Klausur Strömungslehre (Diplom)

Größe: px
Ab Seite anzeigen:

Download "Klausur Strömungslehre (Diplom)"

Transkript

1 (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre (Diplom) Aufgabe (1 Punkte) Zwischen den Polschuhen zweier Magnete befindet sich eine magnetisierbare Flüssigkeit der Dichte ρ F. In der Höhe z ruht eine magnetisch neutrale Platte (Dicke d) mit der Dichte ρ K. Auf der Oberfläche der Flüssigkeit wirkt der Außendruck p a. p a M(z) g ρ F S N h ρ K d S N z z Aufgrund des eindimensionalen Magnetfeldes M gilt für die Druckänderung in der Flüssigkeit folgende Gesetzmässigkeit: dp dz = K dm dz ρ Fg Bei den skizzierten Polschuhen ist der Gradient dm dz konstant. a) Berechnen Sie den Druckverlauf p(z, dm dz ). b) Wie groß muss der Gradient dm dz eingestellt werden, damit die Platte schwebt? Im Folgendem ist der Gradient dm dz nicht konstant. c) Bei der Verwendung anderer Polschuhe wird das Magnetfeld durch M(z) = α( h z) beschrieben. Berechnen Sie die sich einstellende Höhe z. g, ρ F, ρ K, K >, α >, h, d, p a

2 . Aufgabe (11 Punkte) Ein langer ebener Kanal der Höhe H ist zunächst allseitig geschlossen und mit Wasser (Dichte ρ) gefüllt. Die rechte Seitenwand wird plötzlich geöffnet, so dass sich eine Luftblase mit konstanter Geschwindigkeit u B (Geschwindigkeit am Punkt B gilt innerhalb des Wassers und der Luft) in den Kanal hinein bewegt und das Wasser unter der Blase in einiger Entfernung von Punkt B mit konstanter, nicht bekannter Geschwindigkeit u W reibungsfrei strömt. p 8 u B B p a g H ρ u W h a) Berechnen Sie, anhand einer mitbewegten Kontrollfläche, den statischen Druck p am oberen Kanalrand in großer Entfernung von Punkt B als Funktion von u B. b) Berechnen Sie die Höhe h der auströmenden Wasserschicht. H, p a, ρ, u B

3 3. Aufgabe (11 Punkte) Aus einem großen Becken strömt Wasser in einen offenen Abwasserkanal der Breite B und der Wassertiefe z 1. a) Bestimmen Sie den Volumenstrom V. g y h 1 z b) Durch Verschmutzung bildet sich im Abwasserkanal ein Hindernis in Form eines Wehres (Höhe y W ) durch das sich der abgebildete Strömungszustand einstellt. Wie groß muss der Anstieg des Wasserspiegels h im großen Behälter sein, damit derselbe Volumenstrom mit derselben Geschwindigkeit transportiert wird? Dh g h r z z 1 y y w c) Bestimmen Sie die horizontale Kraft F W auf das Wehr. d) Skizzieren Sie ein Energiehöhendiagramm und tragen Sie qualitativ die Zustandsänderungen ab Punkt für Teil b) ein. h, z 1, B, y W, z, ρ, g Hinweis: Die Ergebnisse einer Teilaufgabe dürfen in den folgenden Teilaufgaben als bekannt voraus gesetzt werden.

4 4. Aufgabe (13 Punkte) Eine Flüssigkeitspumpe besteht aus einem antreibenden Vollzylinder mit dem Radius R i, der sich in einem Hohlzylinder mit dem Radius R a dreht. Beide Zylinder besitzen die Länge L. In dem Spalt befindet sich ein zähes Fluid der Viskosität η. Der innere Zylinder dreht sich mit der Winkelgeschwindigkeit ω i, an dem Äußeren wird das Drehmoment M a bei der Winkelgeschwindigkeit ω a abgenommen. w a w i h R i R a v a) Zeigen Sie mit Hilfe eines Momentengleichgewichtes für ein Zylinderelement die Gültigkeit von: (r τ) = r b) Bestimmen Sie unter Berücksichtigung der Hinweise die Geschwindigkeitsverteilung v(r,ω a ) als Funktion der Winkelgeschwindigkeit ω a. c) Bestimmen Sie das maximale übertragbare Drehmoment und die zugehörige Winkelgeschwindigkeit ω a. d) Bestimmen Sie die Winkelgeschwindigkeit ω a, bei der die zu übertragende Leistung maximal wird. R i, R a, ω i, L, η, ω a ω i Hinweis: Terme höherer Ordnung sind zu vernachlässigen. Die Strömung in dem Spalt sei stationär und ausgebildet. Es gilt: 1 d(r τ) r dr = η d dr ( 1 r τ = ηr d(v r ) dr ) d(rv) dr

5 5. Aufgabe (8 Punkte) Die laminare Grenzschichtströmung über einer längsangeströmten ebenen Platte lässt sich unter Vernachlässigung der Reibungswärme durch die Kontinuitäts-, die Impuls- und die Energiegleichung in der folgenden Form beschreiben: u x + v ( ρ u u ) x + v u y ( ρc p u T ) x + v T y y = = η u y = λ T y a) Bestimmen Sie unter Berücksichtigung des Hinweises die Kennzahlen des Problems mit Hilfe der Methode der Differentialgleichungen. b) Überführen Sie die erhaltenen Kennzahlen in bekannte Kennzahlen der Strömungsmechanik. Unter der Annahme konstanter Stoffwerte ist das Strömungsfeld unabhängig vom Temperaturfeld, so dass beide Felder getrennt berechnet werden können. c) Nennen Sie die Voraussetzung, für die die Temperaturverteilung in der Grenzschicht direkt aus der Geschwindigkeitsverteilung bestimmt werden kann. Beachten Sie den Hinweis. alle notwendigen Referenzgrößen Hinweis für a): Es ist nicht notwendig, unterschiedliche Referenzgrößen für die unterschiedlichen Geschwindigkeiten und Koordinatenrichtungen zu wählen. Hinweis für c): Vergleichen Sie die Differentialgleichungen und gehen Sie davon aus, dass die Geschwindigkeitsverteilung v(x, y) bekannt ist.

6 6. Aufgabe (16 Punkte) r P M< φ u Gegeben sei ein Dipol, der mit seiner Achse normal zur Richtung einer Parallelströmung steht. Der Dipol mit Dipolmoment M < sei im Ursprung eines Polarkoordinatensystems plaziert. a) Die komplexe Potentialfunktion F(z) = M beschreibt einen Dipol, dessen Achse in πz Strömungsrichtung ausgerichtet ist. Wie muss die komplexe Potentialfunktion verändert werden, damit die Dipolachse um 9 im mathematisch positiven Drehsinn rotiert wird? Geben Sie die komplexe Potentialfunktion an, die das obige Strömungsfeld beschreibt. Unter Beachtung der Hinweise: b) Bestimmen Sie die Geschwindigkeitskomponenten u(r, ϕ) und v(r, ϕ) in Abhängigkeit von M für u = 1. c) Geben Sie alle Orte an, für die v(r,ϕ) = gilt. d) Bestimmen Sie die Dipolstärke M so, dass alle Staupunkte auf einem Kreis mit Radius R = 1 liegen und geben Sie die Staupunkte explizit an. Ersetzen Sie für die folgenden Teilaufgaben die Dipolstärke M durch den berechneten Wert. e) Geben Sie die Gleichungen für die Staupunktstromlinien in der Form r = f(ϕ) an. f) Berechnen Sie für die obere Staupunktstromlinie die Asymptote lim r y(r,ϕ). g) Zeichnen Sie unter Angabe der Staupunktstromlinien und der Staupunkte das Stromlinienbild im Nah- und Fernbereich. Arbeiten Sie die Ergebnisse der anderen Teilaufgaben sowie die Strömungsrichtung jeweils deutlich heraus. u = 1, R = 1 Winkeltabelle: ϕ 1 4 π 1 π 3 4 π π 5 4 π 3 π 7 4 π π sin ϕ cos ϕ Hinweise: z = x + iy = r e iϕ = r(cos ϕ + i sin ϕ) Falls Sie Aufgabenteil a) nicht lösen konnten, rechnen Sie in den folgenden Aufgabenteilen mit der komplexen Potentialfunktion F(z) = ( ) ( 1 iu z M i πz).

7 7. Aufgabe (8 Punkte) Bei dem sogenannten Rayleigh-Stokes-Problem handelt es sich um eine unendlich ausgedehnte ebene Platte, die zum Zeitpunkt t = plötzlich aus dem Stillstand mit der Geschwindigkeit U in Bewegung gesetzt wird. Da die Platte unendlich ausgedehnt ist, stellt sich sofort ein in x-richtung ausgebildetes Geschwindigkeitsprofil in der Grenzschicht zwischen der ruhenden Außenströmung und der Platte ein. Der Druck in der ruhenden Außenströmung entlang der Platte ist konstant. y x U t = a) Skizzieren Sie für einen Zeitpunkt t > das Geschwindigkeitsprofil das sich im Fluid über der Platte einstellt. b) Vereinfachen Sie für dieses Problem die Navier-Stokes-Gleichungen (siehe Hinweis). Das Fluid ist inkompressibel und besitzt eine konstante Viskosität. c) Geben Sie geeignete Anfangsbedingungen (t = ) und Randbedingungen (t > ) für die aus Ihrer Vereinfachung in b) resultierenden Gleichungen an. Durch Einführen der dimensionslosen Ähnlichkeitsvariable ξ = y kann die vereinfachte νt Gleichung in eine gewöhnliche Differentialgleichung der Form ζ +ξζ = überführt werden mit ζ = u/u. Die Lösung der Differentialgleichung ergibt: u = 1 ξ U π e k dk. d) Skizzieren Sie qualitativ das Geschwindigkeitsprofil für einen Zeitpunkt t = t 1 >, ξ = f(u/u ). Wie verhalten sich die Profile für unterschiedliche Zeitpunkte t > bezüglich der skizzierten Geschwindigkeitsverteilung? U Hinweise: Beschleunigungsvorgänge der Platte können vernachlässigt werden, d.h. es kann angenommen werden, dass sich die Platte sofort mit der angegebenen Geschwindigkeit bewegt. Die Navier-Stokes-Gleichungen lauten für eine instationäre ebene und inkompressible Strömung: ( u ρ ρ u x + v y ) t + u u x + v u y ( ) v t + u v x + v v y = = p ( x + η u = p y + η ) x + u y ( ) v x + v y

8 8. Aufgabe (13 Punkte) * Kanal A e p A A* A p ea A e p B A* B Kanal B p eb A B M eb A e Um die Interaktion zweier Überschallströmungen zu untersuchen, werden zwei Überschallwindkanäle A und B wie in der Skizze gezeigt parallel betrieben. Ab dem Punkt e werden die zwei getrennten Kanäle zu einem Kanal vereinigt. Im Betrieb stellt sich durch einen Fehler in Kanal A im Querschnitt A e direkt vor der Vereinigung der Kanäle sowie in Kanal B weiter stromauf im Querschnitt A B ein senkrechter Verdichtungsstoß ein. a) Leiten Sie das Verhältnis T T in Abhängigkeit von der Machzahl her. b) Berechnen Sie unter Berücksichtigung der gegebenen Größen und der Hinweise den statischen Druck p ea im Querschnitt e hinter dem Stoß in Kanal A. c) Was gilt für den statischen Druck p eb im Querschnitt e in Kanal B, wenn sich die Strömung in diesem Querschnitt in beiden Kanälen im Unterschall befindet? d) Bestimmen Sie den Kesseldruck p B im zu Kanal B gehörenden Druckbehälter. e) Skizzieren Sie die Machzahlverläufe in beiden Kanälen bis zum Punkt e. γ, p A, A A, A B, A e = A A, A B = 4A B, M eb Hinweise: Die Ergebnisse einer Teilaufgabe dürfen in den nachfolgenden Teilaufgaben als bekannt vorausgesetzt werden. Verhältnis der stat. Drücke über den Stoß: A /A = f(m): A*/A 1. p = γm 1 (γ 1) p 1 γ + 1 Verhältnis der Ruhedrücke über den Stoß: p p 1 = ( ) γ γ+1 M γ 1 M 1 γ 1 ( γm 1 (γ 1) γ + 1 ) 1 γ M Isentropenbeziehung: T a T b = ( pa p b ) γ 1 γ = ( ) γ 1 ρa ρ b

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 07. 08. 2015 1. Aufgabe (9 Punkte) In einem See stellt sich durch die Sonneneinstrahlung folgende Dichteverteilung ein. ( ρ(z) = ρ B 1

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 05.10.2004 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Beurteilung:... Platz-Nr.:...

Mehr

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden)

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden) Univ.-Prof. Dr.-Ing. Wolfram Frank 09.10.2003 Lehrstuhl für Fluiddynamik und Strömungstechnik Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Aufg. 2)... Beurteilung:...

Mehr

Prüfungsklausur Dauer: 2 Stunden

Prüfungsklausur Dauer: 2 Stunden Fakultät für Verfahrens- und Systemtechnik Institut für Strömungstechnik und hermodynamik Lehrgebiet: Strömungsmechanik II Name Vorname Matrikel-Nr. Studiengang Seminargrue Immatrikulationsjahr Anzahl

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Klausur Technische Strömungslehre

Klausur Technische Strömungslehre Klausur Technische Strömungslehre 27. 2. 2001 1. Aufgabe (12 Punkte) Ein allon zur Erdumrundung besteht aus einer zweigeteilten allonhülle und soll eine Nutzlast der Masse m tragen. In der allonhülle befindet

Mehr

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck 000000000000000 111111111111111 000000000000000 111111111111111 u 000000000000000 111111111111111 000000000000000

Mehr

Klausur. Strömungsmechanik

Klausur. Strömungsmechanik Strömungsmechanik Klausur Strömungsmechanik. Juli 007 Name, Vorname: Matrikelnummer: Fachrichtung: Unterschrift: Bewertung: Aufgabe : Aufgabe : Aufgabe 3: Aufgabe 4: Gesamtpunktzahl: Klausur Strömungsmechanik

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 003 Strömungsmechanik I Bearbeitungsdauer: PO 000 : 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

Fragen zur Prüfungsvorbereitung Strömungsmechanik II. Stand Sommersemester 2009

Fragen zur Prüfungsvorbereitung Strömungsmechanik II. Stand Sommersemester 2009 Fragen zur Prüfungsvorbereitung Strömungsmechanik II Stand Sommersemester 2009 Allgemein Sicherer Umgang in der für die im Vorlesungsrahmen benötigte Tensorrechnung. Insbesondere Kenntnis der einzelnen

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 2002 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr 013 06. März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II 1) Wie stellt sich der Druck p E im Austrittsquerschnitt beim Austritt eines Gases aus einem Kessel durch eine stetig konvergente Mündung,

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

6.Übung Strömungslehre für die Mechatronik

6.Übung Strömungslehre für die Mechatronik 6.Übung Strömungslehre für die Mechatronik Prof. Dr.-Ing Peter Pelz Dipl.-Ing. Thomas Bedar 18. Juli 2009 Inhaltsverzeichnis 1 Hinweise 1 2 Korrektur zur Vorlesung vom 14.07.2009 2 3 laminare Schichtenströmung

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

laminare Grenzschichten Wofür Grenzschichttheorie?

laminare Grenzschichten Wofür Grenzschichttheorie? laminare Grenzschichten Wofür Grenzschichttheorie? mit der Potentialtheorie können nur Druckverteilungen berechnet werden Auftriebskraft Die Widerstandskräfte können nicht berechnet werden. Reibungskräfte

Mehr

2. Potentialströmungen

2. Potentialströmungen 2. Potentialströmungen Bei der Umströmung schlanker Körper ist Reibung oft nur in einer dünnen Schicht um den Körper signifikant groß. Erinnerung: Strömung um ein zweidimensionales Tragflügelprofil: 1

Mehr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr Klausur Strömungsmechanik Herbst 203 3. August 203, Beginn 5:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar TFD-Formelsammlung (ohne handschriftliche

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Hydrodynamische Wechselwirkung und Stokes Reibung

Hydrodynamische Wechselwirkung und Stokes Reibung Hydrodynamische Wechselwirkung und Stokes Reibung 9. Februar 2008 Problemstellung Kolloidsuspension aus Teilchen und Lösungsmittel Teilchen bewegen sich aufgrund von externen Kräften Schwerkraft Äußere

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 8..04 Arbeitszeit: 0 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Nachklausur Strömungslehre Grundlagen Am Mittwoch, den 04. April 2018 12:00 14:00 Raum EB 301 Max. mögliche Punktzahl 80 Fakultät V Verkehrs- und Maschinensysteme Institut

Mehr

Strömungslehre. < J Springer. Einführung in die Theorie der Strömungen. Joseph H. Spurk Nuri Aksel. 8., überarbeitete Auflage

Strömungslehre. < J Springer. Einführung in die Theorie der Strömungen. Joseph H. Spurk Nuri Aksel. 8., überarbeitete Auflage Joseph H. Spurk Nuri Aksel Strömungslehre Einführung in die Theorie der Strömungen 8., überarbeitete Auflage Mit Aufgaben und Übungsbeispielen auf CD-ROM < J Springer Inhaltsverzeichnis Kontinuumsbegriff

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Elektromagnetische Felder und Wellen: Klausur Herbst

Elektromagnetische Felder und Wellen: Klausur Herbst Elektromagnetische Felder und Wellen: Klausur Herbst 2006 1 Aufgabe 1 (2 Punkte) Eine Punkladung Q soll durch eine Kugel mit Radius a und der Oberflächenladung ϱ SO ersetzt werden. Wie groß muss ϱ SO gewählt

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume Klausur Herbst 008 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: - Taschenrechner

Mehr

Dispersion, nicht-lineare Effekte, Solitonen

Dispersion, nicht-lineare Effekte, Solitonen Dispersion, nicht-lineare Effekte, Solitonen Als Beispiel für Dispersion und Effekte aufgrund von Nichtlinearität verwenden wir Oberflächenwellen auf Wasser. An der Wasseroberfläche wirken Kräfte aufgrund

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2017/2018 12.03.2018 Prof. Dr. rer. nat. M. Koch Vorgelet von: Ehsan Farmani 1 Aufgabe 46 Wie groß ist die relative Änderung (%) vom Druck, wenn a) wir die absolute Temperatur

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll Elektromagnetische Felder (TET 1) Gedächtnisprotokoll 8. August 2017 Dies ist ein Gedächtnisprotokoll. Leider konnte ich mich nicht an alle Details jeder Aufgabe erinnern. Für korrigierte Exemplare dieses

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Tutorium Hydromechanik I + II

Tutorium Hydromechanik I + II Tutorium Hydromechanik I + II WS 2015/2016 Session 3 Prof. Dr. rer. nat. M. Koch 1 Aufgabe 13 (Klausuraufgabe am 07.10.2012) Der bekannte Bergsteiger Reinhold Messner befindet sich mal wieder auf Himalaya

Mehr

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Grundoperationen der Verfahrenstechnik. Sedimentation I

Grundoperationen der Verfahrenstechnik. Sedimentation I Grundoperationen der Verfahrenstechnik 3. Übung, WS 2016/2017 Betreuer: Maik Tepper M.Sc., Maik.Tepper@avt.rwth-aachen.de Morten Logemann M.Sc., Morten.Logemann@avt.rwth-aachen.de Johannes Lohaus M.Sc.,

Mehr

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011 Integrierter Kurs I 2. Klausur, WiSe 2010/2011 03. März 2011 Name: Gruppenleiter: Aufgabe Punkte 1 / 5 2 /16 3 /10 4 /13 5 /10 6 /12 7 / 8 8 / 6 insgesamt (max. 80) 1. Gravitationskraft (5 Punkte) Im Jahr

Mehr

Aufgabe 1 (2+2+2=6 Punkte)

Aufgabe 1 (2+2+2=6 Punkte) Klausur zu Theoretische Physik 3 Elektrodynamik 0. Februar 017 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 50 Punkten. Die Klausur ist

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die

Mehr

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind.

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind. Aufgabe 1 (Seite 1 von 3) a) Das nebenstehende System besteht aus einer um den Punkt A drehbar gelagerten Stufenrolle (Radien r und R = 2r). Die Massenträgheitsmomente der beiden Stufen bezogen auf den

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

5 Ebene Potentialprobleme

5 Ebene Potentialprobleme 5 Ebene Potentialprobleme Ziel: Lösung ebener Potentialprobleme mit konformen Abbildungen. 5.1 Konforme Transformation von Potentialen Ausgangssituation: Sei f : G G analytisch und bijektiv, für Gebiete

Mehr

Beachten sie bitte die Punkteverteilung

Beachten sie bitte die Punkteverteilung Tutor oder Tutorium: Semester: Fachrichtung: Beachten sie bitte die Punkteverteilung Aufgabe Punkte 1 7 2 11 3 6 4 9 5 7 Gesamt 40 Nützliche Formeln und Konstanten: Volumenelement Zylinderkoordinaten:

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt? Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übungen Aufgaben zu Kapitel 9 (Fortsetzung) (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergänzungen) Aufgabe

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Prüfungsfragen und Prüfungsaufgaben

Prüfungsfragen und Prüfungsaufgaben Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 12.12.2008 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 12.02.2004 Lerstul für Fluiddynamik und Strömungstecnik Aufgabe Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Frage... Aufg. 1)... Beurteilung:...

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

Fluide sind Zustände von Materie in denen keine (Gase) oder nur sehr kleine Scherkräfte (Flüssigkeiten) auftreten. Sie besitzen keine starre Form.

Fluide sind Zustände von Materie in denen keine (Gase) oder nur sehr kleine Scherkräfte (Flüssigkeiten) auftreten. Sie besitzen keine starre Form. Version 14. Dezember 2011 1. Kontinuitätsgleichung Fluide sind Zustände von Materie in denen keine (Gase) oder nur sehr kleine Scherkräfte (Flüssigkeiten) auftreten. Sie besitzen keine starre Form. Die

Mehr

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 009/0, 606 VO+UE Univ Prof Dr Christoph Dellago ) Berechnen Sie cos (06) ohne Verwendung der Winkelfunktionen des Taschenrechners auf 4

Mehr

Inhaltsverzeichnis. Formelzeichen...

Inhaltsverzeichnis. Formelzeichen... Inhaltsverzeichnis Formelzeichen... xv 1 Einführung. Technische Anwendungen... 1 1.1 Die verschiedenen Arten der Wärmeübertragung... 1 1.1.1 Wärmeleitung... 2 1.1.2 Stationäre, geometrisch eindimensionale

Mehr

Ergänzungen zur Physik I

Ergänzungen zur Physik I Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 14. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Dynamik der Fluide 2 1.1 Kontinuitätsgleichung.................................

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

Strömungslehre, Gasdynamik

Strömungslehre, Gasdynamik Egon Krause Strömungslehre, Gasdynamik und Aerodynamisches Laboratorium Mit 656 Abbildungen, 42 Tabellen, 208 Aufgaben mit Lösungen sowie 11 ausführlichen Versuchen im Aerodynamischen Laboratorium Teubner

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Aufgabe 1 Hydrostatik (23 Pkt.)

Aufgabe 1 Hydrostatik (23 Pkt.) Aufgabe 1 Hydrostatik (23 Pkt.) R 1 Das in der Abbildung dargestellte Reservoir besteht aus zwei hydraulisch miteinander verbundenen Kammern. In der geneigten Trennwand ist ein Kolben eingebaut, der sich

Mehr

rechnerisch, ob weitere Lösungen dieser Gleichung im Bereich 0 x l existieren.

rechnerisch, ob weitere Lösungen dieser Gleichung im Bereich 0 x l existieren. Anwendungs- und Optimierungsaufgaben (Technik) 1. Ein Balken der Länge l ist auf zwei Stützen gelagert (siehe Bild). Der Balken wird durch sein Eigengewicht auf Biegung beansprucht. Die Durchbiegung ist

Mehr