punkt y dargestellt wird. Bemerkung 4 Wir erhalten x 0 über die Wahl eines beliebigen Ortes y 0 (bzw. y ). Durch Umstellen der Gleichung y = F (y 0 ) = x 0 + n y 0 erhalten wir die obige Form für x 0. Wir können anschließend den Fixpunkt der Abbildung F ganz allgemein in Abhängigkeit des Abbildungsmaßstabs n und des zu Grunde liegenden Vergleichsortes y 0 und y bestimmen. Wir stellen fest, dass die Funktion F als Summe von stetigen Funktionen offenbar stetig ist. Damit wir den Banach schen Fixpunktsatz schließlich anwenden können, müssen wir zunächst prüfen, ob die Abbildung F kontraktiv ist. Seien hierzu x, y X beliebig. Dann gilt: F (x) F (y) = x 0 + n x x 0 n y = x y n Da n > vorausgesetzt ist (sonst hätte die Karte X n die Originalgröße der Universität erhalten), folgt, dass für festes n > gerade α := n ]0, [ gilt. Die Kontraktionsbedingung ist für F somit im metrischen Raum (X, ) erfüllt. 3

4 Im Übrigen ist (X, ) ein vollständiger metrischer Raum. Alle Voraussetzungen für den Banach schen Fixpunktsatz sind folglich gegeben. Als technisches Hilfsmittel setzen wir nun noch F (n) (x) := F (F (n ) )(x) und F () (x) = F (x). Der Banach sche Fixpunktsatz liefert uns nun, dass ein eindeutiger Fixpunkt x X existiert, so dass F (x ) = x gilt. Wir können nun den Fixpunkt berechnen, indem wir die Funktionsgleichung einsetzen und direkt nach x auflösen. Dies ist der einfachste Weg, um an den Fixpunkt zu gelangen, sofern eine explizite Form von F vorgegeben ist. Allgemeiner lässt sich der Fixpunkt x nun jedoch mit Hilfe der Formel in (ii) des Banach schen Fixpunktsatzes (vgl. Skript) berechnen. Wir erhalten somit für festes n N: x = lim F (m) (0) m m = lim m n i x 0 = x 0 i=0 geom. Reihe = i=0 n i x 0 n Durch Einsetzen von x in die Funktionsgleichung von F erhalten wir die Probe, dass tatsächlich F (x ) = x gilt. Der Punkt x X ist folglich der gesuchte Fixpunkt. Bemerkung 5 (i) Mit Hilfe der Formel für den Fixpunkt aus dem Skript können wir den Fixpunkt auch für Funktionen darstellen, deren explizite Form wir nicht kennen. (ii) Die allgemeine Form von F (m) (x) lässt sich durch Ausprobieren schnell finden. Man betrachte hierzu die Funktionsgleichungen für m =, 2, 3, 4,... und erkennt eine allgemeine Form. Das Vorgehen ähnelt also dem Finden der allgemeinen k-ten Ableitung für die Taylorformel. (iii) Wir betrachten F (n) (0), da wir den Fixpunkt unabhängig vom ausgewerteten Ort erhalten und durch x = 0 die Rechnung erleichtert wird. (iv) Da x von x 0 abhängt und x 0 die beliebigen Orte y X n und y 0 X beinhaltet, ist die Darstellung des Fixpunktes x relativ zu den festen Orten zu sehen. 4

5 Aufgabe 2 Beweisen Sie folgende Identitäten: max(x, y) = 2 x y + (x + y), 2 x, y R und min(x, y) + max(x, y) = x + y x, y R. Zeige anschließend, dass für zwei stetige Funktionen f, g : X R auf einem metrischen Raum (X, d) gilt, dass die Abbildungen stetig sind. x max(f(x), g(x)) und x min(f(x), g(x)) Beweis: (i) Wir beweisen die erste Identität mit Hilfe einer Fallunterscheidung für x, y R. Fall I: Sei x y. Dann gilt offenbar per Definition des Maximums max(x, y) = x und x y = x y. Somit erhalten wir 2 x y + 2 (x + y) = 2 (x y) + (x + y) = x = max(x, y), 2 Fall II: Sei x y. Dann gilt offenbar per Definition des Maximums max(x, y) = y und x y = x + y. Somit erhalten wir 2 x y + 2 (x + y) = 2 ( x + y) + (x + y) = y = max(x, y). 2 Aufgrund der Fallunterscheidung folgt die Behauptung. (ii) Diese Identität folgt ebenfalls mit Hilfe der Fallunterscheidung für x y und x y und der Anwendung der Definition des Minimums und des Maximums. Seien nun f, g : X R beliebige stetige Funktionen im metrischen Raum (X, d). (iii) Wir zeigen nun, dass x max(f(x), g(x)) stetig ist. Nach (i) gilt für beliebiges x X max(f(x), g(x)) = 2 f(x) g(x) + 2 (f(x)+g(x)) = 2 (f(x) g(x)) (f(x)+g(x)). Anhand dieser Darstellung des Maximums sieht man sofort, dass das Maximum als Verknüpfung (Produkt, Summe, Komposition, etc.) stetiger Funktionen (Wurzel, Quadrat, f, g, etc.) selbst stetig ist. (iv) Wir zeigen nun, dass x min(f(x), g(x)) stetig ist. Nach (ii) gilt für beliebiges x X min(f(x), g(x)) = f(x) + g(x) max(f(x), g(x)). Es sind f(x) und g(x) stetige Funktionen nach Voraussetzung, insbesondere auch deren Summe. Nach (iii) ist das Maximum eine stetige Funktion. Als Differenz zweier stetiger Funktionen ist schließlich auch das Minimum eine stetige Funktion. 5

6 Aufgabe 3 Sei eine Funktionenfolge f n : [0, [ R durch gegeben. f n (x) := cos( x n ) exp( x) (i) Bestimmen Sie den punktweisen Limes des Funktionenfolge. (ii) Zeigen Sie, dass die Funktionenfolge sogar gleichmäßig konvergiert. Tipp: Benutzen Sie die elementare Abschätzung cos(x) x2 2. Beweis: (i) Wir bestimmen den punktweisen Limes, indem wir x [0, [ fest und beliebig wählen und anschließend den Limes für n der Funktionenfolge f n betrachten: ) exp( x) ( x ) = exp( x) lim cos n n ( x lim f n(x) = lim cos n n n cos stetig = exp( x) cos lim x n }{{ n } =0 = exp( x) cos(0) = exp( x) Die Funktionenfolge f n konvergiert also punktweise gegen die Grenzfunktion f(x) = exp( x). (ii) Da wir in (i) bereits herausgefunden haben, dass f n f punktweise konvergiert, muss der Kandidat für den Grenzfunktion bei der gleichmäßigen Konvergenz von f n auch f(x) = exp( x) sein. Wir führen nun einen Konvergenzbeweis per Definition gleichmäßiger Konvergenz. Dabei nutzen wir die Abschätzung cos(x) x2 2 x R. (2) Sei also ε > 0 beliebig. Dann gilt für alle x [0, [ und für alle n N(ε) > ( x f n (x) f(x) = cos exp( x) exp( x) n) ( ( x ) = exp( x) cos ( n) x = exp( x) cos n) ( x ) = exp( x) cos n Tipp exp( x) x2 2n 2 = exp( x)x 2 6 2n 2. 2e 2 ε :

7 Nun hat die Funktion h(x) := exp( x)x 2 ihr globales Maximum bei x = 2 für x [0, [. Wir schätzen den obigen Term also weiter ab, indem wir x = 2 einsetzen:... = exp( x)x 2 2n 2 = exp( 2)2 2 2n 2 = 2 exp( 2) n 2 2 exp( 2) N(ε) 2 Wahl N(ε) < ε. Wir stellen fest, dass die Wahl von N(ε) nicht mehr von einem Punkt x [0, [ abhängt, so dass die Funktionenfolge f n sogar gleichmäßig gegen f konvergiert. Bemerkung 6 Bei der Wahl von N(ε) wurden die Gaußklammern hinzugefügt, damit sichergestellt wird, dass N(ε) eine natürliche Zahl ist. Dies muss per Definition gleichmäßiger Konvergenz nämlich gelten. 7

8 Abbildung : Veranschaulichung einer kontraktiven Abbildung des Bildes im Bild. 8

Lösungsskizzen zur Präsenzübung 03

Lösungsskizzen zur Präsenzübung 03 Lösungsskizzen zur Präsenzübung 03 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 02. Mai 2014 Keine Gewähr auf vollständige Richtigkeit und Präzision aller (mathematischen) Aussagen. Das Dokument

Mehr

Lösungsskizzen zur Präsenzübung 02

Lösungsskizzen zur Präsenzübung 02 Lösungsskizzen zur Präsenzübung 02 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 24. April 2014 Keine Gewähr auf vollständige Richtigkeit und Präzision aller (mathematischen) Aussagen. Das

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

Lösungsskizzen zur Präsenzübung 02

Lösungsskizzen zur Präsenzübung 02 Lösungsskizzen zur Präsenzübung 02 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 20/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 09. November 20 von:

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Lösungsskizzen zur Präsenzübung 11

Lösungsskizzen zur Präsenzübung 11 Lösungsskizzen zur Präsenzübung Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 05/06 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 06 von: Mirko

Mehr

Lösungen zum Übungsblatt 7

Lösungen zum Übungsblatt 7 Lösungen zum Übungsblatt 7 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 5. Dezember 203 Ich gebe keine Gewähr auf eine vollständige Richtigkeit der Lösungen zu den Übungsaufgaben. Das Dokument

Mehr

Lösungsskizzen zur Präsenzübung 01

Lösungsskizzen zur Präsenzübung 01 Lösungsskizzen zur Präsenzübung 01 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 02. November 2015 von:

Mehr

Zusammenhang von Stetigkeit, Differenzierbarkeit und stetiger Differenzierbarkeit

Zusammenhang von Stetigkeit, Differenzierbarkeit und stetiger Differenzierbarkeit Zusammenhang von Stetigkeit, Differenzierbarkeit und stetiger Differenzierbarkeit Mirko Getzin Universität Bielefeld Fakultät für Mathematik 01. Februar 2014 Keine Gewähr auf vollständige Richtigkeit und

Mehr

Lösungsskizzen zur Präsenzübung 04

Lösungsskizzen zur Präsenzübung 04 Lösungsskizzen zur Präsenzübung 04 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 23. November 2015 von:

Mehr

Lösungsskizzen zur Präsenzübung 09

Lösungsskizzen zur Präsenzübung 09 Lösungsskizzen zur Präsenzübung 09 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 2016 von:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Lösungsskizzen zur Präsenzübung 06

Lösungsskizzen zur Präsenzübung 06 Lösungsskizzen zur Präsenzübung 06 Mirko Getzin Universität Bielefeld Fkultät für Mthemtik 23. Mi 2014 Keine Gewähr uf vollständige Richtigkeit und Präzision ller (mthemtischen) Aussgen. Ds Dokument ht

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Lösungsskizzen zur Präsenzübung 03

Lösungsskizzen zur Präsenzübung 03 Lösungsskizzen zur Präsenzübung 03 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 16. November 2015 von:

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Nachklausur zur Analysis 1, WiSe 2016/17

Nachklausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL 04.04.7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis, WiSe 06/7 Aufgabe

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 6. Übungsblatt Aufgabe

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Lösungen zum Übungsblatt 5

Lösungen zum Übungsblatt 5 Lösungen zum Übungsblatt 5 Mirko Getzin Universität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keine Gewähr auf eine vollständige Richtigkeit der Lösungen zu den Übungsaufgaben. Das Dokument

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Lösungsskizzen zur Präsenzübung 08

Lösungsskizzen zur Präsenzübung 08 Lösungsskizzen zur Präsenzübung 08 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 015/016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 016 von:

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. König Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Z7.1. Komposition stetiger Funktionen Mathematik für Physiker (Analysis 1) MA90 Wintersem. 017/18 Lösungsblatt

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis WS 4/5 PD Dr. Peer Christian Kunstmann 9..4 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 5. Übungsblatt Aufgabe : (a) Sei

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

HM I Tutorium 6. Lucas Kunz. 28. November 2018

HM I Tutorium 6. Lucas Kunz. 28. November 2018 HM I Tutorium 6 Lucas Kunz 28. November 208 Inhaltsverzeichnis Theorie 2. Exponentialfunktion.............................. 2.2 Trigonometrische Funktionen......................... 2.3 Potenzreihen...................................

Mehr

3 Metrische und normierte Räume

3 Metrische und normierte Räume 3 Metrische und normierte Räume 3.1 Metrische Räume Mit der metrischen Struktur wird der aus dem Ê n bekannte Abstandsbegriff abstrahiert. Wir können uns einen metrischen Raum als eine Punktmenge vorstellen,

Mehr

Lösungsvorschlag zur Klausur

Lösungsvorschlag zur Klausur FAKULTÄT FÜ MATHEMATIK Prof. Dr. Patrizio Neff Frank Osterbrink Johannes Lankeit 27.7.23 Lösungsvorschlag zur Klausur Hinweise zur Bearbeitung: - Die Bearbeitungszeit für die Klausur beträgt 8 Minuten.

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Aufgaben. f : R 2 R, f(x, y) := y.

Aufgaben. f : R 2 R, f(x, y) := y. 11. Übung zur Maß- und Integrationstheorie, Lösungsskizze A 63 Untermannigfaltigkeiten von R 2 ). Aufgaben Skizzieren Sie grob die folgenden Mengen und begründen Sie, welche davon 1-dimensionale Untermannigfaltigkeiten

Mehr

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

Musterlösung zur Probeklausur zur Mathematik für Biologen

Musterlösung zur Probeklausur zur Mathematik für Biologen Lehrstuhl A für Mathematik Aachen, den 15.01.04 Prof. Dr. R. Stens P. - M. Küpper Musterlösung zur Probeklausur zur Mathematik für Biologen Aufgabe 1: a) Vereinfachen Sie die folgenden Terme so weit wie

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

NEXTLEVEL I, Analysis I

NEXTLEVEL I, Analysis I NEXTLEVEL I, Analysis I Hanna Peywand Kiani Wintersemester 9/ Die ins Netz gestellten Kopien der Folien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

2 Der Weierstraßsche Produktsatz

2 Der Weierstraßsche Produktsatz 4 Kapitel Meromorphe Funktionen Der Weierstraßsche Produktsatz Unser nächstes Problem soll sein, zu einer vorgegebenen Menge von Punkten eine holomorphe Funktion zu suchen, die genau in den Punkten Nullstellen

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. 6.4 Fixpunkt-Iteration Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. Möglichkeiten: Bisektionsverfahren (Intervallhalbierung) Newton-Verfahren, x k+1 = x k f(x k) f (x k ) für k = 0, 1,

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4 Übungen zur Mathematik II für Studierende der Informatik und Wirtschaftsinformatik (Analysis und Lineare Algebra) im Sommersemester 017 Fachbereich Mathematik, Stefan Geschke, Mathias Schacht A: Präsenzaufgaben

Mehr

Präsenzübungen zur Analysis I Lehramt

Präsenzübungen zur Analysis I Lehramt Technische Universität Dortmund 12. Oktober 217 Matthias Schulte Blatt, WiSe 17/18 Aufgabe.1 (Elementare Beweistechniken). a) Zeige, dass 2 Q gilt! b) Es seien A,B Mengen. Zeige: A B = B \A = B. Aufgabe.2

Mehr

Analysis I WiSe 2016/2017 Bernold Fiedler, Isabelle Schneider

Analysis I WiSe 2016/2017 Bernold Fiedler, Isabelle Schneider Übungen zur Vorlesung Analysis I WiSe 206/207 Bernold Fiedler, Isabelle Schneider http://dynamics.mi.fu-berlin.de/lectures/ Freiwillige Ferienaufgaben Es handelt sich ausschließlich um freiwillige Zusatzaufgaben

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Anleitung zu Blatt 1, Analysis II

Anleitung zu Blatt 1, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt, Analysis II SoSe 0 Banachscher Fixpunktsatz Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr