15 Eindimensionale Strömungen
|
|
|
- Paulina Fried
- vor 8 Jahren
- Abrufe
Transkript
1 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das auch als materieller Punkt beeichnet wird, und verfolgt dessen Bahn. Zur Charakterisierung des materiellen Punktes wählt man seine Lage X für einen definierten Anfangseitpunkt. Geschwindigkeit und Beschleunigung des materiellen Punktes ergeben sich dann analog ur Kinematik des Massenpunkts durch Ableitung der Bahnkurve nach der Zeit. Im Unterschied dau beschreibt man bei der Euler schen oder räumlichen Betrachtung das gesamte Strömungsfeld, d.h. man beschreibt die Eigenschaften der Strömung in Abhängigkeit eines räumlichen rtes, der vom Fluid durchströmt wird. Damit entspricht beispielsweise die Strömungsgeschwindigkeit an diesem rt der Geschwindigkeit des Fluidteilchens, das diesen rt gerade passiert. Zeitliche Ableitungen des Feldes kenneichnen jedoch nicht eitliche Änderungen von Eigenschaften des Fluidteilchens, da dieses inwischen aufgrund der Strömung seinen rt verändert hat. Um beispielsweise die Beschleunigung eines Fluidteilchens aus dem Geschwindigkeitsfeld u gewinnen, muss man neben der eitlichen Feldänderung einen konvektiven Term berücksichtigen, der die rtsänderung des Fluidteilchens widerspiegelt. In vielen technischen Anwendungen genügt eine eindimensionale Betrachtung stationärer Strömungen, die durch eitinvariante Geschwindigkeitsfelder gekenneichnet sind. Bahnlinien sind dort gleicheitig Stromlinien, die sich durch tangentiales Anschmiegen von Kurven an die Geschwindigkeitsvektoren finden lassen. Alle Stromlinien durch eine vorgegebene geschlossene Kurve bilden eine Stromröhre, die usätlich durch eine Eintritts- und eine Austrittsfläche in Strömungsrichtung begrent werden kann. Solche Abschnitte von Stromröhren eignen sich als Kontrollvolumina für Bilanen. Bei konstanter Dichte müssen beispielsweise ein- und austretender Massenstrom gleich groß sein, woraus die Kontinuitätsgleichung folgt. Die Differen von eintretendem und austretendem Impuls entspricht der Kraft auf das Fluid im Kontrollvolumen, die entgegengesett gleich große Kraft beinhaltet die dynamische Wirkung auf die Berandung des Kontrollvolumens. Eine Impulsbetrachtung eines einelnen materiellen Punktes führt auf die Euler sche Bewegungsgleichung, welche Veränderungen der Strömung aufgrund von massenspeifischen Volumenkräften und Druckunterschieden beschreibt. Durch Integration über einen Stromlinienabschnitt erhält man daraus die Bernoulli Gleichung, die einen einfachen Zusammenhang wischen den Geschwindigkeiten und Drücken an verschiedenen Abschnitten einer Strömung herstellt.
2 Beschreibung von Strömungen Vereinfachungen Ideale Flüssigkeit, d.h. reibungsfrei: 0 inkompressibel: const. Begriffe Lagrange sche (materielle) Beschreibung: Verfolgung eines einelnen Flüssigkeitsteilchens (materiellen Punkts X [ 0 y 0 0 ] T ) Lage: r r(x, t) Geschwindigkeit Beschleunigung v(x, t) dr dt a(x, t) dv dt r(t 0) X r(x, t) v(x, t) Bahnlinie Bahn r(t) r(x, t) eines einelnen Fluidteilchens X Euler sche (räumliche) Beschreibung: räumliche Beschreibung von Strömungseigenschaften,.B. Geschwindigkeitsfeld v(, t) v(, t) Stromlinie Kurve mit örtlicher Geschwindigkeit v(, T) als Tangentenrichtung bei festgehaltener Zeit T Zusammenhang: bei stationärer Strömung fallen Bahnlinien und Stromlinien usammen ein Flüssigkeitsteilchen X hat am momentanen rt r(x, t) die Geschwindigkeit v(, t) der Strömung Beschleunigung eines Fluidteilchens am rt : a(, t) dv (X, t), t v ẋ v dt t v(, t) v(, t) v(, t) t
3 Strömungsgeschwindigkeit Betrachtung einer stationären Strömung entlang einer Stromlinie Leitstromlinie Kontinuitätsgleichung Massenerhaltung s C Stromröhre raumfester Kontrollraum V A 2 A 1 v1 v2 A 1 v 1 A 2 v 2 const. Q 1 Q 2 const. Euler sche Bewegungsgleichung Impulssat für einen materiellen Punkt y dm p p d p f v v t v f 1 grad p
4 100 Bernoulli sche Gleichung Ann. stationäre Strömung, vt 0 inkompressibel, const. Schwerefeld, f [00g] T 1 d v dt v Integration der Euler schen Gleichung entlang einer Stromlinie 2 v2 2 2 p 2 gh 2 v2 1 2 p 1 gh 1 const.
5 Strömungskräfte Dynamische Kräfte von strömenden Flüssigkeiten auf ihre Berandungen A 2 Impulssat dp dt F v1 A dm v 2 v2 2 V(t+dt) materielles Kontrollvolumen V(t) F ṁ v2 v 1 mit ṁ A 1 v 1 A 2 v 2
6 102
Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor
Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten
Kompressible Strömungen
Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall
Modell der Punktmasse
Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und
Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die
IV. Strömungen eines idealen Fluids
IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,
12.1 Fluideigenschaften
79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend
Einführung in die Strömungsmechanik
Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?
6 Dynamik der Translation
6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche
Hydraulik für Bauingenieure
Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hydraulik für Bauingenieure Freimann schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser
Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v
Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann
Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre
Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet
Potentialtheorie. Vorbemerkung:
Potentialtheorie Vorbemerkung: Die Erfassung dynamischer Kräfte, die durch Wasser- oder Luftströmungen an Bauwerken erzeugt werden, ist generell schwierig. Eine wirklich exakte Ermittlung ist nicht möglich.
D. Bestle Technische Mechanik III Schwingungen und Hydromechanik
D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Oktober 2009 Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle Prinzip der
PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version
PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................
D. Bestle Technische Mechanik III Schwingungen und Hydromechanik
D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt
2. Räumliche Bewegung
2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis
8 Kinetik der allgemeinen Starrkörperbewegung
57 Die allgemeine Starrkörperbewegung ist eine Überlagerung von Translation und Rotation mit je 3 Freiheitsgraden. Dem entsprechen 6 Gleichungen, die aus Impuls- und Drallsat resultieren. Der Impuls eines
Kinematik des Massenpunktes
Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale
Divergenz und Rotation von Vektorfeldern
Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit
1. Wirbelströmungen 1.2 Gesetz von Biot-Savart
1. Wirbelströmungen 1.2 Gesetz von Biot-Savart Das Biot-Savart-Gesetz ist formuliert für unbeschränkte Gebiete. Wie können Ränder beschrieben werden (z.b. feste Wände)? Randbedingung für eine reibungsfreie
2. Potentialströmungen
2. Potentialströmungen Bei der Umströmung schlanker Körper ist Reibung oft nur in einer dünnen Schicht um den Körper signifikant groß. Erinnerung: Strömung um ein zweidimensionales Tragflügelprofil: 1
Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)
l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische
1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit
1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der
Kontinuitätsgleichung
Kontinuitätsgleichung Bilanzierungen Kontinuitätsgleichungen stellen Massenbilanzen dar M an spricht von der Kontinuitätsgleichung und stellt sie je nach Art der Massenbilanz unterschiedlich dar Bilanzierungen
5 Kinematik der Starrkörperbewegung
35 Ein starrer Körper ist eine Idealisierung eines Maschinenteils, bei der man Verformungen vernachlässigt. Verbindet man mit dem Körper in einem beliebigen Beugspunkt ein körperfestes Koordinatensstem,
y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel
103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von
Physik I im Studiengang Elektrotechnik
hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:
Potentialströmung und Magnuseffekt
Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und
1. Eindimensionale Bewegung
1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt
Vorlesung STRÖMUNGSLEHRE Zusammenfassung
Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische
Beispiel: Rollender Reifen mit
Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:
Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06
Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und
d x 2 = 1 y ' x 2 d x 2
2. Variationsrechnung 2.1. Variation ohne Nebenbedingungen Eine Funktion y = y(x) ordnet jedem x-wert eine Zahl (den y-wert) zu. In der Variationsrechnung betrachtet man Funktionale, die jeder Funktion
9. Vorlesung Wintersemester
9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen
5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation
Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:
Physikalische Grundlagen der Aerodynamik
Physikalische Grundlagen der Aerodynamik Andreas Dillmann 2 2.1 Grundgleichungen der Strömungsmechanik 2.1.1 Erhaltungssätze Physikalische Grundlage der Strömungsmechanik ist die Anwendung der Newtonschen
Dispersion, nicht-lineare Effekte, Solitonen
Dispersion, nicht-lineare Effekte, Solitonen Als Beispiel für Dispersion und Effekte aufgrund von Nichtlinearität verwenden wir Oberflächenwellen auf Wasser. An der Wasseroberfläche wirken Kräfte aufgrund
Wind/Strömung September Wind und Strömung... 2
Wind/Strömung Inhalt Wind und Strömung... 2 Strömung... 2 Strömungsfeld, stationäre Strömung... 2 Reibungsfreie Strömung... 2 Laminare Strömung... 2 Beaufort... 2 Temperaturstrahlung... 3 Strahlungsgesetze...
Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)
Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die
Rotation 1 E1. Ma 2 Lubov Vassilevskaya
Rotation 1 E1 Abb. 1 1: Turbulenz Leonardo da Vinci 1 E2 Definition und Eigenschaften der Rotation Abb. 1 2: Fließendes Wasser in einem Kanal Es wird das Geschwindigkeitsfeld einer stationären Strömung
3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.
unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit
Bild 2: Anwendung des Trägheitsprinzips auf eine Strömung, links zulässig, rechts unzulässig
Impulssatz 1 Impulssatz Trägheitsprinzip Die Gleichungen der Strömungslehre gehen auf die klassische Mechanik von Isaac Newton zurück. In seinen Philosophiae Naturalis Principia Mathematica (Mathematische
Simulationstechnik V
Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.
Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,
I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9
I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall
Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche
Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen
Praktikum Aerodynamik des Flugzeugs
Praktikum Aerodynamik des Flugzeugs 1. Versuch: Sondenmessungen Betreuer: Dipl.-Ing. Anja Kölzsch Dipl.-Ing. Moritz Grawunder Ziel des heutigen Termins Einführung in die Strömungsmesstechnik Messung verschiedener
2. Räumliche Bewegung
2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort
Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1
und Eperimentelle Mechanik FS 1 Kinetik Bisher wurde nur die Kinematik von Bewegungen untersucht (d.h. Weg, Geschwindigkeit und Beschleunigung). Es sollen nun Kräfte (später auch Momente) mit diesen kinematischen
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion
Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 1: Kinematik Dr. Daniel Bick 02. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 02. November 2016 1 / 24 Übersicht 1 Kinematik Daniel Bick
10. und 11. Vorlesung Sommersemester
10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen
Brownsche Bewegung Seminar - Weiche Materie
Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen
Mathematik in Strömungen
Mathematik in Strömungen Ein Rätsel und ein Paradoxon László Székelyhidi Jr. Leonardo da Vinci 1452-1519 Tinte und Sirup Tinte und Sirup Wirbelstürme Tinte und Sirup Wirbelstürme Turbulenzen beim Fliegen
(ii) Die Massedichte ρ(r, t) [siehe Definition (6.1)] ist konstant und diesselbe für alle Fluid-Elemente und alle Zeiten t.
Kapitel 7 Das ideale Fluid 7.1 Definition Definition 7.1 Das ideale Fluid ist durch folgende Eigenschaften definiert: (i) Es ist inkompressibel. Ein Tropfen verändert in der Bewegung seine Form nicht.
Physik A3. 2. Mechanik
Physik A3 Prof. Dieter Suter WS 02 / 03 2. Mechanik 2.1 Kinematik 2.1.1 Grundbegriffe Die Mechanik ist der klassischste Teil der Physik, sie umfasst diejenigen Aspekte die schon am längsten untersucht
3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen
3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung
lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)
lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare
Lagrange-Formalismus
KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt
2.1. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen
36.. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen Fundamentale strömungsmechanische Zusammenhänge sind ohne Kenntnisse der Durchflussgleichung und der Kontinuitätsgleichung
Lösung II Veröffentlicht:
1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei
Technische Mechanik 3
Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.
Abbildung 14: Ein Vektorfeld im R 2
Vektoranalysis 54 Vektoranalysis Wir wollen nun Vektorfelder betrachten. Es sei U R n. Ein Vektorfeld im R n ist eine Abbildung v : U R n, die jedem Punkt x ihres sbereichs U einen Vektor v(x) zuordnet.
Vorbereitung für Olympische Spiele auf dem Mars oder Mond
Vorbereitung für Olympische Spiele auf dem Mars oder Mond Martin Sust Karl-Franzens Franzens-Universität Graz Interessierende Fragen für Sport auf der Erde: 1. Welche Abmessungen müssen Sportanlagen haben?
3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1
3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe
Blatt 1. Kinematik- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die
Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)
(Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen
Ferienkurs Theoretische Mechanik. Lagrangeformalismus
Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........
3. Diffusion und Brechungsindex
3. Diffusion und Brechungsinde Die Diffusion in und aus einer Schicht ist die Grundlage vieler Sensoreffekte, wobei sich die einzelnen Sensoren dann nur noch in der Art der Übersetzung in ein meßbares
Prüfungsfragen und Prüfungsaufgaben
Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle
Kontrollfragen. Hydrodynamik. Stephan Mertens. 6. Juli 2013 G N D O O
Kontrollfragen Hydrodynamik Stephan Mertens 6. Juli 2013 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Erläutern Sie die Lagrange sche und die Euler sche Darstellung
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik
Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen
CAE Herbsttagung 2013 Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen Prof. Dr.-Ing. Alexander Steinmann Dr. Binde Ingenieure Design
Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II
Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich
Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.
Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum
Theoretische Physik 1 Mechanik
Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
