Ferromagnetische Hysteresis
|
|
|
- Hansi Pfeiffer
- vor 10 Jahren
- Abrufe
Transkript
1 Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister ( ) Versuch: P1-83,84 Ferromagnetische Hysteresis - Vorbereitung - Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Luftspule Induktivität ohne Eisenkern theoretische Induktivität und Widerstand Induktivität und Verlustwiderstand einer Spule mit geschlossenem Eisenkern Induktivität mit Eisenkern relative Permeabilität Ferromagnetische Hysteresis und Ummagnetisierungsverluste Hysteresiskurve Eichung Ummagnetisierung relative Wechselfeld-Permeabilität Vergleich Sättigungsinduktion, Remanzenz, Koerzitivkraft, magnetische Härte, Vergleich Eisen-Ferrit 6 1
2 1 Induktivität und Verlustwiderstand einer Luftspule Aus einer R/L - Reihenschaltung sollen Verlustwiderstand und Induktivität einer Spule bestimmt werden (ohne Eisenkern). Hierfür wird ein Widerstand R = 50Ω mit einer Spule mit 1000 Windungen in Serie geschaltet. Die Wechselstromfrequenz betrage 50Hz, wobei die Messung zweimal durchgeführt werden sollen, und zwar mit I eff,1 = 300mA und I eff,2 = 30mA. Die Stromstärke wird über einen regelbaren Vorwiderstand eingestellt. Mit dem Oszillographen sollen nun die Spannungsamplituden an der Spule sowie am Widerstand gemessen werden. Weiterhin soll die Zeitdierenz t zwischen deren Nulldurchgängen gemessen werden. Aus dieser Zeitdierenz erhält man die Phasenverschiebung, um die der Strom I der Spannung U nacheilt: ϕ = 2π t T = 2π f t Aufgabe1: Schaltplan 1.1 Induktivität ohne Eisenkern Es sollen zuerst der Verlustwiderstand r der Spule und deren Induktivität L berechnet werden. Die Ursachen für r liegen beispielsweise im Drahtwiderstand, Abstrahlung, Wirbelströmen, o.ä. Für den komplexen Stromwiderstand (Impedanz ) gilt: Z = r + iω L (ω = 2πf) woraus sich der Scheinwiderstand Z ergibt Z = b U bi = (ReZ) 2 + (ImZ) 2 = r 2 + ω 2 L 2 Nun geht man zur Bestimmung von r und L folgendermaÿen vor: man misst oszilloskopisch die Spannung am Vorwiderstand R und an der Spule, sowie den Phasenwinkel ϕ. Dann ergeben sich unsere gesuchten Gröÿen aus: Z = Û R bu R, r = Z cos ϕ und L = Z sin ϕ ω 1.2 theoretische Induktivität und Widerstand Nun soll aus den gegebenen Spulendaten (s. Zubehör) näherungsweise die Spuleninduktivität und der Drahtwiderstand der Spule errechnet werden. Für eine lange Spule (SpulenlängeSpulenradius) gilt (hergeleitet aus: U ind = n A Ḃ, L = U ind und B = µ I 0 I n): l L = µµ 0 n 2 A l = µµ 0 n 2 πr2 l, wobei allerdins in unserem Fall ein Korrekturfaktor k eingeführt wird, der in diesem Fall (Verhältnis inner/äuÿerer Wickelradius: 1,5) 0.55 beträgt und sich daher erklärt, dass die verwendete Spule nicht lang ist und somit eine geometriebedingte Korrektur vorgenommen werden muss. 2
3 µ 0 = 4π 10 7 V s ist die magnetische Feldkonstante, die Permeabilität von Luft ist µ 1, Am n = 1000 ist die Anzahl der Wicklungen, der mittlere Wicklungsradius beträgt r = 0, 034m und die Länge der Spule ist l = 0, 068m. Somit ergibt sich in die Formel eingesetzt: Für einen Draht gilt nun: L = 36, H = 36, 9mH E = U l und j = I A, mit: E: elektrisches Feld, U: Spannung, l Länge Draht, I: Stromstärke, A: Leiterquerschnitts- äche. Aus der Relation ρ = E ergibt sich: j R = ρ l A Nun können wir einsetzen (spezischer Widerstand Kupfer: ρ Cu = 1, Ωm, einem Drahtdurchmesser von d = 0, m): R = ρ Cu l A = ρ Cu 2πrn π( d 2 )2 = 8, 55Ω 2 Induktivität und Verlustwiderstand einer Spule mit geschlossenem Eisenkern 2.1 Induktivität mit Eisenkern Die Bedingungen unterscheiden sich zur Aufgabe 1 nur dahingehend, dass nun die Spule einen geschlossenen Eisenkern bekommt. Wieder werden die Spannungsamplituden an der Spule und am Widerstand, sowie t gemessen, nur mit der geänderten Voraussetzung, dass I eff,1 = 30mA und I eff,2 = 10mA betragen. 2.2 relative Permeabilität Das sich mit dem Eisenkern die Geometrie des Problems geändert hat, wollen wir nun mit den in 2.1 indirekt gemessenen Werten für die Induktivität, die relative Permeabilität µ bestimmen, die ihrerseits allerdings nicht konstant ist, da sie von B und damit dem Induktionsstrom abhängt. Nun hat sich, wie erwähnt, die Geometrie des Problems geändert, d.h. das magnetische Feld verläuft nun fast auÿschlieÿlich im innern des Eisenkerns, wodurch sich zwar die gleiche Formel für L ergibt, jedoch ändern sich folgende Variable: statt der Länge der Spule ist nun die mittlere Länge der Feldlinien ausschlaggebend (s.zubehör): l F eldl = 0, 48m), die Querschnittsäche ist nun ebenfalls auf den Eisenkern bezogen (A Kern = 0, 039m 0, 039m) und somit entfällt auch die für kurze Spulen gedachte Korrektur k. Somit ergibt sich aus der Formel für die Induktiviät: L = n 2 µµ 0 AKern l F eldl µ = L l F eldl A Kern µ 0 n 2 3
4 3 Ferromagnetische Hysteresis und Ummagnetisierungsverluste In ferromagnetischen Stoen gibt es eine kleine Dipol-Teilbereiche, die parallel ausgerichtet sind (Weiÿ'sche Bezirke). Makroskopisch hat das keinen Einuss, da diese Bezirke statistisch verteilt sind und sich die einzelnen Ausrichtungen im Groÿen wieder herausmitteln. Legt man nun allerdings ein äuÿeres Feld an, B 0 = µ 0 H, so werden die Bereiche in die gleiche Richtung ausgerichtet - dabei wird ein magnetisches Moment vom Betrag M erzeugt, das, auf das Volumen bezogen, Magnetisierung heiÿt (J = M/V ) und das äuÿere Feld vergröÿert: B m = B 0 + µ 0 J. Die Permeabilität wird als µ = B m /B 0 deniert. Mit fortschreitender Zeit erfolgt logischerweise eine Sättigung, da nur endlich viele ausrichtbare Bereiche vorhanden sind. Schaltet man nun das äuÿere Feld ab, so werden (je nach Material und Nebenbedingungen) Teile der ausgerichteten Bereiche weiterhin in ihrem ausgerichteten Zustand bleiben. Diese Restmagnetisierung nennt man Remanenz. Legt man nun ein Feld an, das dem ursprünglichen entgegenwirkt, so werden die Bezirke in die andere Richtung ausgerichtet, wobei die zur Beseitigung der Restmagnetisierung notwendige entgegengerichtete Feldstärke Koerzitivkraft genannt wird. Auch das entgegengesetzte Feld wird wieder einen Sättigungspunkt erreichen, was darauf hinausläuft, dass man, bei zyklischer Umpolung, die folgende Hysteresisschleife erhält (die Magnetisierung nach vorheriger Entmagnetisierung nennt man Neukurve: Aufgabe3: Hysteresiskurve 4
5 3.1 Hysteresiskurve Die Konstruktion zur oszilloskopischen Darstellung der Hysteresisschleifen sieht folgendermaÿen aus: Aufgabe3: Aufbau zur Hysteresiskurve Nun wird für die Stromstärken I eff = 30mA und I eff = 10mA gemessen. 3.2 Eichung Da wir B und H nicht direkt messen, müssen wir geeignete Eichfaktoren herleiten. H-Achse: Es gilt: H = n 1 l Kern I eff H = Damit gilt für den Eichfaktor der H-Achse: n 1 l Kern R } {{ } =:α 1 U R α 1 = n 1 l Kern R = ,48m 10Ω = 208, 3 A V m B-Achse: Man verwendet ein R/C-Glied (Widerstand R 1 und Kondensator mit Kapazität C in Reihe) als Integrator. Dabei wird U ind an die Reihenschaltung angelegt und das Ergebnis kann am Kondensator abgegrien werden. Es gelten folgende Beziehungen: U C = Q = 1 Idt = U ind U C C C R 1 dt Nun wird vorausgesetzt, dass R 1 und C genügend groÿ sind, damit U C << U ind gilt. Nun folgt: Damit ergibt sich für das B-Feld über U C : Damit gilt für den Eichfaktor der B-Achse: U C = 1 R 1 C U ind dt B 1 Uind n 2 A dt R 1 C U C n 2 A } {{ } =:α 2 α 2 = R 1 C n 2 A = 100kΩ 10µF 50 (0,039m) 2 = 13, 15 s m 2 5
6 3.3 Ummagnetisierung In diesem Aufgabenteil soll die Ummagnetisierungsarbeit pro Volumeneinheit und Umlauf bestimmt werden. Sie wird durch das Integral B dh beschrieben, womit sie als Flächeninhalt der Hysteresisschleife bestimmt werden kann: W magn V = B dh = A Hysteresisschleife Um diesen Quotienten zu erhalten, haben wir zwei einfache Methoden zur Hand: 1. Kästchen zählen Hier werden einfach die Anzahl der Kästchen innerhalb der Schleife gezählt und dann mit dem Inhalt eines Kästchens multipliziert. 2. Ausschneiden und wiegen Hierbei wird ein Blatt Papier auf die Schleife gelegt, der Graph wird abgepaust, ausgeschnitten und das Papier gewogen. Mittels des Gewichts einer Referenzäche kann die Fläche der Schleife bestimmt werden. Hat man auf diese Weise die Ummagnetisierungsarbeit erhalten, kann man die Verlustleistung des Systems bestimmen. Für diese gilt: P mag = Wmagn V V T Zyklus = Wmagn T Zyklus, wobei T Zyklus = 2π f ist und für das Volumen gilt V = A l. Desweiteren ist der Verlustwiderstand gefragt. Er folgt aus dem Spulenstrom I eff : r magn = Pmagn I 2 eff Bei einem Material mit schmaler Hysteresisschleife ist die Ummagnetisierungsverlustleistung also relativ klein. Solche Materialien werden als weichmagnetisch bezeichnet - sie sind besonders geeignet für Spulen groÿer Induktivität und für Transformatoren. Stoe mit einer breiten Schleife heiÿen analog hartmagnetisch. Sie nden beispielsweise in Permanentmagneten Anwendung. 3.4 relative Wechselfeld-Permeabilität In jedem Punkt der Hysteresisschleife gilt: B = µ µ 0 H µ = Nun liest man einfach verschiedene Wertepaare von H und B ab und berechnet daraus, wie angegeben, µ 3.5 Vergleich Die Ergebnisse der vorigen Teilaufgabe sollen mit den Ergebnissen aus 2.2 für die Wechselfeld- Permeabilität verglichen werden. 4 Sättigungsinduktion, Remanzenz, Koerzitivkraft, magnetische Härte, Vergleich Eisen-Ferrit Am Ende soll nun für einen Eisenkern (I eff = 0, 2A, n = 500) und für einen Ferrit-Schalenkern (I eff = 15mA, n = 500) die Hysteresisschleifen dargestellt werden. Die gesuchten Gröÿen sind die Remanenz, die Koerzitivkraft, die Ummagnetisierungsverlustleistung und die Sättigungsinduktion. Sie werden nach Eichung der Achsen durch die oben beschriebenen Verfahren ermittelt. B µ 0 H 6
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Marc Ganzhorn Tobias Großmann Bemerkung Alle in diesem Versuch aufgenommenen Hysteresis-Kurven haben wir gesondert im Anhang an diese Auswertung
Wechselstromwiderstände
Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:
Vorbereitung: Ferromagnetische Hysteresis
Vorbereitung: Ferromagnetische Hysteresis Carsten Röttele 10. Dezember 2011 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Luftspule 2 1.1 Messung..................................... 2
1. Theorie: Kondensator:
1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und
Ferromagnetische Hysteresis
Auswertung Ferromagnetische Hysteresis Stefan Schierle Carsten Röttele 6. Dezember 2011 Inhaltsverzeichnis 1 Induktion und Verlustwiderstand einer Luftspule 2 1.1 Messung.....................................
Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis
Praktikum Klassische Physik I Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer
Versuch P1-83,84 Ferromagnetische Hysteresis. Auswertung. Von Ingo Medebach und Jan Oertlin. 4. Januar 2010
Versuch P1-83,84 Ferromagnetische Hysteresis Auswertung Von Ingo Medebach und Jan Oertlin 4. Januar 2010 Inhaltsverzeichnis 1. Induktivität und Verlustwiderstand einer Luftspule...2 1.1. Induktivität und
Ferromagnetische Hysteresis
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-83 Ferromagnetische Hysteresis - Vorbereitung - Vorbemerkung Als Hinführung zum Thema Ferromagnetismus
Praktikum Grundlagen der Elektrotechnik
raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.
18. Magnetismus in Materie
18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der
Aufgaben Wechselstromwiderstände
Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose
Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X
Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das
Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum
Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen
WB Wechselstrombrücke
WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS
Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.
Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien
Versuch P1-83 Ferromagnetische Hysteresis Auswertung
Versuch P1-83 Ferromagnetische Hysteresis Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: Montag, 24.10.2011 1 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer
Ferromagnetische Hysterese Versuch P1 83, 84
Auswertung Ferromagnetische Hysterese Versuch P1 83, 84 Iris Conradi, Melanie Hauck Gruppe Mo-02 19. August 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Lustspule
Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop
TFH Berlin Messtechnik Labor Seite 1 von 7 Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop Ort: TFH Berlin Datum: 07.04.2004 Uhrzeit: von 8.00 bis 11.30 Dozent: Kommilitonen: Prof. Dr.-Ing.
P = U eff I eff. I eff = = 1 kw 120 V = 1000 W
Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten
Wechselstromkreis mit verschiedenen Bauteilen
Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf
Protokoll zum Versuch
Protokoll zum Versuch Ferromagnetische Hysterese Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Induktivität und Verlustwiderstand einer Luftspule 1.1 Messungen und Berechnen Wir haben die
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007
PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.
Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L
Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und
Physik & Musik. Stimmgabeln. 1 Auftrag
Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein
Laborversuch II Messungen zur Blindleistungskompensation
MESSTECHNIK 33 Laborversuch II Messungen zur Blindleistungskompensation Leitender Dozent Studenten Prof. Dr. Metzger, Klaus Schwarick, Sebastian; Möhl, Andre ; Grimberg, Mirko Durchführung am 1. April
Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte
Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung
Praktikum GEE Grundlagen der Elektrotechnik Teil 3
Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode
Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode
1 Wechselstromwiderstände
1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen?
Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Das kann man nur verstehen, wenn man weiß, was ein magnetisches Feld ist und was das Induktionsgesetz
6 Wechselstrom-Schaltungen
für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert
Versuch P1-83 Ferromagnetische Hysteresis Vorbereitung
Versuch P1-83 Ferromagnetische Hysteresis Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: Montag, 24.10.2011 Inhatsverzeichnis 1 Induktivität und Verustwiederstand einer Luftspue 2 1.1
Darstellungsformen einer Funktion
http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die
Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten
Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während
Versuchsauswertung: P1-83,84: Ferromagnetische Hysteresis
Praktikum Klassische Physik I Versuchsauswertung: P1-83,84: Ferromagnetische Hysteresis Christian Buntin, Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand
Wärmeleitung und thermoelektrische Effekte Versuch P2-32
Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock
EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:
david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit
Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms
Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit
IIE4. Modul Elektrizitätslehre II. Transformator
IIE4 Modul Elektrizitätslehre II Transformator Ziel dieses Versuches ist es, einerseits die Transformatorgesetze des unbelasteten Transformators experimentell zu überprüfen, anderseits soll das Verhalten
Die Größe von Flächen vergleichen
Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2
Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.
Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn
Filter zur frequenzselektiven Messung
Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines
1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)
3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild
Versuch 3. Frequenzgang eines Verstärkers
Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert
EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2
EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung
Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.
Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele
Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)
Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen
Aufgaben zur Flächenberechnung mit der Integralrechung
ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph
Arbeitspunkt einer Diode
Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von
Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:
Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn
Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)
Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie
Festigkeit von FDM-3D-Druckteilen
Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der
TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...
TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind
Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung
Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3
Stromdurchossene Leiter im Magnetfeld, Halleekt
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1
TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis
TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 9 Einphasenwechselspannung 9.1 Induktivität einer Drosselspule (Fluoreszenzleuchte) 9.2 Induktivität ohne Eisenkern an Wechselspannung 9.3 Induktivität mit
Ferromagnetische Hysterese Versuch P1-83,84
Vorbereitung Ferromagnetische Hysterese Versuch P1-83,84 Iris Conradi Gruppe Mo-02 28. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis Grundlegende Erklärungen 3 1 Induktivität und Verlustwiderstand
Spannung - Stromstärke - Widerstand
Spannung - Stromstärke - Widerstand. (a) Es soll der Widerstand einer Glühbirne experimentell ermittelt werden. Zeichne die zugehörige Schaltskizze. (b) Die Skalen, der in diesem Versuch verwendeten Messinstrumente
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
Schriftliche Abschlussprüfung Physik Realschulbildungsgang
Sächsisches Staatsministerium für Kultus Schuljahr 1992/93 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulbildungsgang
Vorbemerkung. [disclaimer]
Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel
Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007
Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,
Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis
ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:
Formelsammlung zur Kreisgleichung
zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,
Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall
Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite
3. Verpackungskünstler. Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung
Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung Päckchen, die man verschenken möchte, werden gerne mit Geschenkband verschnürt. Dazu wird das Päckchen auf seine größte Seite gelegt, wie
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Elektronenstrahloszilloskop
- - Axel Günther 0..00 laudius Knaak Gruppe 7 (Dienstag) Elektronenstrahloszilloskop Einleitung: In diesem Versuch werden die Ein- und Ausgangssignale verschiedener Testobjekte gemessen, auf dem Oszilloskop
Stationsunterricht im Physikunterricht der Klasse 10
Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde
Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich
Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar
2 Gleichstrom-Schaltungen
für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
Berechnung der Erhöhung der Durchschnittsprämien
Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die
Das Demonstrationsexperiment WS 08/09 Der Transformator: Modellversuche, Grundlagen
Das Demonstrationsexperiment WS 08/09 Der Transformator: Modellversuche, Grundlagen Wolfgang Riedl 21. 01. 2009 1 Inhaltsverzeichnis 1 Versuchsbeschreibung 3 1.1 Einstiegsversuch:,,Wie kommt der Strom
Elektrischer Widerstand
In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren
Technische Informatik Basispraktikum Sommersemester 2001
Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Kapitalerhöhung - Verbuchung
Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.
Beschreibung Magnetfeld
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei
Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie
Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher
Leistungselektronik Grundlagen und Standardanwendungen. Praktikumsunterlagen
Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 80333 München Email: [email protected] Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
7.3 Anwendungsbeispiele aus Physik und Technik
262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit
Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden
Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Physik III - Anfängerpraktikum- Versuch 302
Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........
R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit
R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,
Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder.
Newton 10 und / Elektrizitätslehre Kapitel 1 Gesetzmäßigkeiten des elektrischen Stromkreises 1.1 Widerstände hemmen den Stromfluss Ohm sches Gesetz und elekt- rischer Widerstand Seite 13 / 14 1. Welche
1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4
1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung
