CHE 102.1: Grundlagen der Chemie - Organische Chemie

Größe: px
Ab Seite anzeigen:

Download "CHE 102.1: Grundlagen der Chemie - Organische Chemie"

Transkript

1 E 102.1: Grundlagen der hemie - rganische hemie Prof Dr. E. Landau und Prof. Dr. J. A. obinson 10. Die arbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Die = Doppelbindung - der arbonylgruppe - ist die wichtigste funktionelle Gruppe der organischen hemie. Dieses Kapitel befasst sich mit der hemie der Aldehyde und Ketone Arten von arbonylgruppen Die folgende Tabelle zeigt die wichtigsten Klassen von arbonyl-verbindungen: Aldehyd Keton arbonsäuren Alkanoylhalogenid l -al -on -säure -säurechlorid -oylchlorid Anhydrid Ester Lacton (yclischer Ester) ' ' -säureanhydrid -oat -lacton Thioester S ' Amid (yclisches Amid = Lactam) N -amid Es kann nützlich sein, die arbonyl-verbindungen in zwei Klassen zu unterteilen :

2 Aldehyd Keton arbonsäuren Alkanoylhalogenid Anhydrid Ester Lacton (yclischer Ester) Amid (yclisches Amid = Lactam) ' l S ' N ' Aldehyde und Ketone besitzen entweder ein -Atom oder eine Alkyl- oder Aryl- Gruppe. Solche Gruppen können keine negative Ladung tragen. Sie können deswegen nicht als eine Abgangsgruppe dienen. Aldehyde und Ketone besitzen ähnliche chemische Eigenschaften, unterscheiden sich aber in ihrer hemie von der der arbonsäure- Derivate. Der Acyl-est () in arbonsäuren und ihren Derivaten ist an ein eteroatom gebunden (-l, -, -N 2 ). Diese elektronegativen eteroatome können eine negative Ladung tragen und können deswegen als Abgangsgruppen dienen. Die hemie dieser arbonyl-verbindungen ist deswegen untereinander ähnlich Struktur und chemische Eigenschaften der arbonylgruppe Das Kohlenstoffatom der arbonylgruppe ist sp 2 -hybridisiert und daher planar. Die Bindungswinkel am -Atom betragen etwa 120 o. Ein einfaches Modell der arbonylgruppe gibt das -Atom auch als sp 2 -hybridisiert an. Die M-Theorie zeigt aber ein alternatives Bild mit den zwei freien Elektronenpaaren nicht in sp 2 ybrid-rbitalen, sondern eines in einem s-ähnlichen und das zweite in einem p-ähnlichen rbital: Der Vergleich mit der elektronischen Struktur der Doppelbindung in Alkenen zeigt zwei wesentliche Unterschiede: Das Sauerstoffatom trägt zwei freie Elektronenpaare und ist auch stärker elektronegativ als. Es beeinflusst die π-elektronenwolke so, dass eine nennenswerte Polarisierung der =-Bindung zu beobachten ist:

3 Auf diese Weise wird das Kohlenstoffatom elektrophil und das Sauerstoffatom nucleophil und leicht basisch : 10.3 Nomenklatur der Aldehyde und Ketone Die Vertreter dieser Klasse von Verbindungen werden, mit systematischen und mit Trivialnamen benannt. Aldehyde Die systematischen Namen der Aldehyde leiten sich von denen der entsprechenden Alkane durch inzufügung der Endung -al ab. Die Position der =-gruppe wird nicht spezifiziert. Definitionsgemäss ist ihr -Atom -1. Solange die Aldehydfunktion der längsten Kohlenstoffkette angehört, ist auch die Numerierung der anderen -Atome eindeutig festgelegt : thanal (Formaldehyd) Ethanal 2-exanon 4,6-Dimethylheptanal (Acetaldehyd) (exan-2-on) Entsprechend den IUPA-egeln heissen Ketone Alkanone, dabei wird die Endung -on an den Namen des entsprechenden Alkans angehängt. Die Position der arbonylgruppe in der längsten Kette wird durch Numerierung in der Weise festgelegt, dass das Kohlenstoffatom der arbonylgruppe die niedrigste mögliche Nummer erhält. Acylgruppe = Acetylgruppe = Formylgruppe = 10.4 eaktionen von Aldehyden und Ketonen : Nucleophile Additonsmechanismen Die arbonylgruppe ist stark polarisiert, und demzufolge greifen Elektrophile das Sauerstoffatom und Nucleophile das Kohlenstoffatom an. Eine der wichtigsten eaktionen, die Aldehyde und Ketone eingehen, ist die Nucleophile Addition an der arbonylgruppe :

4 Wir können die folgenden allgemeinen chanismen schreiben : Das Elektronenpaar an dem Nucleophil greift das elektrophile arbonyl--atom an. Die zwei p-elektronen in der = Doppelbindung werden auf das -atom verschoben. Das arbonyl- -Atom wird von sp 2 zu sp 3 umhybridisiert. Das tetraedrische Zwischenprodukt nimmt ein Proton aus dem Lösungsmittel auf und ergibt ein neutrales Produkt Nucleophile Addition von Wasser Wasser kann sich als ein Nucleophil benehmen, obwohl seine Nucleophilie gar nicht so stark ist (vgl. Seite 74). In der Wasserlösung ensteht also ein Gleichgewicht zwischen der arbonylverbindung und dem entsprechenden geminalen Diol, das auch als arbonylhydrat bezeichnet wird: arbonylhydrate entstehen nur langsam im Wasser bei p 7, werden aber in Gegenwart von Säuren oder Basen beträchtlich schneller gebildet. Die eaktion wird also durch Säure oder Base katalysiert - Die Gleichgewichtskonstante bleibt identisch, die eaktion erreicht die Gleichgewichtslage aber schneller. Warum? Katalyse

5 Im Fall von Basenkatalyse, bei p>7, sind - Ionen vorhanden, was gegenüber Wasser ein viel stärkeres Nucleophil ist : Im basenkatalysierten chanismus agiert das ydroxid-ion als Nucleophil. Wasser fängt dann das intermediäre Addukt unter Bildung des geminalen Diols ab, wobei der Katalysator wieder frei wird. Im säurekatalysierten chanismus erfolgt zuerst eine Protonierung auf das Lewis-basische arbonyl-. Dadurch wird die = Gruppe stärker polarisiert, und das arbonyl--atom ein stärkeres Elektrophil. Jetzt greift ein Wassermolekül, obwohl es immer noch ein schwaches Nucleophil ist, auch sehr rasch an : Ein Proton wird auf das arbonyl- -Atom übertragen. Der Aldehyd bzw. das Keton ist dadurch viel leichter von Nucleophilen angreifbar. Die Nucleophile Addition führt zu einem protonierten geminalen Diol. Der Verlust eines Protons ergibt ein neutrales Produkt, und das Proton wird zurückgewonnen. Es ist zu bemerken, dass der basen-katalysierte Prozess rascher abläuft, weil das - -Ion ein viel besseres Nucleophil ist als ein Wassermolekül. Der säure-katalysierte Prozess hingegen läuft rascher ab, weil durch Protonierung der arbonylgruppe ein besseres Elektrophil für den nucleophilen Angriff gebildet wird.

6 Den eaktionsgleichungen ist zu entnehmen, dass die ydratisierung von Aldehyden und Ketonen reversibel ist. Für Ketone liegt das Gleichgewicht normalerweise auf der linken Seite, für Formaldehyde und Aldehyde mit elektronenziehenden Substituenten rechts. Aldehyde weisen Gleichgewichtskonstanten um 1 auf, z.b.: Kinetik: Allgemein finden Additionen an =-Gruppen umso schneller statt, je elektrophiler das arbonyl--atom ist : eihenfolge der eaktivität von =-Gruppen bei eine nukleophile Addition: l 3 Man kann die elektrophile Kraft dieses Zentrums grob mit der Stabilität des in der dipolaren esonanzstruktur formulierten arbeniumions korrelieren. Das höher (mit Alkylgruppen) substituierte arbeniumion ist das stabilere, und seine eaktivität sinkt in dieser eihenfolge. Elektronenziehende Substituenten destabilisieren das positiv polarisierte -Atom, weswegen es bei einem nucleophilen Angriff reaktiver ist Nucleophile Addition von Alkoholen Aldehyde und Ketone reagieren mit Alkoholen in Gegenwart eines Säure-Katalysators und geben Acetale und Ketale als Produkte. Z.B.: + 2 ' Acetal ' Ketal + 2 Es sollte nicht überraschen, dass auch Alkohole an Aldehyde und Ketone addieren, wobei der chanismus dem der ydratisierung praktisch gleicht. Die so erhaltenen Produkte nennt man albacetale oder albketale :

7 Diese Additionsreaktionen werden ebenfalls von einem Gleichgewicht beherrscht, das normalerweise auf der Seite der arbonylverbindung liegt. In Gegenwart eines Überschusses an Alkohol geht die säurekatalysierte eaktion mit Aldehyden oder Ketonen über die albacetal-stufe hinaus : + + Dieser zweite Schritt kann als eine S N 1 Substitutionsreaktion (sp 3 -Zentrum) angesehen werden : Die ydroxygruppe wird protoniert, wodurch eine gute Abgangsgruppe (Wasser) entsteht. Das resultierende arbeniumion ist durch ein freies Elektronenpaar des -Atoms resonanzstabilisiert. Ein zweites Molekül Alkohol addiert nun an das elektrophile -Atom, was zu einem protonierten Acetal führt, dass dann zum Endprodukt deprotoniert wird. Dabei ist jeder Schritt reversibel. Die gesamte eaktionsfolge von der arbonylverbindung bis zum Acetal ist ein Gleichgewichtsprozess. Durch Manipulation der eaktionsbedingungen kann das Gleichgewicht nach rechts oder nach links verschoben werden: Acetal/Ketal Bildung benötigt einen Alkoholüberschuss

8 (Überschuss), kat. + Ph Ph + 2 Acetal/Ketal ydrolyse benötigt einen Wasserüberschuss Et Et 2 (Überschuss), kat Et 1,2-Ethandiol (Glycol) und ähnliche Diole reagieren mit Aldehyden und Ketonen in Gegenwart katalytischer ngen Säure zu zyklischen Acetalen und Ketalen : Eine wichtige Eigenschaft der Acetale und Ketale ist ihre relative Inertheit gegenüber Basen, Grignard- eagenzien, ydrid-eduktionsmitteln und anderen Nucleophilen. Dies ist nicht allzu überraschend, wenn man sie als Ether auffasst. Man kann Acetale und Ketale als "maskierte" Aldehyde oder Ketone betrachten. Ins besondere die cyclischen Systeme werden in der synthetischen hemie als Schutzgruppen für die arbonylfunktion in Aldehyden und Ketonen verwendet. albacetale und albketale sind meist nicht isolierbar. Man kann aber albacetale oder albketale von ydroxyaldehyden oder ydroxyketonen isolieren, wenn ein ingschluss zur Bildung von relativ spannungsfreien Fünf- oder Sechsringen führt : Dies kann man mit ilfe der Entropie erklären. In intermolekularen eaktionen kombinieren 2 Moleküle unter Bildung einer neuen Struktur. Dies ist entropisch ungünstig. Entsprechend ist die umgekehrte eaktion entropisch begünstigt. Im Gegensatz dazu wandelt sich bei der intramolekularen eaktion ein Molekül in ein neues um. Jetzt ist die Entropieänderung viel geringer, und dementsprechend liegt das Gleichgewicht mehr auf der Produktseite, da die Enthalpiebilanz günstig ist.

9 Die intramolekulare Bildung von albacetalen hat in der hemie der Zucker (Kohlenhydrate) grosse Bedeutung. Unten wird D-Glucose in eine Fischer-Projektion dargestellt: 2 2 In Lösung liegt Glucose in einem Gleichgewicht zwischen der offenkettigen und der cyclischen albacetalform vor, wobei die zweite stark überwiegt. bwohl sich prinzipiell jede der fünf ydroxygruppen an die arbonylgruppe des Aldehyds addieren könnte, ist die Bildung eines 6-ings in diesem Fall bevorzugt, obwohl teilweise auch 5-inge gebildet werden: 2 2 Monosaccharide, die als 6-ing vorliegen, nennt man Pyranosen nach dem sauerstoffhaltigen 6-ing Pyran. Monosaccharide, die als 5-ing vorliegen, nennt man Furanosen nach dem sauerstoffhaltigen 5-ing Furan aworth entwickelte eine Projektion, aus der sich die tatsächliche 3D-Struktur des Zuckermoleküls besser erkennen lässt, die aworth-projektion Nucleophile Addition von Grignard eagenzien Grignard eagenzien addieren an Aldehyde und Ketone in gleicher Weise wie andere Nucleophile unter Bildung von Alkoholen (Seite-87) :

10 Die negativ polarisierte Alkylgruppe greift das arbonyl--atom an. Das arbonyl--atom übernimmt das tall unter Bildung eines tall-alkoxids. Durch Zugabe von wässriger Säure wird tall-alkoxid hydrolysiert. So entstehen der Alkohol und ein Salz. Durch diesen chanismus können alle die auf Seite-87 angegebenen eaktionen zwischen Grignard- eagenzien und Aldehyden oder Ketonen erklärt werden Die nucleophile Addition von Aminen an Aldehyde und Ketone Kondensation zu Iminen, ximen und ydrazonen Man kann Amine als die N-Analoga der Alkohole betrachten. Das N-Atom ist jedoch stärker nucleophil als das -Atom, und daher addieren Amine sehr effektiv an arbonylgruppen von Aldehyden und Ketonen zunächst unter Bildung von albaminalen und dann von Iminen: ' N 2 p 4-5 ' N- reagiert rasch weiter - 2 ' N ' Ein Imin chanismus : Ein freies Elektronenpaar an N greift die arbonylgruppe an. Umprotonierung findet blitzschnell statt, und ein neues Gleichgewicht entsteht.

11 Das Molekül wird an dem -Atom protoniert, was zu einer Eliminierung von Wasser führt. Die Bildung eines Imins ist auch reversibel und durch Behandlung von wässriger Säure wird das Imin wieder zu einem Aldehyd oder Keton hydrolysiert. Eine eihe von anderen Imin-ähnlichen Derivaten können auch durch die eaktion zwischen einem Aldehyd oder Keton und einem Amin-Derivat ( 2 N-X) hergestellt werden, z.b.: N + N 2 Et, + ydroxylamin Keton/Aldehyd Ein xim N 2 2 N + 2 N N Et, N 2 N N N 2 Keton/Aldehyd 2,4-Dinitrophenylhydrazin Ein 2,4-Dinitrophenylhydrazon Die Addition von Kohlenstoff-Nucleophilen an Aldehyde und Ketone yanhydrine Neben Alkoholen und Aminen können zahlreiche andere Nucleophile die arbonylgruppe angreifen. Besonders wichtig sind Kohlenstoff-Nucleophile, da man auf diesem Wege neue --Bindungen bilden kann. N, zum Beispiel, addiert an arbonylverbindungen, wodurch ydroxyalkannitrile gebildet werden, die auch yanhydrine genannt werden: KN, Et Ein yanhydrin KN, Et Ein yanhydrin Der chanismus der yanhydrinbildung beginnt mit einem nucleophilen Angriff des yanid-ions und endet mit einer Protonierung des -Atoms :

12 Die eaktion kann durch Basen leicht umgekehrt werden, da sie das Gleichgewicht durch Entzug der Protonen auf die Seite der freien yanid-ionen verschieben. Da die Nitrilgruppe durch weitere eaktionen umgewandelt werden kann, sind yanhydrine wichtige Zwischenprodukte : N 2, + ydrolyse eduktion 2, Pt Die nucleophile Addition von ydrid - die EDUKTIN von Aldehyden und Ketonen Wir haben schon gesehen wie Aldehyde und Ketone zu Alkoholen reduziert werden können: NaB 4 Et LiAl 4 Et 2 (KEIN WASSE DE dabei) tallhydride wie NaB 4 und LiAl 4 übertragen ein Äquivalent ydrid ( - ) auf die =- Doppelbindung. Ein Aldehyd oder Keton wird so zu einem Alkohol reduziert: B

13 LiAl 4 ist reaktiver als NaB 4 und kann nur in aprotischen Lösungsmitteln wie Ether eingesetzt werden. Insgesamt werden alle vier Wasserstoffatome von Al 4 - auf vier arbonylgruppen übertragen. Auch mit Lithiumaluminiumhydrid lassen sich ydrid-ionen nucleophil an arbonylgruppen addieren : Al 3 Al 2 Al xidation von Alkoholen und Aldehyden mit r 3 - chanismus Wir haben früher gesehen, dass Alkohole mit r 3 oxidiert werden können. Primäre Alkohole ergeben zuerst Aldehyde. Weitere xidation führt zu arbonsäuren. Die chanismen für solche xidations- Prozesse können folgenderweise formuliert werden: Ausgehend von einem Aldehyd kann in Gegenwart von Wasser ein arbonyl-ydrat gebildet werden, was dann über einen analogen chanismus oxidiert werden kann. Sekundäre Alkohole können aber mit diesem Verfahren nur bis zu Ketonen oxidiert werden:

14 10.6 Beispiele aus der biologischen hemie Viele der eaktionen die man im Labor verwendet kommen auch in der Natur vor: 3 Milchsäure (Lactic acid) N N Lactat- + Dehydrogenase Pyruvat NAD + N NAD N 2 Ein Biosyntheseweg zu gewissen a-aminosäuren verläuft zum Beispiel über eine nucleophile Addition von Ammoniak an eine a-ketocarbonsäure (hier Pyruvinsäure = Pyruvic acid) : N Alanin-Dehydrogenase 3 + N 3 3 NAD NAD +

CHE 172.1: Organische Chemie für die Life Sciences

CHE 172.1: Organische Chemie für die Life Sciences 1 CE 172.1: rganische Chemie für die Life Sciences Prof Dr. J. A. obinson 10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Die C= Doppelbindung - der Carbonylgruppe - ist die wichtigste

Mehr

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Inhalt Index 10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Die C=O Doppelbindung der Carbonylgruppe ist die wichtigste funktionelle Gruppe der organischen Chemie. Dieses Kapitel befasst

Mehr

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Friday, February 2, 2001 Allgemeine Chemie B II Page: 1 Inhalt Index 10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Die C=O Doppelbindung der Carbonylgruppe ist die wichtigste funktionelle

Mehr

a81 a Carbonylverbindungen (I)

a81 a Carbonylverbindungen (I) Ω Amine können als formale -Substitutionsprodukte des Ammoniaks (Ersatz von -Atomen am Stickstoff durch Alkylgruppen) betrachtet werden.sie sind durch das freie Elektronenpaar am N-Atom, genauso wie Ammoniak,

Mehr

a81 a Carbonylverbindungen (I)

a81 a Carbonylverbindungen (I) Ω Amine können als formale -Substitutionsprodukte des Ammoniaks (Ersatz von -Atomen am Stickstoff durch Alkylgruppen) betrachtet werden.sie sind durch das freie Elektronenpaar am N-Atom, genauso wie Ammoniak,

Mehr

6. Carbonyl-Verbindungen

6. Carbonyl-Verbindungen 6. Carbonyl-Verbindungen Hierher gehören vor allem die Aldehyde und Ketone. (später: Die Carbonyl-Gruppe weisen auch die Carbonsäuren und ihre Derivate auf). Carbonylgruppe. Innerhalb der Sauerstoff-Kohlenstoff-Doppelbindung

Mehr

Organische Chemie 1 Teil 2 3. Vorlesung Dienstag

Organische Chemie 1 Teil 2 3. Vorlesung Dienstag Inhalte der 3. Vorlesung: 2. Carbonylchemie 2.1.2 -Nukleophile 2.1.2.1 eaktivitäten unterschiedlicher Carbonylderivate 2.1.2.2 eduktionen mit NaB4 2.1.2.3 Lithiumaluminiumhydrid (LiAl4) als eduktionsmittel

Mehr

13.1. Struktur der Carbonyl-Gruppe, Prinzipielle Reaktivität

13.1. Struktur der Carbonyl-Gruppe, Prinzipielle Reaktivität 13. arbonyl -Verbindungen 13.1. Struktur der arbonyl-gruppe, Prinzipielle Reaktivität 13.2. Aldehyde & Ketone 13.2.1 Nomenklatur 13.2.2 Darstellungen xidationen 13.2.3 Reaktionen Additionen an der = Acetale

Mehr

8 Carbonsäuren und Derivate

8 Carbonsäuren und Derivate 8 arbonsäuren und Derivate 8.1 Allgemeine Darstellungsverfahren xidation primärer Alkohole und Aldehyde (s. Kap. 6) 2 2 xidation durch r 3 /, KMn 4 /, N 3 aloform-eaktion (s. Kap. 9) 3 Br 2 xidation von

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie CE 102.1: Grundlagen der Chemie - rganische Chemie Prof Dr. E. Landau und Prof. Dr. J. A. obinson 6. eterocyclische Verbindungen Als carbocyclisch bezeichnet man ingmoleküle, deren inge nur aus Kohlenstoffatomen

Mehr

Organische Chemie für Mediziner WS 2016/2017. Übungsblatt 3: Ausgewählte Substanzklassen

Organische Chemie für Mediziner WS 2016/2017. Übungsblatt 3: Ausgewählte Substanzklassen 1 rganische hemie für Mediziner WS 2016/2017 Übungsblatt 3: Ausgewählte Substanzklassen 01 Die Siedetemperatur von Alkoholen unterscheidet sich deutlich von der ungefähr gleich schwerer Alkane (z.b. 3

Mehr

ORGANISCHE CHEMIE 1. Stoff der 19. Vorlesung: Reaktionen...

ORGANISCHE CHEMIE 1. Stoff der 19. Vorlesung: Reaktionen... Stoff der 19. Vorlesung: eaktionen... GAISE EMIE 1 19. Vorlesung, Dienstag, 25. Juni 2013 I. eaktionen der arbonylgruppe I. mit -ukleophilen II. mit -ukleophilen III. mit -ukleophilen arald Schwalbe Institut

Mehr

N N. Chinolin. Pyridin. Imidazol

N N. Chinolin. Pyridin. Imidazol 6. eterocyclische Verbindungen 51 Als carbocyclisch bezeichnet man ingmoleküle, deren inge nur aus Kohlenstoffatomen aufgebaut sind. In den sogenannten eterocyclen ist mindestens ein Kohlenstoff des ings

Mehr

b) Sauerstoff-Nucleophile: Wasser H 2 O => Hydrate

b) Sauerstoff-Nucleophile: Wasser H 2 O => Hydrate b) Sauerstoff-Nucleophile: Wasser 2 => ydrate [ - ] [ + ] Basenkatalyse Säurekatalyse - + R 1 + R 2 + 2 + 2 -[ - ] -[ + ] Aldehydhydrat R 1 und/oder R 2 = Ketonhydrat R 1 und R 2 = Gleichgewichtslage:

Mehr

Organische Chemie 1 Teil 2 4. Vorlesung Freitag

Organische Chemie 1 Teil 2 4. Vorlesung Freitag Inhalte der 4. Vorlesung: 2.1.4 -ukleophile 2.1.5 -ukleophile 2.1.5.1 Thioalkohole / 2.1.5.2 atriumhydrogensulfit 2.1.6 -ukleophile 2.1.6.1 Primäre Amine/ 2.1.6.2 ekundäre Amine rganische hemie 1 Teil

Mehr

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler Prof. hristoffers, Vorlesung rganische hemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler 10. Aldehyde und Ketone 10.1 Nomenklatur ' Aldehyd Keton thanal "Formaldehyd" hanal

Mehr

Vorlesung 36/37. Struktur der Carbonylgruppe (Vollhardt, 3. Aufl., S , 4. Aufl., S ; Hart, S ; Buddrus, S.

Vorlesung 36/37. Struktur der Carbonylgruppe (Vollhardt, 3. Aufl., S , 4. Aufl., S ; Hart, S ; Buddrus, S. Vorlesung 36/37. Struktur der arbonylgruppe (Vollhardt, 3. Aufl., S. 784-785, 4. Aufl., S. 860-861; art, S. 310-311; Buddrus, S. 438) δ δ - Additionen an die arbonylgruppe μ 9 x 10-30 m Die Additionen

Mehr

1.9. Aldehyde und Ketone (Carbonylverbindungen)

1.9. Aldehyde und Ketone (Carbonylverbindungen) 1.9. Aldehyde und Ketone (arbonylverbindungen) omenklatur: achsilbe al on Funktionelle Gruppe arbonylgruppe xogruppe Aldehyd Alkohol dehydrogenatus Keton xidationsstufe II 3 3 3 2 3 3 Methanal Formaldehyd

Mehr

Inhaltsverzeichnis zu Kapitel 10. Aldehyde und Ketone

Inhaltsverzeichnis zu Kapitel 10. Aldehyde und Ketone Inhaltsverzeichnis zu Kapitel 10. Aldehyde und Ketone 10. Aldehyde und Ketone 106 10.1 Nomenklatur 106 10.2 Die arbonylgruppe 106 10.3 Darstellung 107 10.3.1 xidation von Alkoholen 107 10.3.2 eduktion

Mehr

Radikalische Substitution von Alkanen

Radikalische Substitution von Alkanen adikalische Substitution von Alkanen KW mit sp³-hybridisierten C-Atomen (z.b. in Alkanen) und alogene Gemisch aus alogenalkanen und alogenwasserstoff Licht C n n à C n n1 eaktionsmechanismus z.b. Chlorierung

Mehr

7 Aldehyde und Ketone

7 Aldehyde und Ketone 7 Aldehyde und Ketone 7.1 Allgemeines 2 eaktivitätszentren: : δ : X: α-wasserstoff (Kap. 9) δ eaktionen an der arbonylgruppe X = : Aldehyde X = Alkyl, Aryl: Ketone X = al,, 2 : arbonsäurederivate Kapitel

Mehr

CHE 172.1: Organische Chemie für die Life Sciences

CHE 172.1: Organische Chemie für die Life Sciences 1 E 172.1: Organische hemie für die Life Sciences Prof Dr. J. A. Robinson 4. Alkene und Alkine : Reaktionen und erstellung 4.1. Elektrophile Additionen an Alkene ; Regioselektivität Das Proton einer starken

Mehr

Aldehyde und Ketone. Aldehyde C 2 H 5 H 3 C. H Propanal Propionaldehyd. H Ethanal Acetaldehyd. H Methanal Formaldehyd. Benzaldehyd.

Aldehyde und Ketone. Aldehyde C 2 H 5 H 3 C. H Propanal Propionaldehyd. H Ethanal Acetaldehyd. H Methanal Formaldehyd. Benzaldehyd. Aldehyde und Ketone Aldehyde Methanal Formaldehyd 3 Ethanal Acetaldehyd 2 5 Propanal Propionaldehyd Benzaldehyd Ketone 3 3 2 5 Propanon Aceton 3 2 5 2-Butanon 2 5 3-Pentanon Acetophenon 3 Natürliche Aldehyde

Mehr

Übung zur Vorlesung Organische Chemie II Reaktivität (Dr. St. Kirsch, Dr. A. Bauer) Wintersemester 2008/09 O 2 N

Übung zur Vorlesung Organische Chemie II Reaktivität (Dr. St. Kirsch, Dr. A. Bauer) Wintersemester 2008/09 O 2 N Übung zur Vorlesung rganische Chemie II eaktivität (Dr. St. Kirsch, Dr. A. Bauer) zu 7.1-70: C [pts] (PhMe) 110 C Entfernung mit ilfe eines Wasserabscheiders Zusatzfrage: i) Was bedeutet die Abkürzung

Mehr

Eliminierung nach E1 (Konkurrenzreaktion zu S N 1) OH H + - H 2 O. (aus H 3 PO 4 H 2 SO 4 ) - H + Stichpunkte zum E1-Mechanismus:

Eliminierung nach E1 (Konkurrenzreaktion zu S N 1) OH H + - H 2 O. (aus H 3 PO 4 H 2 SO 4 ) - H + Stichpunkte zum E1-Mechanismus: Eliminierung nach E1 (Konkurrenzreaktion zu S N 1) + (aus 3 P 4 2 S 4 ) - 2 - + Stichpunkte zum E1-Mechanismus: 2-Schritt-eaktion über ein Carbenium-Ion (1. Schritt ist Abspaltung der Abgangsgruppe (im

Mehr

13. Amine und ihre Derivate

13. Amine und ihre Derivate Inhalt Index 13. Amine und ihre Derivate Amine sind Derivate des Ammoniaks, bei dem ein bis drei Wasserstoffatome durch Alkyloder Arylgruppen ersetzt wurden. Entsprechend gibt es primäre Amine, sekundäre

Mehr

1. Bei den folgenden Stoffumwandlungen handelt es sich um typische Reaktionen der organischen Chemie.

1. Bei den folgenden Stoffumwandlungen handelt es sich um typische Reaktionen der organischen Chemie. rganische hemie E 102 Aufgaben 7 1. Bei den folgenden Stoffumwandlungen handelt es sich um typische Reaktionen der organischen hemie. 2 /Na Na + Et Et / KN N 2 Um welche Reaktionen handelt es sich? 1.

Mehr

H 3 C CH 3. Aceton (Dimethylketon)

H 3 C CH 3. Aceton (Dimethylketon) arbonyle Aldehyd: -Atom der arbonylgruppe ist mindestens mit einem Wasserstoffatom verbunden. Keton: -Atom der arbonylgruppe ist mit zwei -Atomen verbunden. arbonylverbindungen sind in der atur weit verbreitet:

Mehr

Additionen an Carbonylverbindungen

Additionen an Carbonylverbindungen Beispielaufgaben Ih. unde 018 Additionen an arbonylverbindungen Additionen an arbonylverbindungen Beispiel 1: Aldolreaktionen finden zwischen zwei arbonylverbindungen statt. Ein Beispiel dafür ist die

Mehr

Elektrophile Additionen von HX an die CC-Doppelbindung (Vollhardt, 3. Aufl., S , 4. Aufl., S ; Hart, S ; Buddrus, S.

Elektrophile Additionen von HX an die CC-Doppelbindung (Vollhardt, 3. Aufl., S , 4. Aufl., S ; Hart, S ; Buddrus, S. Vorlesung 19 Elektrophile Additionen von X an die -Doppelbindung (Vollhardt, 3. Aufl., S. 504-514, 4. Aufl., S. 566-577; art, S. 96-105; Buddrus, S. 149-155) Die Elektronenwolke der π-bindung verleiht

Mehr

Chemie für Biologen, Carbonylverbindungen / Carbonsäuren und ihre Derivate (Thema ) iii) Carbonsäure iv) Dicarbonsäure

Chemie für Biologen, Carbonylverbindungen / Carbonsäuren und ihre Derivate (Thema ) iii) Carbonsäure iv) Dicarbonsäure Chemie für Biologen, 2017 Übung 12 Carbonylverbindungen / Carbonsäuren und ihre Derivate (Thema 13.1 14.3) Aufgabe 1: a) Es gibt verschiedene Klassen von Carbonylverbindungen. Zeichnen Sie zu folgenden

Mehr

n Pentan 2- Methylbutan 2,2, dimethylpropan ( Wasserstoffatome sind nicht berücksichtigt )

n Pentan 2- Methylbutan 2,2, dimethylpropan ( Wasserstoffatome sind nicht berücksichtigt ) Grundwissen : 10 Klasse G8 Kohlenwasserstoffe Alkane Einfachbindung (σ -Bindung, kovalente Bindung ) : Zwischen Kohlenstoffatomen überlappen halbbesetzte p- Orbitale oder zwischen Kohlenstoff- und Wasserstoffatomen

Mehr

6. Rechenübung Organik (27.01./ )

6. Rechenübung Organik (27.01./ ) 1 6. Rechenübung Organik (27.01./03.02.2009) Literatur: 2.) Mortimer : hemie Basiswissen hemie ISBN 3 13 484308 0 Paula Y. Bruice : Organische hemie ISBN 978 3 8273 7190 4 Gesättigtes Atom Atom, nur mit

Mehr

4. Alkene und Alkine : Reaktionen und Darstellung

4. Alkene und Alkine : Reaktionen und Darstellung Inhalt Index 4. Alkene und Alkine : Reaktionen und Darstellung 4.1. Elektrophile Additionen an Alkene ; Regioselektivität Das Proton einer starken Säure kann sich unter Bildung eines Carbeniumions an eine

Mehr

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 5, 17./

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 5, 17./ Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 5, 17./18.05.11 Wiederholung: Säurestärke organischer Verbindungen 1. a) Wovon hängt die Säurestärke einer organischen

Mehr

KW Alkene. Nomenklatur. Darstellung. Reaktionen. Elektrophile Additionen. Prof. Ivo C. Ivanov 1

KW Alkene. Nomenklatur. Darstellung. Reaktionen. Elektrophile Additionen. Prof. Ivo C. Ivanov 1 KW Alkene Nomenklatur. Darstellung. Reaktionen. Elektrophile Additionen. Prof. Ivo C. Ivanov 1 Alkene Alkene sind Kohlenwasserstoffe mit einer C=C-Bindung. Sie enthalten zwei -Atome weniger als die entsprechenden

Mehr

ORGANISCHE CHEMIE 1. Stoff der 20. Vorlesung: Reaktionen...

ORGANISCHE CHEMIE 1. Stoff der 20. Vorlesung: Reaktionen... Stoff der 20. Vorlesung: eaktionen... GAISCE CEMIE 1 20. Vorlesung, Freitag, 28. Juni 2013 I. eaktionen der Carbonylgruppe I. mit -ukleophilen II. mit -ukleophilen III. mit C-ukleophilen arald Schwalbe

Mehr

Reaktionen der Ester. Basische Ester-Hydrolyse: Verseifung

Reaktionen der Ester. Basische Ester-Hydrolyse: Verseifung 25-27 51-55 30-32 61-65 eaktionen der Ester I_folie286 Basische Ester-ydrolyse: Verseifung 1 a 2 a 1 2 2 1 2 3 3 a 2 2 2 Fett Glycerin Seife 1 2 3 Wachse (z. B. Bienenwachs) Ester von Fettsäuren mit langkettigen

Mehr

Halogenalkane. Radikalische Halogenierung von Alkanen. Addition von Halogenwasserstoffen an Alkene. H 3 C + HBr H C C C H.

Halogenalkane. Radikalische Halogenierung von Alkanen. Addition von Halogenwasserstoffen an Alkene. H 3 C + HBr H C C C H. alogenalkane erstellung: adikalische alogenierung von Alkanen + l + l + l l l + l Addition von alogenwasserstoffen an Alkene 3 Br + Br 3 Nucleophile Substitution an Alkylhalogeniden Nucleophil Elektrophil

Mehr

Seminar zum Organisch-Chemischen Praktikum für Biologen Sommersemester 2018

Seminar zum Organisch-Chemischen Praktikum für Biologen Sommersemester 2018 Seminar zum rganisch-chemischen Praktikum für Biologen Sommersemester 2018 Carbonsäuren und Derivate Sicherheitsbelehrung: egeln für das Arbeiten im Labor Prof. Dr. asmus Linser/Dr. Martin Sumser September

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie E 102.1: Grundlagen der hemie - rganische hemie Prof Dr. E. Landau und Prof. Dr. J. A. obinson 11. arbonsäuren und ihre Derivate - ucleophile Substitutionen Ist an das Kohlenstoffatom der arbonylgruppe

Mehr

Beschreiben Sie den Aufbau und die Eigenschaften der Kohlenwasserstoffe.

Beschreiben Sie den Aufbau und die Eigenschaften der Kohlenwasserstoffe. den Aufbau und die Eigenschaften der Kohlenwasserstoffe. nur Kohlenstoff- und Wasserstoffatome mit einander verbunden Kohlenstoffatom ist vierbindig Wasserstoffatom ist einbindig Skelett aller KW wird

Mehr

Grundwissen Chemie Jahrgangsstufe 10, naturwissenschaftlicher Zweig. Methan Ethan Propan Butan Pentan Hexan Heptan Octan Nonan Decan

Grundwissen Chemie Jahrgangsstufe 10, naturwissenschaftlicher Zweig. Methan Ethan Propan Butan Pentan Hexan Heptan Octan Nonan Decan Grundwissen hemie Jahrgangsstufe 10, homologe Reihe der Alkane Summenformel 4 2 6 3 8 4 10 5 12 6 14 7 16 8 18 9 20 10 22 Allgemeine Summenformel: n 2n+2 Name Methan Ethan Propan Butan Pentan exan eptan

Mehr

4. Alkene und Alkine : Reaktionen und Darstellung

4. Alkene und Alkine : Reaktionen und Darstellung Dienstag, 22. Oktober 2002 Allgemeine Chemie B II Page: 1 4. Alkene und Alkine : Reaktionen und Darstellung 4.1. Elektrophile Additionen an Alkene ; Regioselektivität Das Proton einer starken Säure kann

Mehr

Organische Experimentalchemie

Organische Experimentalchemie PD Dr. Alexander Breder (abreder@gwdg.de) Georg-August-Universität Göttingen SoSe 2017 Veranstaltungsnummer: 15 133 30200 rganische Experimentalchemie Für Studierende der umanmedizin, Zahnmedizin und Biologie

Mehr

Carbonylverbindungen und Heteroatom-Nucleophile

Carbonylverbindungen und Heteroatom-Nucleophile Carbonylverbindungen und eteroatom-ucleophile eaktivitätsabstufung von Carbonyl- und Carboxylverbindungen gegenüber der Addition eines ucleophils. Das Säurechlorid hat die höchste eaktivität. Aldehyd und

Mehr

π-bindung: 264 kj/mol (s c hw äc he r als die σ-bindung!)

π-bindung: 264 kj/mol (s c hw äc he r als die σ-bindung!) . Alkene (lefine) Funktionelle Gruppe: C=C-Doppelbindung π-bindung: 264 kj/mol (s c hw äc he r als die σ-bindung!) => C=C-Doppelbindung: 612 kj/mol sp 2 -hybridisierung σ-bindung: 348 kj/mol Wieder eine

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen hemie für Biologen Vorlesung im WS 2004/05 V2, Mi 10-12, S04 T01 A02 Paul ademacher Institut für rganische hemie der Universität Duisburg-Essen (Teil 11: 22.12.2004) MILESS: hemie für Biologen 198 Beispiele

Mehr

Organische Chemie 1 Teil 2 4. Vorlesung Freitag

Organische Chemie 1 Teil 2 4. Vorlesung Freitag Inhalte der 4. Vorlesung: 2.1.4 -ukleophile 2.1.5 -ukleophile 2.1.5.1 Thioalkohole / 2.1.5.2 atriumhydrogensulfit 2.1.6 -ukleophile 2.1.6.1 Primäre Amine/ 2.1.6.2 ekundäre Amine 2.2 tallorganische Verbindungen

Mehr

c) Gleichzeitiger Bruch der C-X-Bindung und der C-H-Bindung

c) Gleichzeitiger Bruch der C-X-Bindung und der C-H-Bindung Eliminierungen Das Nucleophil mit seinem freien Elektronenpaar muß nicht am Kohlenstoffatom der C-- Bindung angreifen, es kann auch am nächsten Kohlenstoffatom ein Proton abstrahieren und somit als Base

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie E 102.1: Grundlagen der hemie - rganische hemie Prof Dr. E. Landau und Prof. Dr. J. A. obinson 4. Alkene: eaktionen und erstellung 4.1. Elektrophile Additionen an Alkene: egioselektivität Das Proton einer

Mehr

Synthesen von Carbonsäuren: industrielle Verfahren

Synthesen von Carbonsäuren: industrielle Verfahren Synthesen von arbonsäuren: industrielle Verfahren I_folie267 a. Essigsäure: 2 2 Ethylen Acetylen 2 ( + 2 ) 2 Ethanol 2 (gs 4, + ) 2 2 2, 2 Kat. Vinylalkohol Enol 2 Enol Katalysator: Pdl 2 /ul 2 : Wacker-Prozess

Mehr

Umsetzungen von Estern Umesterung in Gegenwart katalytischer Mengen Säure oder Base. O R 3

Umsetzungen von Estern Umesterung in Gegenwart katalytischer Mengen Säure oder Base. O R 3 Umsetzungen von Estern Umesterung in Gegenwart katalytischer Mengen Säure oder Base. 1 2 [ ] 2 3 2 oder 3 [ 3 ] ' '' Amid, wenn '' =, Alkyl, Aryl 2 ydrazid ydroxamsäure (geringere eaktionsgeschwindigkeiten

Mehr

Carbonylverbindungen (Carbonsäuren, Aldehyde)

Carbonylverbindungen (Carbonsäuren, Aldehyde) Kapitel 9 arbonylverbindungen (arbonsäuren, Aldehyde) ' Aldehyde Ketone arbonsäuren Kohlensäuren Nomenklatur Aldehyde: NAME = KW-Stamm + al - als Substituent: Formyl- Beispiel: Pentanal S 3 2-Formyl-butansulfonsäure

Mehr

Beschreiben Sie den Aufbau und die Eigenschaften der Kohlenwasserstoffe. Beschreiben Sie die Alkane allgemein.

Beschreiben Sie den Aufbau und die Eigenschaften der Kohlenwasserstoffe. Beschreiben Sie die Alkane allgemein. den Aufbau und die Eigenschaften der Kohlenwasserstoffe. nur Kohlenstoff- und Wasserstoffatome mit einander verbunden Kohlenstoffatom ist vierbindig Wasserstoffatom ist einbindig Skelett aller KW wird

Mehr

ALDEHYDE & KETONE. Referat über die Carbonylverbindungen: Aldehyde und Ketone Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium

ALDEHYDE & KETONE. Referat über die Carbonylverbindungen: Aldehyde und Ketone Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium ALDEHYDE & KETONE Referat über die Carbonylverbindungen: und Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium 1 1 GLIEDERUNG 1. Allgemeiner Vergleich der & Struktur Nomenklatur / Beispiele

Mehr

Kohlenwasserstoffe. Alkane. Kohlenwasserstoffe sind brennbare und unpolare Verbindungen, die aus Kohlenstoff- und Wasserstoffatomen aufgebaut sind.

Kohlenwasserstoffe. Alkane. Kohlenwasserstoffe sind brennbare und unpolare Verbindungen, die aus Kohlenstoff- und Wasserstoffatomen aufgebaut sind. 2 2 Kohlenwasserstoffe Kohlenwasserstoffe sind brennbare und unpolare Verbindungen, die aus Kohlenstoff- und Wasserstoffatomen aufgebaut sind. 4 4 Alkane Alkane sind gesättigte Kohlenwasserstoffverbindungen

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie E 102.1: Grundlagen der hemie - Organische hemie Prof Dr. E. Landau und Prof. Dr. J. A. Robinson 8. alogenalkane : Nucleophile Substitutions- und Eliminationsreaktionen alogenalkane sind in der organischen

Mehr

Beispielklausur Allgemeine Chemie II (Organische Chemie)

Beispielklausur Allgemeine Chemie II (Organische Chemie) Beispielklausur Allgemeine hemie II (rganische hemie) für Studierende mit hemie als Nebenfach zum Üben LÖSUNGEN (Teilweise gibt es viele mögliche richtige Antworten, dann sind lediglich Beispiele angegeben.)

Mehr

Die elektrophile Addition

Die elektrophile Addition Die elektrophile Addition Roland Heynkes 3.10.2005, Aachen Die elektrophile Addition als typische Reaktion der Doppelbindung in Alkenen bietet einen Einstieg in die Welt der organisch-chemischen Reaktionsmechanismen.

Mehr

ORGANISCHE CHEMIE 1. Stoff der 22. Vorlesung: Reaktionen...

ORGANISCHE CHEMIE 1. Stoff der 22. Vorlesung: Reaktionen... Stoff der 22. Vorlesung: eaktionen... GANISCE CEMIE 1 22. Vorlesung, Dienstag, 09. Juli 2013 I. eaktionen der Carbonylgruppe I. mit C-Nukleophilen Enole und Enolate Michaeladdition Aldol arald Schwalbe

Mehr

7.9 Reaktionen mit Kohlenstoff-Nucleophilen

7.9 Reaktionen mit Kohlenstoff-Nucleophilen 7.9 eaktionen mit Kohlenstoff-Nucleophilen Die Addition von yanwasserstoff ist reversibel und wird durch Basen katalysiert. N N N yanhydrin Beim Behandeln der yanhydrine mit einer stöchiometrischen Menge

Mehr

Chemie Alkohole, Aldehyde & Ketone, Carbonsäuren

Chemie Alkohole, Aldehyde & Ketone, Carbonsäuren Alkohole hemie Alkohole, Aldehyde & Ketone, arbonsäuren Alkohole erkennt man aufgrund ihrer funktionellen Gruppe, die ydroxy-gruppe. Diese ist Polar, der Rest ist unpolar. Benannt wird der Alkohol nach

Mehr

13. Amine und ihre Derivate

13. Amine und ihre Derivate 13. Amine und ihre Derivate 1 Amine sind Derivate des Ammoniaks, bei dem ein bis drei Wasserstoffatome durch Alkyl- oder Arylgruppen ersetzt wurden. Entsprechend gibt es primäre Amine, sekundäre Amine

Mehr

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 4, 09./

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 4, 09./ Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 4, 09./10.05.11 Nucleophile Substitution 1. Beschreiben Sie den Reaktionsmechanismus von a) S N 1 X = beliebige Abgangsgruppe

Mehr

Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne Blätter zusammen.

Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne Blätter zusammen. 1 Lösung 5 AC/OC I, HS 2017 Name Assistent/in Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne Blätter zusammen. Falls Sie Fragen zur Vorlesung/Übung/generellen Konzepten haben schreiben

Mehr

Übung: Alkene & Alkohole HS-07

Übung: Alkene & Alkohole HS-07 kt. 007, r.marti / Synthese und eaktionsmechanismen Übung: Alkene & Alkohole S-07 = C 6 7 8 CMe 9 0 Fragen: - Wie können die Intermediate - hergestellt werden, auf was ist zu achten bzgl. eaktivitäten/eagenzien

Mehr

Lösungen 2.Übungsblatt SS NBS, AIBN Br K +

Lösungen 2.Übungsblatt SS NBS, AIBN Br K + Lösungen 2.Übungsblatt 2002 1. Aufgabe: ubstitutionsreaktionen NB, AIBN racemisch Erklärung: Die radikalische ubstitution erfolgt wegen der hohen elektivität des omatoms am tertiären (und zugleich auch

Mehr

11. Carbonsäuren und ihre Derivate - Nucleophile Substitutionen

11. Carbonsäuren und ihre Derivate - Nucleophile Substitutionen 11. arbonsäuren und ihre Derivate - ucleophile Substitutionen 1 Ist an das Kohlenstoffatom der arbonylgruppe eine ydroxygruppe gebunden, ergibt sich eine neue funktionelle Gruppe, die arboxygruppe, die

Mehr

2. Gruppe: Carbonsäuren und Derivate

2. Gruppe: Carbonsäuren und Derivate 1 1) Eigenschaften der Carbonsäuren: Carbonsäuren gehen Wasserstoffbrückenbindungen ein. C 2 2 C 2 3 pk a = 5 vgl. pk a ( 2 ) = 16 K a = Bsp.: [C 2 ] [ ] [C 2 ] stabilisiert durch somerie Säure C 3 C 2

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie CE 102.1: Grundlagen der Chemie - rganische Chemie Prof Dr. E. Landau und Prof. Dr. J. A. Robinson 9. Alkohole, Ether und Phenole In diesem Kapitel werden wir als Schwerpunkte folgendes betrachten ; 1)

Mehr

Alkane. homologe Reihe. homologe Reihe der Alkane Nomenklatur. Isomerie. Gesättigte, kettenförmige Kohlenwasserstoffe

Alkane. homologe Reihe. homologe Reihe der Alkane Nomenklatur. Isomerie. Gesättigte, kettenförmige Kohlenwasserstoffe Gesättigte, kettenförmige Kohlenwasserstoffe Alkane gesättigt = nur Einfachbindungen kettenförmig = keine inge Kohlenwasserstoff = nur - und -Atome Summenformel der Alkane : n 2n+2 (n N) Alle Alkane erhalten

Mehr

Seminarplan zum. Chemischen Praktikum für Biologen ohne Prüfungsfach Chemie. (Lehramt) TEIL I: ALLGEMEINE UND ANORGANISCHE CHEMIE

Seminarplan zum. Chemischen Praktikum für Biologen ohne Prüfungsfach Chemie. (Lehramt) TEIL I: ALLGEMEINE UND ANORGANISCHE CHEMIE Seminarplan zum Chemischen Praktikum für Biologen ohne Prüfungsfach Chemie (Lehramt) TEIL I: ALLGEMEINE UND ANORGANISCHE CHEMIE TEIL II: ORGANISCHE CHEMIE 1 TEIL I: ALLGEMEINE UND ANORGANISCHE CHEMIE Einführung

Mehr

ORGANISCHE CHEMIE 1. Stoff der 18. Vorlesung: Reaktionen... I. G, G ǂ. II. Kinetische und thermodynamisch kontrollierte Reaktionen

ORGANISCHE CHEMIE 1. Stoff der 18. Vorlesung: Reaktionen... I. G, G ǂ. II. Kinetische und thermodynamisch kontrollierte Reaktionen Stoff der 18. Vorlesung: eaktionen... GNISCE CEMIE 1 18. Vorlesung, Freitag, 21. Juni 2013 I. G, G ǂ II. Kinetische und thermodynamisch kontrollierte eaktionen IV. Erste rganische eaktionen arald Schwalbe

Mehr

Organische Experimentalchemie

Organische Experimentalchemie Dr. Franziska Thomas (fthomas@gwdg.de) Georg-August-Universität Göttingen SoSe 2018 Veranstaltungsnummer: 15 133 30200 Organische Experimentalchemie Für Studierende der Humanmedizin, Zahnmedizin und Biologie

Mehr

Orbital. Atombindung, Bindung. Elektronegativität. Dipol

Orbital. Atombindung, Bindung. Elektronegativität. Dipol GW Chemie 10. SG GA rbital aum, in dem sich Elektronen mit 99%iger Wahrscheinlichkeit aufhalten; in einem rbital halten sich maximal 2 Elektronen auf; man unterscheidet Atom- und Molekülorbitale Atombindung,

Mehr

im Molekül eine Dreifachbindung (eine σ-bindung,

im Molekül eine Dreifachbindung (eine σ-bindung, 1 14.03.2006 0.1 Grundwissen Alkane Gesättigte Kohlenwasserstoffe, die keine Mehrfachbindungen, sondern nur Einfachbindungen (σ-bindungen) zwischen den Kohlenstoffatomen im Molekül aufweisen. Die allgemeine

Mehr

Seminar Organische Chemie für Biochemiker BBCM 1.7. Reaktionen an der CO-Gruppe

Seminar Organische Chemie für Biochemiker BBCM 1.7. Reaktionen an der CO-Gruppe Juli 2017 Organische Chemie SS 2017 Reaktionen an CO Seite 1 Organische Chemie für Biochemiker BBCM 1.7 Reaktionen an der CO-Gruppe Dr. Jürgen Vitz Institut für Organische Chemie und Makromolekulare Chemie

Mehr

Carbonylverbindungen

Carbonylverbindungen δ + polarisierte -Doppelbindung: δ- arbonylverbindungen Folie293 sp 2 (planar) Aldehyde: Aldehydfunktion 3 3 2 3 Formaldehyd Methanal Acetaldehyd Ethanal Propionaldehyd Propanal rotonaldehyd E-2-Butenal

Mehr

σ-bindung beide Kohlenstoffatome sp-hybridisiert => Bindungswinkel 180 eine lineare Struktur

σ-bindung beide Kohlenstoffatome sp-hybridisiert => Bindungswinkel 180 eine lineare Struktur VIII. Alkine Die C/C-Dreifachbindung als funktionelle Gruppe erste π-bindung σ-bindung zweite π-bindung orthogonal zur ersten beide Kohlenstoffatome sp-hybridisiert => Bindungswinkel 180 eine lineare Struktur

Mehr

Claisen-Kondensation

Claisen-Kondensation Quelle: gerlicher.de In dieser Datei soll der Mechanismus der Biosynthese wichtiger Bausteine von Ölen und festen Fetten näher betrachtet werden, nämlich die Biosynthese der Fettsäuren. Quelle: gerlicher.de

Mehr

O O. O Collins-Reagenz. AcO. K 2 CO 3 (MeOH) DIBAL-H (Tol) -78 C. COOH AcOH (H 2 O) OTHP

O O. O Collins-Reagenz. AcO. K 2 CO 3 (MeOH) DIBAL-H (Tol) -78 C. COOH AcOH (H 2 O) OTHP Übung zur Vorlesung rganische Chemie II Reaktivität (Dr. St. Kirsch, Dr. A. Bauer) zu 10.1-100 a) Zn(B ) 2 Collins-Reagenz = Cr 3 * 2 py Kap. 6 - xidation (Siehe Zusatzmaterial) Das Collins-Reagenz ermöglicht

Mehr

CHE 172.1: Organische Chemie für die Life Sciences

CHE 172.1: Organische Chemie für die Life Sciences 1 CE 172.1: rganische Chemie für die Life Sciences Prof Dr. J. A. Robinson 9. Alkohole, Ether und Phenole In diesem Kapitel werden wir als Schwerpunkte folgendes betrachten ; 1) Struktur, Reaktionen und

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie CE 102.1: Grundlagen der Chemie - Organische Chemie Prof Dr. E. Landau und Prof. Dr. J.. Robinson 3. Organische Reaktionen - Einordung nach chanismen. lkene : Kohlenwasserstoffe mit Doppelbindungen. 3.1

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen

Übungen zur VL Chemie für Biologen und Humanbiologen Übungen zur VL Chemie für Biologen und Humanbiologen 28.01.2011 1. Zeichnen Sie die Valenzstrichformeln folgender Verbindungen und benutzen Sie im Falle unbestimmter Alkylreste ein R: a) ein tertiärer

Mehr

Arene (Benzolderivate)

Arene (Benzolderivate) Arene (Benzolderivate) Im Verlauf der Vorlesung haben wir bereits einige kennengelernt: DDT, DIXI, Cumol... hier nun weitere wichtige Vertreter: Acetylsalicylsäure (Aspirin) Synthese über die Kolbe-Schmitt-Synthese

Mehr

Summenformel. Strukturformel. Halbstrukturformel. Fossile Energieträger. ( 10. Klasse NTG 1 / 47 ) ( 10. Klasse NTG 2 / 47 ) ( 10. Klasse NTG 3 / 47 )

Summenformel. Strukturformel. Halbstrukturformel. Fossile Energieträger. ( 10. Klasse NTG 1 / 47 ) ( 10. Klasse NTG 2 / 47 ) ( 10. Klasse NTG 3 / 47 ) Summenformel ( 10. Klasse NTG 1 / 47 ) Angabe der Atomsorten und deren Anzahl innerhalb eines Moleküls z.b. Ethanol C 2 6 O Strukturformel ( 10. Klasse NTG 2 / 47 ) Darstellung der bindenden und freien

Mehr

Monosaccharide: KH, die durch Hydrolyse nicht mehr in einfachere MolekÄle gespalten werden kånnen.

Monosaccharide: KH, die durch Hydrolyse nicht mehr in einfachere MolekÄle gespalten werden kånnen. rganische hemie hemielaboranten Ri 131 2.6. Kohlenhydrate Die Kohlenhydrate (K) bilden eine im Pflanzen- und Tierreich weit verbreitete Stoffklasse von Naturstoffen. Aufgrund ihrer allgemeinen Summenformel

Mehr

2. Carbonylverbindungen und Heteroatomnucleophile

2. Carbonylverbindungen und Heteroatomnucleophile 2. Carbonylverbindungen und eteroatomnucleophile Katalysatoren Carbonylreaktionen unterliegen i.d.. einer starken Beeinflussung durch Katalysatoren Protonen- oder Lewis-Säuren erhöhen die Polarität der

Mehr

Übergangsmetall-π-Komplexe

Übergangsmetall-π-Komplexe Übergangsmetall-π-Komplexe ausschließlich π-wechselwirkungen von Liganden- mit etallorbitalen Alken od. Olefin Diolefin Alkenkomplexe Alkin od. Acetylen Allyl yclopentadienyl sehr häufig, Beispiele mit

Mehr

8. Halogenalkane : Nucleophile Substitutions- und Eliminationsreaktionen

8. Halogenalkane : Nucleophile Substitutions- und Eliminationsreaktionen 8. alogenalkane : ucleophile Substitutions- und Eliminationsreaktionen 69 alogenalkane sind in der organischen Synthese sehr wichtig, und werden auch in der Industrie als Lösungsmittel, im Krankenhaus

Mehr

Aldehyde und Ketone Carbonylverbindungen

Aldehyde und Ketone Carbonylverbindungen Aldehyde und Ketone Carbonylverbindungen Prof. Dr. Ivo C. Ivanov 1 Prof. Dr. Ivo C. Ivanov 2 Die Siedepunkte liegen höher als bei den jeweils zugrundeliegenden Alkanen, eine Folge des polaren Charakters

Mehr

M U S T E R L Ö S U N G

M U S T E R L Ö S U N G Universität egensburg Institut für rganische hemie Prof. Dr. B. König Prof. Dr.. eiser Kurzklausur zum -Praktikum für tudierende der Biologie, 3. em. (W 2004/05) am amstag, dem 8. Dezember 2004, 9 Uhr

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Was bisher geschah Redox-Reaktion Oxidation Reduktion

Mehr

(Anmerkung: Es sind weitere möglich. Spektren zeigen Diradikal.)

(Anmerkung: Es sind weitere möglich. Spektren zeigen Diradikal.) eispielaufgaben IChO 2. Runde 2017 Aromaten, Lösungen Aromaten eispiel 1: a) b) (Zeichnungen hier und unten teilweise ohne Wasserstoff-Atome) c) Das Anion ist planar und hat ein cyclisch konjugiertes π-elektronensystem

Mehr

Nucleophile Reaktionsmechanismen Erkennungsmerkmale und Reaktionsschritte

Nucleophile Reaktionsmechanismen Erkennungsmerkmale und Reaktionsschritte Nucleophile Reaktionsmechanismen Erkennungsmerkmale und Reaktionsschritte H. Wünsch 2012 Nucleophile Reak:onen Signale: Das organischen Molekül besitzt ein posi:v polarisiertes C- Atom in der KohlenstoKeLe.

Mehr