HTL Steyr KAUSTIK Seite 1 von 11. Kaustik. Winkelfunktionen, Einheitskreis, Summensätze, Grenzübergänge (LIMES), Parameterdarstellung einer Funktion

Größe: px
Ab Seite anzeigen:

Download "HTL Steyr KAUSTIK Seite 1 von 11. Kaustik. Winkelfunktionen, Einheitskreis, Summensätze, Grenzübergänge (LIMES), Parameterdarstellung einer Funktion"

Transkript

1 HTL Steyr KAUSTIK Seite von Nietrost Bernhard, Kaustik Mathematische / Fachliche Inhalte in Stichworten: Winkelfunktionen, Einheitskreis, Summensätze, Grenzübergänge (LIMES, Parameterdarstellung einer Funktion Kurzzusammenfassung Die Kaustik kann man leicht beobachten mit Hilfe eines Wasserglases oder eines Rings im Sonnenlicht. Die mathematische Beschreibung dieser Beobachtung benötigt die Anwendung verschiedenster mathematischer Gebiete. (Trigonometrie, Parameter, Grenzwerte, Differentialrechnung Didaktische Überlegungen Die Schüler sehen wie eine einfache Beobachtungen mathematisch formuliert wird. Daraus ergibt sich ein praktischer Bezug zum Problem. --> Angewandte Mathematik Lehrplanbezug (bzw. Gegenstand / Abteilung / Jahrgang: Angewandte Mathematik, 2/3 Jahrgang für alle Abteilungen, durchführbar erst in der 3. Klasse. Mathcad-Version: Mathcad 5 Literaturangaben: Internet, Physik in unserer Zeit 29 (998 S 20-22, Teubner: TB der Mathematik

2 HTL Steyr KAUSTIK Seite 2 von. Entstehung der Kaustik Die Kaustik entsteht wenn parallel einfallende Lichtstrahlen an einem (halb- kreisförmigen Objekt reflektiert werden. Die Einhüllende der reflektierten Strahlen bildet eine Kaustik (Siehe Bild, die zu den Epizykloiden gehört. Die Kaustik kann einfach mit einem Wasserglas oder einem Ring erzeugt werden. Kaustiken haben schon früh das Interesse von Physikern und Mathematikern hervorgerufen. Christian Huygens ( befasste sich mit ihnen und Johann Bernoulli ( untersuchte sie mathematisch ausführlich und in vielen Beispielen []. ENCARTA: ' Kaustik ['Kaus tik] die; -, kmz. (phys., tech. Hüllfläche benachbarter Strahlen e-s nicht optimal korrigierten optischen Systems, vgl.? Katakaustik,? Diakaustik 2 (med.? Kauterisation Kaustik Einfallendes Licht

3 HTL Steyr KAUSTIK Seite 3 von 2. Mathematische Beschreibung der Geometrie Reflexionspunkte: Geometrie aus Skizze (r (Überlegungen am Einheitskreis bzw. mit Hilfe der Summensätze P X cos( α Q X sin π 3α ergibt vereinfacht Q X cos( 3 α 2 P Y sin( α Q Y cos π 3α ergibt vereinfacht Q Y sin( 3 α 2 Graphische Darstellung für N 0 einfallende Strahlen (in der oberen Hälfte (Gleichmäßige Verteilung der Einfallswinkel π i N α i 2 ( N i

4 HTL Steyr KAUSTIK Seite 4 von Berechnung von P und Q der Strahlen: P i0 Q i0 cos α i P i sinα i cos 3 α i Q i sin 3 α i Kreis in Parameterdarstellung t π Xt ( cos( t Yt ( sin( t Graphikmatrix (zum Zeichnen der Verbindungslinien PQ n 0 j 0 2N G 2i n P in G 2i 2n Q in 2. Kaustik als Hüllkurve: Darstellung von P, Q und der Verbindung PQ 0.5 KAUSTIK G j P i Q i Yt ( G j0 P i0 Q i0 Xt ( Die hier eingezeichneten N 0 reflekektierten Strahlen erzeugen ungefähr die Grundform der Kaustik.

5 HTL Steyr KAUSTIK Seite 5 von 3. Berechnung der Kaustik in Parameterform Entsprechend der letzten Graphik ergeben sich zwischen benachbarten Geraden y und y 2 durch PQ Schnittpunkte, welche (ungefähr die Kaustik formen. Verkleinert man den Abstand zweier benachbarter Punkte immer weiter (math: LIMES --> 0 so erh man die Darstellung der Kaustik in Parameterform. y y2 ersetzen y k x d ersetzen y2 k2 x d2 d k x d2 k2 x k x d k2 x d2 auflösen x d d2 k k2 y k x d ersetzen x ( d d2 ( k k2 d k2 d2 k y k k2 ( d d2 y k d auflösen y ( k k2 d k ( d d2 k k2 Der gesuchte Schnittpunkt von y und y 2 ist: x ( d d2 ( k d2 d k2 s y s ( k k2 ( k k2 Schnittpunkte Steigung k Δy Δx P y Q y Achsenabschnitt d P y k P x P x Q x P i Q i Berechnung der k und d Werte: k i d i P i k i P i0 P i0 Q i0 Berechnung der Schnittpunkte: d j d j j 0 N xs j k j k j ys k j d j d j k j j k j k j

6 HTL Steyr KAUSTIK Seite 6 von 3. KAUSTIK: Darstellung der Schnittpunkte 0.5 ys ys Yt ( xsxs Anmerkung: Die hier berechneten Schnittpunkte sind noch keine exakten Punkte der Kurve. Für N sehr groß wird diese immer besser angenähert. Für eine exakte Berechnung der Kurve sind noch weitere Schritte notwendig. Xt ( Beschreibung einer Geraden y kx + d durch Winkel P y Q y sin( α ( sin( 3α k k cos( α ( cos( 3α P x Q x α α Vereinfachen mit Summensätzen oben und unten (Man verwende z.b: sin( 3 α sin( 2 α α sin( 2 α cos( α cos( 2 α sin( α usw. ergibt den folgenden 2 cos( α sin( α Ausdruck: k, der einen weiteren Schritt zuläßt: k 2 cos( α 2 Man erhält somit die sehr einfache Endformel: k tan 2 α ( sin( 2 α. cos( 2 α

7 HTL Steyr KAUSTIK Seite 7 von Der Achsenabstand d ergibt sich aus y k x d mit obigem k und beispielsweise dem Punkt P zu: sin( α tan( 2 α cos( α d. sin( α cos( 2 α Der Ausdruck für d läßt sich noch weiter vereinfachen zu: d. Die Gerade ist dann: y tan( 2 α x sin( α cos( 2 α Nebenrechnungen zu obigen Ausdrücken sin( α sin( 2 α α sin( α sin( 2 α cos( α sin( α cos( 2 α sin( α 2 sin( α cos( α 2 sin( α cos( α 2 sin( α 3 sin( α 3 cos( α 2 sin( α 2 4 sin( α cos( α 2 cos( α cos( 2 α α cos( α cos( 2 α cos( α sin( 2 α sin( α cos( α cos( α 3 sin( α 2 cos( α 2 sin( α 2 cos( α cos( α 2 sin( α 2 2 sin( α 2 cos( α cos( α 2 4 sin( α 2 4 sin( α cos( α 2 cos( α 2 4 sin( α 2 2 sin( α cos( α 2 sin( α 2

8 HTL Steyr KAUSTIK Seite 8 von Der Schnittpunkt zweier benachbarter Geraden mit leicht (delta verschiedenen Winkeln. sin( 2 α cos( 2 α x sin( α cos( 2 α sin[ 2 ( α δ ] cos[ 2 ( α δ ] x sin( α δ cos[ 2 ( α δ ] x ( sin( α cos( 2 α 2 δ sin( α δ cos( 2 α ( sin( 2 α cos( 2 α 2 δ sin( 2 α 2 δ cos( 2 α Ergebnis aus Platzgründen in der nächste Zeile Um beliebige Schnittpunkte zu berechnen muss man den Grenzübergang delta gegen 0 durchführen. (math: Limes x δ lim 0 ( sin( α cos( 2 α 2 δ sin( α δ cos( 2 α ( sin( 2 α cos( 2 α 2 δ sin( 2 α 2 δ cos( 2 α δ lim 0 ( sin( α cos( 2 α 2 δ sin( α δ cos( 2 α ( sin( 2 α cos( 2 α 2 δ sin( 2 α 2 δ cos( 2 α x cos( α cos( α Ergebnis aus Platzgründen in der nächste Zeile Anmerkung: Als Übung könnte die Bildung des LIMES auch von Hand durchgeführt werden Verwendung der Regel von l'hospital, da sich beim Einsetzen von δ 0 die nicht definierte Division 0 ergibt. Einmaliges Differenzieren oben und unten ergibt: 0 x δ lim 0 ( 2 sin( α sin( 2 α 2 δ cos( α δ cos( 2 α 2 cos( 2 δ Anmerkung: Der Nenner läßt sich mit Summensätzen leicht vereinfachen.

9 HTL Steyr KAUSTIK Seite 9 von Setzt man δ 0 so ergibt sich der Limes mit: x 2 sin( α sin( 2 α 2 cos( α cos( 2 α Mit Summensätzen weiter vereinfacht ergibt sich die x-komponente gleich wie mit MATHCAD in Parameterdarstellung. x K ( α 2 cos( α 3 2 cos( α2 Durch Einsetzen wird y berechnet: y sin( 2 α cos( 2 α x sin( α cos( 2 α y sin( 2 α cos( 2 α cos( α cos( α sin( α cos( 2 α Ergebnis aus Platzgründen in der nächste Zeile y K sin( α 2 cos( α 4 3 cos( α 2 cos( 2 α Ergebnis aus Platzgründen in der nächste Zeile Unstetigkeit in der y-komponente Es gibt eine Unstetigkeitsstelle in der y - Komponente der Kaustik. π 4 Für den Fall α ergeben sowohl Zähler als auch Nenner 0. Dieser muss durch Bildung des LIMES in Mathcad berechnet werden. lim π α 4 3 cos( α 2 2 cos( α 4 cos( 2 α 2 Bei händischer Bestimmung kommt wiederum die Regel von l'hospital zur Anwendung.

10 HTL Steyr KAUSTIK Seite 0 von 3.2 Kaustik in Parameterdarstellung x K ( α 2 cos( α 3 2 cos( α2 y K ( α 2 if sin( α π α 4 3 cos( α 2 2 cos( α 4 cos( 2 α otherwise Laufvariable α t π 2 Exakte Grenzkurve der Reflexion (rot und obige Schnittpunkte: y K ( α ys Yt ( x K ( α xsxt (

11 HTL Steyr KAUSTIK Seite von

HTL Niet Fullerene, Fußball Seite 1 von 8. Vektorrechnung in 3D: Skalarprodukt, Vektorprodukt, Gerade, Schnittpunkt...

HTL Niet Fullerene, Fußball Seite 1 von 8. Vektorrechnung in 3D: Skalarprodukt, Vektorprodukt, Gerade, Schnittpunkt... HTL Niet Fullerene, Fußball Seite von 8 Name und e-mail-adresse Nietrost Bernhard, bernhard.nietrost@htl-steyr.ac.at Fullerene, Fußball Mathematische / Fachliche Inhalte in Stichworten: Vektorrechnung

Mehr

Van der Waalsgeleichung

Van der Waalsgeleichung HTL Steyr Van der Waals Seite 1 von 11 Nietrost Bernhard, bernhard.nietrost@htl-steyr.ac.at Van der Waalsgeleichung Mathematische / Fachliche Inhalte in Stichworten: Van der Waalsgleichung, Hyperbel, Differenzieren

Mehr

Van der Waalsgleichung

Van der Waalsgleichung HTL Steyr Van der Waals Seite 1 von 11 Nietrost Bernhard, Van der Waalsgleichung bernhard.nietrost@htl-steyr.ac.at Mathematische / Fachliche Inhalte in Stichworten: Van der Waalsgleichung, Hyperbel, Differenzieren

Mehr

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 bernhard.nietrost@htl-steyr.ac.at Seite 1 von 9 ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 Mathematische / Fachliche Inhalte in Stichworten: allgemeine Sinusfunktion, Winkelfunktionen im schiefwinkeligen

Mehr

ÜTA: B - Tragwerk für Cluster 1 und 3

ÜTA: B - Tragwerk für Cluster 1 und 3 bernhard.nietrost@htl-steyr.ac.at Seite von 5 ÜTA: B - Tragwerk für Cluster und 3 Mathematische / Fachliche Inhalte in Stichworten: Winkelfunktionen im schiefwinkeligen Dreieck; lineare Regression; bestimmtes

Mehr

Das Wechselstromparadoxon

Das Wechselstromparadoxon HTL Saalfelden Das Wechselstromparadoxon Seite von 6 Wilfried Rohm wrohm@aon.at Das Wechselstromparadoxon Mathematische / Fachliche Inhalte in Stichworten: Ortskurven, Komplexe Widerstände, Differentialrechnung

Mehr

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden bernhard.nietrost@htl-steyr.ac.at Seite 1 von 17 Kettenlinie Mathematische / Fachliche Inhalte in Stichworten: Differentialgleichungen (1. und 2. Ordnung, direkt integrierbar, Substitution, Trennen der

Mehr

Verarbeitung von Messdaten

Verarbeitung von Messdaten HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,

Mehr

Seite 1 von 5 Übungsbeispiel zur Vorbereitung auf die srdp in AM im clusterübergreifenden Teil A

Seite 1 von 5 Übungsbeispiel zur Vorbereitung auf die srdp in AM im clusterübergreifenden Teil A bernhard.nietrost@htl-steyr.ac.at Seite 1 von 5 ÜTA: A - Werbedruck Mathematische / Fachliche Inhalte in Stichworten: Flächenberechnung mit Integral, quadratische und lineare Funktionen, elementare Wahrscheinlichkeit,

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

HTL Saalfelden Taylorreihen Seite 1 von 13. Wilfried Rohm

HTL Saalfelden Taylorreihen Seite 1 von 13. Wilfried Rohm HTL Saalfelden Taylorreihen Seite von 3 Wilfried Rohm wrohm@aon.at Taylorreihen Mathematische / Fachliche Inhalte in Stichworten: Approximation von Funktionen durch Taylorpolynome, Integration durch Reihentwicklung,

Mehr

Bremsung einer Lokomotive

Bremsung einer Lokomotive bernhard.nietrost@htl-steyr.ac.at Seite 1 von 13 Bremsung einer Lokomotive Mathematische / Fachliche Inhalte in Stichworten: Modellierung von Einflussgrößen (Kräften) stückweise stetige Funktionen Regression

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Reflexion - Teil Formel unter Verwendung von Vektoren

Reflexion - Teil Formel unter Verwendung von Vektoren Reflexion - Teil 1 1. Formel unter Verwendung von Vektoren (1. - 7. in R 2 ) 2. Fallunterscheidung: Beispiele zu 1. 3. Beispiel - Reflexionspunkt bekannt 4. Muss zur Berechnung von r der Reflexionspunkt

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse.

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse. .6. Klausur Kurs Ma Mathematik Lk Lösung Gegeben ist die Gleichung x y y x. [] Verschaffen Sie sich einen Überblick über den Kurvenverlauf, indem Sie die Kurve auf Asymptoten und waagrechte sowie senkrechte

Mehr

Biegelinie eines Trägers

Biegelinie eines Trägers HTBL Graz (Ortweinschule Biegelinie eines Trägers Seite von Heinz Slepcevic slep@htlortwein-graz.ac.at Biegelinie eines Trägers Mathematische / Fachliche Inhalte in Stichworten: Biegelinie, Differentialgleichung,

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Reflexion - Teil = 4 4 ) - 2 (-7)/5 (1 2 ) = (19/5 8/5 ) ); e n = -7; r = (

Reflexion - Teil = 4 4 ) - 2 (-7)/5 (1 2 ) = (19/5 8/5 ) ); e n = -7; r = ( Reflexion - Teil 1. Formel unter Verwendung von Vektoren (1. - 7. in R ). Fallunterscheidung: Beispiele zu 1. 3. Beispiel - Reflexionspunkt bekannt 4. Muss zur Berechnung von r der Reflexionspunkt bekannt

Mehr

Kinematik des Viergelenk-Koppelgetriebes

Kinematik des Viergelenk-Koppelgetriebes HTL-LiTec Viergelenk - Koppelgetriebe Seite 1 von 7 Dipl.-Ing. Paul MOHR email: p.mohr@eduhi.at Kinematik des Viergelenk-Koppelgetriebes Mathematische / Fachliche Inhalte in Stichworten: Kinematik; Getriebelehre;

Mehr

Katakaustiken bei Mehrfachreflexionen

Katakaustiken bei Mehrfachreflexionen Katakaustiken bei Mehrfachreflexionen Ucke, Christian; Engelhardt, Christoph Technische Universität München, Physikdepartment E20, 85747 Garching Jedem Physiker sind Kaustiken bekannt. Sie treten als Diakaustik

Mehr

Einführung in die Differenzialrechnung. Teil I. Klasse 10 B / Schuljahr 2018 / 19. Deyke

Einführung in die Differenzialrechnung. Teil I. Klasse 10 B / Schuljahr 2018 / 19. Deyke Einführung in die Differenzialrechnung Teil I Klasse 10 B / Schuljahr 2018 / 19 Deyke www.deyke.com Diff_Teil_I.pdf Einführung in die Differenzialrechnung Etwas Wirtschaftsmathematik: Einführung Seite

Mehr

Windrad 2MW:Der Energieertrag (Windverteilung - cp-wert)

Windrad 2MW:Der Energieertrag (Windverteilung - cp-wert) HTL Wien Windrad - Energieertrag Seite von 6 DI Dr. techn. Klaus LEEB Windrad MW:Der Energieertrag (Windverteilung - cp-wert) Mathematische / Fachliche Inhalte in Stichworten: Analyse eines Windradstandortes.

Mehr

Kaustik in der Kaffeetasse

Kaustik in der Kaffeetasse Kaustik in der Kaffeetasse Christian Ucke und Christoph Engelhardt Unter Physikern sind Kaustiken als ein Effekt der sphärischen Abberration bei Hohlspiegeln und Linsen wohlbekannt. Fast jeder hat das

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 6. Semester ARBEITSBLATT 1 DIFFERENTIALRECHNUNG

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 6. Semester ARBEITSBLATT 1 DIFFERENTIALRECHNUNG ARBEITSBLATT DIFFERENTIALRECHNUNG Folgendes Problem ist gegeben. Wir haben eine gegebene Funktion und möchten in einem beliebigen Punkt dieser Funktion die Tangente legen. Die Frage ist nun natürlich:

Mehr

Vektorrechnung im Raum - 3 Übungsbeispiele

Vektorrechnung im Raum - 3 Übungsbeispiele HTL Saalfelden Vektrorechnung im Raum Seite von 9 Wilfried Rohm Vektorrechnung im Raum - Übungsbeispiele Mathematische / Fachliche Inhalte in Stichworten: Skalares Produkt, Vektorielles Produkt, Geradengleichungen,

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung KAPITEL 5 Kurven im R 2 1. Kurven In der Physik und in den Ingenieurwissenschaften besteht oft das Problem die Bewegungskurve\ von Objekten zu beschreiben. Der Einfachheit halber betrachten " wir Kurven

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt 4 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, (othmar.marti@physik.uni-ulm.de) 17., 23. und 24. 6. 23 1 Aufgaben Das Fermatsche Prinzip 1, Polarisation

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Aufgaben. Modul 931 Optik Reflexion. 1) Wie wird diese Art der Reflexion bezeichnet?

Aufgaben. Modul 931 Optik Reflexion. 1) Wie wird diese Art der Reflexion bezeichnet? Aufgaben 1) Wie wird diese Art der Reflexion bezeichnet? 2) Disco-Laser: Ein paralleles Lichtbündel fällt auf einen Ablenkspiegel. Konstruieren sie das ausfallende Lichtbündel mit Hilfe des Winkelmessers:

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

Übungsblatt 01 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 01 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, othmar.marti@physik.uni-ulm.de 6. 5. 23, 2. 5. 23 und 3. 5. 23 Aufgaben Lichtgeschwindigkeit, Licht in der

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Der Regenbogen: Mathematische Überlegungen

Der Regenbogen: Mathematische Überlegungen Jörg Priewasser Andreas Müller Der Regenbogen: Mathematische Überlegungen Text: Andreas Müller. Voraussetzungen Zur Vereinfachung des Modells werden einige Annahmen gemacht, die zwar nicht alle korrekt

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Abitur Mathematik Bayern Prüfungsteil B; Aufgabengruppe : Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern Aufgabe a) SCHRITT: BERECHNUNG DER VEKTOREN AB UND AC Den Flächeninhalt eines Dreiecks

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen: . ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der

Mehr

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 13. Fourier-Reihen Prof. Dr. Gunar Matthies Wintersemester 216/17

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 12

Grundlagen der Physik 2 Lösung zu Übungsblatt 12 Grundlagen der Physik Lösung zu Übungsblatt Daniel Weiss 3. Juni 00 Inhaltsverzeichnis Aufgabe - Fresnel-Formeln a Reexionsvermögen bei senkrechtem Einfall.................. b Transmissionsvermögen..............................

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

dem Lehrplan entsprechend für alle HTL Abteilungen im 4. und 5. Jahrgang;

dem Lehrplan entsprechend für alle HTL Abteilungen im 4. und 5. Jahrgang; bernhard.nietrost@htl-steyr.ac.at Seite von 2 Risio Mathematische / Fachliche Inhalte in Stichworten: Stochasti: Laplace, Abzähltechnien, UND/ODER-Regel, bedingte W-eit, Erwartungswert, Vertrauensbereich;

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen.

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen. Vektoren Übungen ) Gesucht sind alle möglichen Vektoren c mit der Länge, die senkrecht auf den Vektoren a und b stehen. a = ( ); b = ( ) a) Ein Dreieck in R ist durch die Punkte O( ), A( ), B( ) definiert.

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II 7. Ableitungsregeln H. Rodner, G. Neumann Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/

Mehr

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik OW_0_0 Optik und Wellen GK/LK Beugung und Dispersion Unterrichtliche Voraussetzungen: Grundbegriffe der Strahlenoptik Literaturangaben: Optik: Versuchsanleitung der Fa. Leybold; Hürth 986 Verfasser: Peter

Mehr

1. Klassenarbeit Lösungsvorschlag

1. Klassenarbeit Lösungsvorschlag EI 10c M 2009-10 MATHEMATIK 1 1. Klassenarbeit Lösungsvorschlag Vergleiche deine Lösungen mit diesem Lösungsvorschlag. Helft euch gegenseitig bei Fragen oder fragt mich direkt! AUFGABE 1 Die Gerade g geht

Mehr

CAUSTICS & GODRAYS. Jacob Skuratovski

CAUSTICS & GODRAYS. Jacob Skuratovski CAUSTICS & GODRAYS Jacob Skuratovski Kaustiken Kaustik, caustic (engl.), Brennlinie, Brennfläche Bereich, in dem Lichtstrahlen gebündelt werden 3 verschiedene Arten Katakaustik Diakaustik Regenbogen Eine

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Verallgemeinerung von Sin, Cos, Tan mit GeoGebra

Verallgemeinerung von Sin, Cos, Tan mit GeoGebra Verallgemeinerung von Sin, Cos, Tan mit GeoGebra 1. Einheitskreis Es sollen am Einheitskreis Sinnus, Cosinus und Tangens von einem Winkel α [0; 360) dargestellt werden. gehe dazu wie folgt vor! a) Erstelle

Mehr

HTL Saalfelden Funktionstraining Seite 1 von 6

HTL Saalfelden Funktionstraining Seite 1 von 6 HTL Saalfelden Funktionstraining Seite von 6 Peter Schüller / Wilfried Rohm Funktionstraining wilfried.rohm@schule.at peter.schueller@bmbwk.gv.at Kurzzusammenfassung Unter Funktionstraining wird hier ein

Mehr

7.8. Die Regel von l'hospital

7.8. Die Regel von l'hospital 7.8. Die Regel von l'hospital Der Marquis de l'hospital (sprich: lopital) war der erste Autor eines Buches über Infinitesimalrechnung (696) - allerdings basierte dieses Werk wesentlich auf den Ausführungen

Mehr

Simulation einer Binomialverteilung

Simulation einer Binomialverteilung HTL Saalfelden Simulation einer Binomialverteilung Seite 1 von 7 Wilfried Rohm wrohm@aon.at Simulation einer Binomialverteilung Mathematische / Fachliche Inhalte in Stichworten: Binomialverteilung, Simulation

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 )

Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 ) Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade R 3 ) Gerade - Gerade in R 3 ) Der Fall sich schneidender Geraden ist uninteressant. Es existiert dann ein beliebiger Abstand je nach der

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis 1. Eine Rampe hat eine Steigung von 5%. Wie groß ist der Steigungswinkel? 2. Gegeben ist ein rechtwinkliges

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Musterlösung. für die Klausur MA2_05.1 vom 11. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.

Musterlösung. für die Klausur MA2_05.1 vom 11. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann. Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA_05.1 vom 11. Februar 005 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt

Mehr

Rudolf Brinkmann Seite und W = {x 3 x 6}

Rudolf Brinkmann Seite und W = {x 3 x 6} Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine

Mehr

Zykloide. Lars Ehrenborg. 15. Januar Definition/Erzeugungsweise 2. 2 Herleitung der Parameterdarstellung 2. 4 Fläche eines Zykloidenbogens 4

Zykloide. Lars Ehrenborg. 15. Januar Definition/Erzeugungsweise 2. 2 Herleitung der Parameterdarstellung 2. 4 Fläche eines Zykloidenbogens 4 Zykloide Lars Ehrenborg 15. Januar 2017 Inhaltsverzeichnis 1 Definition/Erzeugungsweise 2 2 Herleitung der Parameterdarstellung 2 3 hübsche Eigenschaft 3 4 Fläche eines Zykloidenbogens 4 5 Normale und

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

WBK Bonn Abendrealschule Mathematik Vorklausur SoSe 2016

WBK Bonn Abendrealschule Mathematik Vorklausur SoSe 2016 Vorklausur SoSe 016 Aufgabe 1: Basiswissen (max. 15 Minuten) a) Eine Flasche Spülmittel enthält 10 mg eines Wirkstoffes. Für wie viele Flaschen reicht 1 kg dieses Wirkstoffes? 1 kg = 1000g 1 g = 1000 mg

Mehr

Differenzengleichungen in der Elektrotechnik

Differenzengleichungen in der Elektrotechnik HTB Kapfenberg Differenzengleichungen in der Elektrotechnik Seite 1 von 11 Kaiser Gerald gerald.kaiser@htl-kapfenberg.ac.at Differenzengleichungen in der Elektrotechnik Mathematische / Fachliche Inhalte

Mehr

Themenbereich: Trigonometrie

Themenbereich: Trigonometrie Polarkoordinaten Inhalte: Darstellung der Winkelfunktionen Programmierung mit dem TR Sinus- und Cosinussatz Themenbereich: Trigonometrie Ziele: Arbeiten mit symbolischen Schreibweisen in der Mathematik

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen von den natürlichen Zahlen zu den ganzen,

Mehr

Aufgaben mit Lösungen! a 2 b 2

Aufgaben mit Lösungen! a 2 b 2 Probeklausur Vorkurs Mathematik für Physiker 9.9.006 eantworten Sie die Fragen möglichst in der gegebenen eihenfolge. Lesen Sie den Tet genau und beantworten Sie die gestellten Fragen, keine selbst ausgedachten.

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

Lineare Funktionen. Die lineare Funktion

Lineare Funktionen. Die lineare Funktion 1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen

Mehr

Das isoperimetrische Problem

Das isoperimetrische Problem Das isoperimetrische Problem Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 18. Oktober 3 Das isoperimetrische Problem, auch bekannt als das Problem der Dido, ist es, unter allen geschlossenen ebenen

Mehr

Konstruierbarkeit des Siebzehnecks

Konstruierbarkeit des Siebzehnecks Konstruierbarkeit des Siebzehnecks Der Kinofilm Die Vermessung der Welt war Anstoß, sich mit der Konstruktion des regelmäßigen Siebzehnecks und damit den Gedankengängen des berühmten Mathematikgenies Carl

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 2.1

Mehr

Übungsblatt 2 Grundkurs IIIa für Physiker

Übungsblatt 2 Grundkurs IIIa für Physiker Übungsblatt Grundurs IIIa für Physier Othmar arti, othmar.marti@physi.uni-ulm.de 6. 5. 00 Aufgaben für die Übungsstunden Lichtgeschwindigeit, Huygenssches Prinzip, Reflexion 3, Brechung 4, PDF-Datei 5.

Mehr

Schwerpunkt homogener ebener Flächen: Teil 2

Schwerpunkt homogener ebener Flächen: Teil 2 Celle, Stadtkirche St. Marien, Fragment Schwerpunkt homogener ebener Flächen: Teil 3 E Ma Lubov Vassilevskaya Flächeninhalt 3 E Ma Lubov Vassilevskaya Schwerpunkt einer homogenen ebenen Fläche: Aufgaben

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Analysis - Grundlagen der Differentialrechnung: Ableitungsfunktion

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Analysis - Grundlagen der Differentialrechnung: Ableitungsfunktion Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Analysis - Grundlagen der Differentialrechnung: Ableitungsfunktion Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

ARBEITSBLATT 6-5. Kurvendiskussion

ARBEITSBLATT 6-5. Kurvendiskussion ARBEITSBLATT 6-5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Bestimmung der Brechzahl von Glas (Artikelnr.: P )

Bestimmung der Brechzahl von Glas (Artikelnr.: P ) Lehrer-/Dozentenblatt Bestimmung der Brechzahl von Glas (Artikelnr.: P064400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Reflexion und Brechung

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr