D. Bestle Technische Mechanik III Schwingungen und Hydromechanik

Größe: px
Ab Seite anzeigen:

Download "D. Bestle Technische Mechanik III Schwingungen und Hydromechanik"

Transkript

1 D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Oktober 2009 Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle

2 Prinzip der virtuellen Arbeit W e k F e T k r k 0 von d Alembert k mk a k F e k T r k 0 Langrange sche Gleichungen zweiter Art (konservative Systeme) Bewegungsgleichungen d L L 0, i 1(1) f dt ẏ i y i mit kinetische Energie T T k k, T k 1 2 m k vt Ck v Ck 1 2 T k I Ck k potentielle Energie Lagrange Funktion U U k k U k 1 2 c s2 (Feder), U k m g z (Gewicht) L : T U Bewegungsgleichungen nichtlinear M(y) ẏ. k(y, ẏ) 0 linear M ẏ. K y h(t) Eigenwertproblem M 2 K y ~ 0 charakteristische Gleichung det M 2 K 0 Eigenfrequenzen k, k 1(1) f Eigenvektoren ( M 2 k K) y~ 0 ~ y k, k 1(1) f massenorthogonal ~T y k M y~ k! 1 ~T y k K y~ k 2 k steifigkeitsorthogonal ~T y k K y~ k! 1 ~T y k M y~ k 1 2 k Modaltransformation (massenorth. EV) y Y y^, Y : y ~ 1 y~ 2 y~ f, Y T M Y E homogen 2 y^ 0 inhomogen y^.. 2 y^ h^ (t), h^ Y T h Anfangsbedingungen y^(0) Y T M y 0, y^.(0) Y T M ẏ 0 Lösung homogen y h (t) f k 1 a k y ~ k cos k t k partikulär f. harm. Erregung y p (t) M 2 K 1 h 0 cos t Kontinuierliche Systeme Randwertproblem Wellengl. ẇ. c 2 w q(x, t) + hom. RB für w, w Saite c Längsschwingung c E Torsion c G Balken ẇ. (EI A) w IV q(x, t) + hom.rb für w, w, w, w Anfangsbedingungen w(x,0) w 0 (x), ẇ(x,0) ẇ 0 (x)

3 inh. RB hom. RB w w H w R, w R erfüllt RB Eigenwertproblem Modaltransformation Wellengl. ẇ. H c2 w H q(x, t), q c 2 w R ẇ. R Balken ẇ. H EI A wiv H q(x, t) 0 q ẇ. R EI wiv A R Ortsdgl. Wellengl. W (x) c 2 W(x) 0 + RB Balken W IV (x) 4 W(x) 0, 4 : 2 A EI Eigenfrequenzen k, k 1(1) Eigenformen W k (x) mit L 0 für i j W i (x) W j (x) dx 1 für i j homogene Dgl., hom. RB ẏ. 2 y 0 inhom. Dgl., hom. RB Anfangsbedingungen + RB w(x, t) W T (x) y(t), W T : W1 (x) W n (x) ẏ. 2 y h(t), h(t) L y(0) L W w 0 (x) dx, ẏ(0) L 0 W(x) q(x, t) dx W ẇ 0 (x) dx Wellenausbreitung 0 w(x, t) f 1 (x c t) f 2 (x c t) x c t 1 2 [w 0 (x c t) w 0 (x c t) 1 c 0 ẇ 0 (x) dx] speziell: verschw. Geschw. f 1 (x) f 2 (x) 1 2 w 0 (x) x c t Fluidstatik Druck allgemein grad p f im Schwerefeld p p 0 g z Wandkraft horizontal F p A gha vertikal gekrümmt F gz C A, y D I yz z C A, z D z C I Cy z C A F [ gz c A v 0 g V] T Schwimmen Auftriebskraft Metazenterhöhe F A g V h M I x V s Strömung (stationär, inkompressibel) Kontinuitätsgleichung A 1 v 1 A 2 v 2 Bernoulli-Gleichung v2 2 2 p 2 g h 2 v2 1 2 p 1 g h 1 Toricelli sche Ausflussformel v 2gH dynamische Kraft F ṁ v2 v 1, ṁ A1 v 1 A 2 v 2

4 1 Inhalt Inhalt Literatur Methoden der Analytischen Mechanik Bisheriges Vorgehen in der Technischen Mechanik Ideale Bindungen Prinzipe der Mechanik Diskrete Schwingungssysteme Lagrange sche Gleichungen zweiter Art Konservative Schwingungssysteme Lineare Bewegungsgleichungen konservativer Schwingungssysteme Freie Koppelschwingungen konservativer Schwingungssysteme Eigenschwingungen Freie Schwingungen Orthogonalität der Eigenvektoren Erzwungene Schwingungen konservativer Schwingungssysteme Modaltransformation der homogenen Bewegungsgleichung Modaltransformation der inhomogenen Bewegungsgleichung Harmonische Erregung Kontinuierliche Schwingungssysteme Transversalschwingungen einer Saite Longitudinalschwingungen eines Stabes Torsionsschwingungen eines Rundstabes Biegeschwingungen eines Balkens Eigenschwingungen der eindimensionalen Wellengleichung Eigenlösungen Orthogonalität der Eigenfunktionen Eigenschwingungen Eigenschwingungen des Balkens Eigenlösungen Orthogonalität der Eigenfunktionen Eigenschwingungen Freie Schwingungen kontinuierlicher Systeme Superposition der Eigenlösungen Matrizendarstellung

5 2 9 Erzwungene Schwingungen durch verteilte Kräfte Kontinuierliche Systeme mit verteilten Kräften Erzwungene Schwingungen der eindimensionalen Wellengleichung Erzwungene Schwingungen des Balkens Erzwungene Schwingungen durch inhomogene Randbedingungen Eindimensionale Wellengleichung Balkenbiegung Zusammenfassung und Anmerkungen Wellenausbreitung in eindimensionalen Kontinua D Alembert sche Lösung der eindimensionalen Wellengleichung Einfluss von Anfangs- und Randbedingungen Wellenausbreitung im Balken Fluidstatik Fluideigenschaften Statischer Druck Kräfte auf Behälterwände Resultierender Kraftwinder Ebene Behälterwände Gekrümmte Flächen Auftrieb und Schwimmstabilität Vollständig eingetauchte Körper Schwimmende Körper Eindimensionale Strömungen Beschreibung von Strömungen Strömungsgeschwindigkeit Strömungskräfte

6 3 Literatur 1. DUBBEL: Taschenbuch für den Maschinenbau. Springer, D. Gross, W. Hauger, und W. Schnell: Technische Mechanik, Band 1 Statik. Berlin: Springer, D. Gross, W. Hauger, W. Schnell und P. Wriggers: Technische Mechanik, Band 4 Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden. Berlin: Springer, P. Hagedorn: Technische Mechanik, Band 1 Statik. Frankfurt a. M.: Verlag Harri Deutsch, P. Hagedorn: Technische Mechanik, Band 2 Festigkeitslehre. Frankfurt a. M.: Verlag Harri Deutsch, P. Hagedorn: Technische Mechanik, Band 3 Dynamik. Frankfurt a. M.: Verlag Harri Deutsch, W. Hauger, W. Schnell und D. Gross: Technische Mechanik, Band 3 Kinetik. Berlin: Springer, R. C. Hibbeler: Technische Mechanik 3 Dynamik. München: Pearson Education Deutschland GmbH, K. Magnus und H.H. Müller Slany: Grundlagen der Technischen Mechanik. Stuttgart: Teubner, W. Nachtigall: Biomechanik. Braunschweig: Vieweg, J.A. Roberson and C.T. Crowe: Engineering Fluid Mechanics. New York: Wiley & Sons, W. Schnell, D. Gross, und W. Hauger: Technische Mechanik, Band 2 Elastostatik. Berlin: Springer, 2006.

7 4

8 Sachverzeichnis 103 Sachwortverzeichnis A Amplitude, 53 Amplitudengang, 30 Anfangsbedingung, 33, 34, 35, 37 modale, 55, 60, 62 Anfangswertproblem diskreter Systeme, 20 kontinuierlicher Systeme, 52 Archimedisches Prinzip, 92 Auftrieb, 91, 92, 93 B Bahnlinie, 98 Balken, 36, 66, 76 Behälterwand, 85 eben, 87 gekrümmt, 89 horizontal, 87 vertikal, 88 Bernoulli sche Gleichung, 100 Bernoulli sche Lösung, 39 Bewegungsgleichung der Saite, 32, 58 des Balkens, 36, 58 des Dehnstabs, 34, 58 des Torsionsstabs, 35, 58 diskreter Systeme, 6, 13 Euler sche. Siehe Euler sche Bewegungsgleichung konservativer Systeme, 14 lineare, 15, 26 Biegeschwingung. Siehe Balken Bindung, 7 C charakteristische Gleichung diskreter Systeme, 18 kontinuierlicher Systeme, 41, 47 D d Alembert sche Lösung, 71, 72 Dehnstab, 34 Dichte, 79, 81 Differentialgleichung gewöhnliche, 44, 50 partielle, 31, 44, 50 Dispersion, 71 Drallsatz, 6 Druck, 79, 80, 82 hydrostatischer, 84 Druckpunkt, 85, 88 E Eigenform, 41, 48, 68 Eigenfrequenz, 17, 20, 39, 41, 44, 48, 50, 68 Eigenlösung, 68 der Wellengleichung, 40 des Balkens, 46 konservativer Systeme, 18 Eigenschwingung der Wellengleichung, 44 des Balkens, 45, 50 diskreter Systeme, 17, 18 Eigenvektor, 17, 19, 20 Eigenwertproblem, 17, 18 Energie kinetische, 12, 14 potentielle, 14 Erregung, harmonische, 28 Erstarrungsprinzip, 81, 90 erzwungene Schwingung, 57, 69 des Balkens, 61 diskreter Systeme, 23 Wellengleichung, 59 Euler sche Beschreibung, 97, 98 Euler sche Bewegungsgleichung, 99 F Fluid, 79 inkompressibles, 81 Newton sches, 79, 80 reibungsfreies, 80 Fluidstatik, 79 freie Schwingung diskreter Systeme, 20

9 104 Sachverzeichnis G kontinuierlicher Systeme, 51, 68 Gleichgewicht, 9, 15, 92 I Impulssatz, 6, 99 inhomogene Randbedingung, 69 K Kippstabilität Schwimmen, 94 Tauchen, 92 Kontinuitätsgleichung, 99 Koppelschwingung, 17 Kraftwinder, 85, 86, 86 L Lagrange sche Beschreibung, 97, 98 Lagrange sche Gleichungen, 11, 12 Lagrange Funktion, 11, 14 Linearisierung, 11, 15 Lösung homogene, 23 inhomogene, 23 M massenorthogonal, 17, 22 massenspezifische Volumenkraft, 79, 82 Metazenterhöhe, 96 Metazentrum, 91, 96 modale Entkopplung, 26 Modalmatrix, 24 Modaltransformation, 25, 26, 55, 59, 61 Mode. Siehe Eigenschwingung N Normalenvektor, 86 O Orthogonalität der Eigenfunktionen, 43, 49, 52, 55 der Reaktionen, 5 der Eigenvektoren, 22 P Partikulärlösung, 23, 28, 29 Phase, 53 Potential, 14 Prinzip der virtuellen Arbeit, 9 von d Alembert, 5, 9 Produktansatz, 39, 40, 46 R Randbedingung der Saite, 33 des Balkens, 37 des Dehnstabs, 34 des Torsionsstabs, 35 inhomogene, 63 Reflexion, 75 Resonanz, 23, 57 Rundstab, 35 S Saite, 32, 39 Schergeschwindigkeit, 80 Scherzähigkeit. Siehe Viskosität Schnittprinzip, 81, 90 Schubspannung, 79, 80 Schwebegleichgewicht, 92 Schwimmen, 93 Schwimmstabilität. Siehe Kippstabilität Schwingung erzwungene. Siehe Erzwungene Schwingung freie. Siehe Freie Schwingung Schwingungseigenform. Siehe Eigenschwingung Schwingungssystem diskretes, 11 konservatives, 11, 14, 17, 23 kontinuierliches, 31 steifigkeitsorthogonal, 22

10 Sachverzeichnis 105 Stromlinie, 98, 99 Stromröhre, 97, 99 Strömung, 97 laminar, 80 turbulent, 80 Strömungskraft, 101 Superposition der Eigenlösungen, 20, 52 der inhomogenen Lösung, 26, 65, 67 der modalen Lösungen, 27, 28 Superpositionsprinzip, 20, 52 T Tilgung, 23, 30 Torsionsstab. Siehe Rundstab V verallgemeinerte Koordinaten, 7 verallgemeinerte Kraft, 12 virtuelle Arbeit, 8 virtuelle Verrückung, 5, 7 Viskosität dynamische, 79, 80 kinematische, 80 W Wellenausbreitung, 71 Wellenfortpflanzungsgeschwindigkeit, 39 Wellengleichung, 39, 58, 64, 72

11 D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Übungen zur Vorlesung Oktober 2009 Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt

Mehr

9 Erzwungene Schwingungen durch verteilte Kräfte

9 Erzwungene Schwingungen durch verteilte Kräfte 57 9 Erzwungene Schwingungen durch verteilte Kräfte Wirken auf ein kontinuierliches System verteilte zeitveränderliche Kräften bzw. Momente, entstehen erzwungene Schwingungen. In diesem Fall sind die partiellen

Mehr

10 Erzwungene Schwingungen durch inhomogene Randbedingungen

10 Erzwungene Schwingungen durch inhomogene Randbedingungen 63 10 Erzwungene Schwingungen durch inhomogene Randbedingungen Schwingungen eines kontinuierlichen Systems lassen sich nicht nur durch verteilte Kräfte, sondern auch durch zeitveränderliche Bindungen an

Mehr

8 Freie Schwingungen kontinuierlicher Systeme

8 Freie Schwingungen kontinuierlicher Systeme 51 Freie Schwingungen sind Lösungen der partiellen Differentialgleichung gegebene Anfangs- und Randbedingungen. Das Vorgehen ist die eindimensionale Wellengleichung und die Balkenbiegung einheitlich und

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

Lösungen der Übungsaufgaben TM III

Lösungen der Übungsaufgaben TM III L Lösungen der Übungsaufgaben TM III Methoden der Analytischen Mechanik a) z l cos x l sin cos b) W e Gl cos Sl sin cos c) S G cot cos 4 a) W e (mg 4cx)x b) x mg 4c a) x x b) W e (Mg mg sin )x m M sin

Mehr

4 Erzwungene Schwingungen konservativer Schwingungssysteme

4 Erzwungene Schwingungen konservativer Schwingungssysteme 23 4 Erzwungene Schwingungen konservativer Schwingungssysteme Die allgemeine Lösung einer inhomogenen linearen Schwingungsgleichung findet man durch Überlagerung der homogenen Lösung (freie Schwingungen)

Mehr

5 Kontinuierliche Schwingungssysteme

5 Kontinuierliche Schwingungssysteme 31 Die bisher betrachteten diskreten Schwingungssysteme bestehen aus konentrierten massebehafteten Körpern, die an diskreten Stellen über Bindungen gekoppelt sind und damit über eine endliche Zahl f von

Mehr

3 Freie Koppelschwingungen konservativer Schwingungssysteme

3 Freie Koppelschwingungen konservativer Schwingungssysteme 17 3 Freie Koppelschwingungen onservativer Schwingungssysteme Das Eigenschwingungsverhalten ungedämpfter Systeme ohne äußere Erregung ann durch trigonometrische Funtionen beschrieben werden, deren Frequenzen

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Grundlagen der Technischen Mechanik

Grundlagen der Technischen Mechanik Grundlagen der Technischen Mechanik Von Dr. rer. nat. Dr.-Ing. E. h. Kurt Magnus Professor an der Techn. Universität München und Dr.-Ing. Hans Heinrich Müller Akad. Direktor an der Universität Siegen 6.

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Festigkeitslehre, Kinematik, Kinetik, Hydromechanik

Festigkeitslehre, Kinematik, Kinetik, Hydromechanik Festigkeitslehre, Kinematik, Kinetik, Hydromechanik Von Prof. Dipl. Ing. Dr. Hans G. Steger, Linz Prof. Dipl. Ing. Johann Sieghart, Linz Prof. Dipl. Ing. Erhard Glauninger, Linz 2., verbesserte und erweiterte

Mehr

1 Einleitung Historie und Anwendungsgebiete Elemente der Mehrkörperdynamik... 2 Literatur... 2

1 Einleitung Historie und Anwendungsgebiete Elemente der Mehrkörperdynamik... 2 Literatur... 2 Inhaltsverzeichnis 1 Einleitung... 1 1.1 Historie und Anwendungsgebiete...... 1 1.2 Elemente der Mehrkörperdynamik..... 2 Literatur...... 2 2 Dynamik des starren Körpers... 3 2.1 Lagebeschreibung......

Mehr

Technische Mechanik Dynamik

Technische Mechanik Dynamik Hans Albert Richard Manuela Sander Technische Mechanik Dynamik Grundlagen - effektiv und anwendungsnah Mit 135 Abbildungen Viewegs Fachbiicher der Technik vieweg VII VII 1 Fragestellungen der Dynamik 1

Mehr

1 Einleitung Historie Elemente der Mehrkörperdynamik Anwendungsgebiete... 3 Literatur... 4

1 Einleitung Historie Elemente der Mehrkörperdynamik Anwendungsgebiete... 3 Literatur... 4 Inhaltsverzeichnis 1 Einleitung... 1 1.1 Historie... 1 1.2 Elemente der Mehrkörperdynamik... 2 1.3 Anwendungsgebiete... 3 Literatur... 4 2 Dynamik des starren Körpers... 5 2.1 Lagebeschreibung... 6 2.1.1

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

Dynamik und Regelung Mechanischer Systeme

Dynamik und Regelung Mechanischer Systeme Dynamik und Regelung Mechanischer Systeme Von Priv.-Doz. Dr.-Ing. habil. Hartmut Bremer Technische Universität München Mit 101 Bildern B. G.Teubner Stuttgart 1988 Inhalt s Verzeichnis Vorbemerkung: Der

Mehr

Maschinenbau für Elektrotechniker

Maschinenbau für Elektrotechniker Maschinenbau für Elektrotechniker Teil 3 Von Prof. Dipl,lng. Dr. Hans G. Steger, Linz Mit 209 Bildern und Tabellen, 89 Beispielen und 115 Aufgaben 1992 B. G. Teu bner Stuttgart Hölder- Pichler-Tempsky

Mehr

MA+PHY2. Physik-Formelsammlung. Flavio De Roni Studiengang Wirtschaftsingenieur Innovation 4. Semester

MA+PHY2. Physik-Formelsammlung. Flavio De Roni Studiengang Wirtschaftsingenieur Innovation 4. Semester MA+PHY2 Physik-Formelsammlung Flavio De Roni Studiengang Wirtschaftsingenieur Innovation 4. Semester HSLU-T&A 12.05.2012 2 MA+PHY2 Formelsammlung Physik Änderungsverzeichnis Version Datum Autor Änderung

Mehr

1 Technische Mechanik 3 Dynamik

1 Technische Mechanik 3 Dynamik Russell C. Hibbeler 1 Technische Mechanik 3 Dynamik 10., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Georgia Mais Fachliche Betreuung und Erweiterungen: Jörg Wauer, Wolfgang

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Ulrich Gabbert/Ingo Raecke Technische Mechanik für Wirtschaftsingenieure 5., aktualisierte Auflage Mit 301 Abbildungen, 16 Tabellen, 83 Beispielen sowie einer CD-ROM Wi im Carl Hanser Verlag 1 Statik 11

Mehr

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre D. Bestle Technische Mechanik I Statik und Festigkeitslehre Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle a x b x a y b y Vektoren Addition

Mehr

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre D. Bestle Technische Mechanik I Statik und Festigkeitslehre Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt

Mehr

Klassische Mechanik. Übersicht

Klassische Mechanik. Übersicht Klassische Mechanik WS 02/03 C. Wetterich Übersicht 0) Einführung I Newtonsche Mechanik 1) Die Newtonschen Gesetze a) Kinetik, Beschreibung durch Massenpunkte b) Kraft (i)kraftgesetze (ii)differentialgleichungen

Mehr

Schwingungslehre mit Maschinendynamik

Schwingungslehre mit Maschinendynamik Eberhard Brommundt Delf Sachau Schwingungslehre mit Maschinendynamik 2., überarbeitete und erweiterte Auflage Mit 227 Abbildungen, 313 Aufgaben und zahlreichen Beispielen i Springer Vieweg Inhaltsverzeichnis

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER Heinz Herwig Strömungsmechanik Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER vii 0 Das methodische Konzept dieses Buches 1 A Einführung

Mehr

D. Bestle Technische Mechanik II Dynamik

D. Bestle Technische Mechanik II Dynamik D. Bestle Technische Mechanik II Dynamik Arbeitsunterlagen zur Vorlesung April 2010 Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle Kinematik Geschwindigkeit v dr dt ṙ,

Mehr

Die Navier-Stokes Gleichung

Die Navier-Stokes Gleichung Die Navier-Stokes Gleichung Mathematisches Institut der Universität Basel 11. November 2009 Fluidstatik Fluiddynamik Die Strömungslehre befasst sich mit dem physikalischen Verhalten von Fluiden. Fluide

Mehr

4. Einführung in die Baudynamik

4. Einführung in die Baudynamik Baustatik III SS 2017 4. Einführung in die Baudynamik 4.1 Allgemeine Vorbemerkungen 4.1.1 Bedeutungen der Baudynamik 4.1.2 Grundbegriffe und Klassifizierung 4.1.3 Modellierung der Bauwerksschwingungen

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

Prof. Dr.-Ing. Dietmar Gross Prof. Dr.-Ing. Wolfgang Ehlers Prof. Dr.-Ing. Peter Wriggers Prof. Dr.-Ing. Jörg Schröder Prof. Dr.-Ing.

Prof. Dr.-Ing. Dietmar Gross Prof. Dr.-Ing. Wolfgang Ehlers Prof. Dr.-Ing. Peter Wriggers Prof. Dr.-Ing. Jörg Schröder Prof. Dr.-Ing. Springer-Lehrbuch Prof. Dr.-Ing. Dietmar Gross studierte Angewandte Mechanik und promovierte an der Universität Rostock. Er habilitierte an der Universität Stuttgart und ist seit 1976 Professor für Mechanik

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2 Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................

Mehr

Potentielle Energie, P.d.v.K. und P.d.v.V.

Potentielle Energie, P.d.v.K. und P.d.v.V. IBSD Institut für Baustatik und Baudynamik Fachbereich Bauingenieurwesen Potentielle Energie, P.d.v.K. und P.d.v.V. Fachgebiet Baustatik 2. Februar 26 Inhaltsverzeichnis 1 Die potentielle Energie 1 1.1

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Schwingungen. Kurt Magnus Karl Popp Walter Sextro

Schwingungen. Kurt Magnus Karl Popp Walter Sextro Kurt Magnus Karl Popp Walter Sextro Schwingungen Eine Einfuhrung in die physikalischen Grundlagen und die theoretische Behandlung von Schwingungsproblemen 8., uberarbeitete Auflage Mit 211 Abbildungen

Mehr

1 Grundlagen der Statik Die Kraft Axiome der Statik Das Schnittprinzip... 5

1 Grundlagen der Statik Die Kraft Axiome der Statik Das Schnittprinzip... 5 Inhaltsverzeichnis 1 Grundlagen der Statik 1 1.1 Die Kraft...................................... 1 1.2 Axiome der Statik.................................. 3 1.3 Das Schnittprinzip.................................

Mehr

Inhaltsverzeichnis. Vorwort. 1 Statik des starren Körpers 1

Inhaltsverzeichnis. Vorwort. 1 Statik des starren Körpers 1 Inhaltsverzeichnis Vorwort V 1 Statik des starren Körpers 1 Grundüberlegungen zu Kräften und Gleichgewicht 1 1.1 Allgemeine Überlegungen 1 1.1.1 Kraft, Schnittprinzip 1 1.1.2 Schnittbilder 1 1.1.3 Einteilung

Mehr

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X:

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X: Eindimensionale Kontinuumsschwingungen II Kontinuumsmechanik 05. Übungsblatt, WS 2012/13, S. 1 1 Balkenschwingung Wir beginnen mit der Herleitung der Bewegungsdifferentialgleichung / Feldgleichung für

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Einführung in die Technische Strömungslehre

Einführung in die Technische Strömungslehre Einführung in die Technische Strömungslehre Bearbeitet von Gerd Junge 1. Auflage 2011. Buch. 288 S. Hardcover ISBN 978 3 446 42300 8 Format (B x L): 16,7 x 240,3 cm Gewicht: 546 g Weitere Fachgebiete >

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Technische Mechanik Kinematik und Kinetik

Technische Mechanik Kinematik und Kinetik Günther Holzmann Heinz Meyer Georg Schumpich Technische Mechanik Kinematik und Kinetik 10., überarbeitete Auflage Mit 315 Abbildungen, 138 Beispielen und 172 Aufgaben Von Prof. Dr.-Ing. Heinz Meyer unter

Mehr

Technische Mechanik Kinematik und Kinetik

Technische Mechanik Kinematik und Kinetik Technische Mechanik Kinematik und Kinetik Bearbeitet von Hans-Joachim Dreyer, Conrad Eller, Günther Holzmann, Heinz Meyer, Georg Schumpich 1. Auflage 2012. Taschenbuch. xii, 363 S. Paperback ISBN 978 3

Mehr

Technische Mechanik. Jürgen Dankert Helga Dankert

Technische Mechanik. Jürgen Dankert Helga Dankert Jürgen Dankert Helga Dankert Technische Mechanik Statik, Festigkeitslehre, Kinematik/Kinetik 6., überarbeitete Auflage Mit 1102 Abbildungen, 128 Übungsaufgaben, zahlreichen Beispielen und weiteren Abbildungen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5 Inhaltsverzeichnis Vorwort 5 1 Allgemeine Einführung 13 1.1 Aufgabe und Einteilung der Mechanik.............. 13 1.2 Vorgehen in der Mechanik..................... 14 1.3 Physikalische Größen und Einheiten................

Mehr

1. Einführung. Baudynamik (Master) SS 2017

1. Einführung. Baudynamik (Master) SS 2017 Baudynamik (Master) SS 2017 1. Einführung 1.1 Bedeutungen der Baudynamik 1.2 Grundbegriffe und Klassifizierung 1.3 Modellierung der Bauwerksschwingungen LEHRSTUHL FÜR BAUSTATIK 1 Baudynamik (Master) SS

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Inhaltsverzeichnis. Ulrich Gabbert, Ingo Raecke. Technische Mechanik für Wirtschaftsingenieure. ISBN (Buch):

Inhaltsverzeichnis. Ulrich Gabbert, Ingo Raecke. Technische Mechanik für Wirtschaftsingenieure. ISBN (Buch): Inhaltsverzeichnis Ulrich Gabbert, Ingo Raecke Technische Mechanik für Wirtschaftsingenieure ISBN (Buch): 978-3-446-43253-6 ISBN (E-Book): 978-3-446-43595-7 Weitere Informationen oder Bestellungen unter

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Baudynamik (Master) SS 2014

Baudynamik (Master) SS 2014 Baudynamik (Master) SS 14 3. Schwingungen mit zwei und mehr Freiheitsgraden 3.1 Einige Prinzipien der Mechanik und Herleitung der Schwingungsgleichungen 3.1.1 Einige Prinzipien der Mechanik 3.1. Herleitung

Mehr

IV. Strömungen eines idealen Fluids

IV. Strömungen eines idealen Fluids IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Technische Mechanik kompakt

Technische Mechanik kompakt Peter Wriggers, Udo Nackenhorst, Sascha Beuermann, Holger Spiess, Stefan Löhnert Technische Mechanik kompakt Starrkörperstatik Elastostatik Kinetik Mit zahlreichen Abbildungen und Tabellen, 106 durchgerechneten

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Technische Strömungsmechanik für Studium und Praxis

Technische Strömungsmechanik für Studium und Praxis Albert Jogwich Martin Jogwich Technische Strömungsmechanik für Studium und Praxis 2. Auflage

Mehr

Rechenmethoden der Physik I (WS )

Rechenmethoden der Physik I (WS ) Rechenmethoden der Physik I (WS 2009-2010) Vektoren Allgemeines: Kartesische Koordinaten. Komponenten, Vektoraddition, Einheitsvektoren Skalarprodukt: geometrische Bedeutung, Orthogonalität, Kronecker-Delta

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Inhaltsverzeichnis. Kurz, G�nther Strà mungslehre, Optik, Elektrizit�tslehre, Magnetismus digitalisiert durch: IDS Basel Bern

Inhaltsverzeichnis. Kurz, GÃ?nther Strà mungslehre, Optik, ElektrizitÃ?tslehre, Magnetismus digitalisiert durch: IDS Basel Bern Inhaltsverzeichnis I Strömungslehre 11 1 Ruhende Flüssigkeiten (und Gase) - Hydrostatik 11 1.1 Charakterisierung von Flüssigkeiten 11 1.2 Druck - Definition und abgeleitete 11 1.3 Druckänderungen in ruhenden

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Physik für Naturwissenschaftler

Physik für Naturwissenschaftler Physik für Naturwissenschaftler I Mechanik und Wärmelehre Für Chemiker, Biologen, Geowissenschaftler von Hugo Neuert Prof. emer. an der Universität Hamburg 2., überarbeitete Auflage Wissenschaftsverlag

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Eckhard flebhan Theoretische Physik: Mechanik ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum L AKADEMISCHER VI k_/l AKADEMISCHER VEHLAG Inhaltsverzeichnis Anmerkungen zur Theoretischen Physik 1 1 Vorbemerkungen

Mehr

Jürgen Dankert, Helga Dankert. Technische Mechanik. Statik, Festigkeitslehre, Kinematik/Kinetik. 4. korrigierte und ergänzte Auflage

Jürgen Dankert, Helga Dankert. Technische Mechanik. Statik, Festigkeitslehre, Kinematik/Kinetik. 4. korrigierte und ergänzte Auflage Jürgen Dankert, Helga Dankert Technische Mechanik Statik, Festigkeitslehre, Kinematik/Kinetik 4. korrigierte und ergänzte Auflage Mit 1070 Abbildungen, 77 Tabellen sowie 390 Übungsaufgaben mit Lösungen

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Mahir B. Sayir Stephan Kaufmann. Ingenieurmechanik 3. Dynamik. 2., korrigierte Auflage

Mahir B. Sayir Stephan Kaufmann. Ingenieurmechanik 3. Dynamik. 2., korrigierte Auflage Ingenieurmechanik 3 Mahir B. Sayir Stephan Kaufmann Ingenieurmechanik 3 Dynamik 2., korrigierte Auflage Mahir B. Sayir Stephan Kaufmann IMES ETH Zürich Zürich, Schweiz ISBN 978-3-8351-0174-6 DOI 10.1007/978-3-658-07533-0

Mehr

Schwingungslehre. mit Maschinendynamik. Eberhard Brommundt, Delf Sachau. Mit 210 Abbildungen und 286 Aufgaben. Teubner

Schwingungslehre. mit Maschinendynamik. Eberhard Brommundt, Delf Sachau. Mit 210 Abbildungen und 286 Aufgaben. Teubner Eberhard Brommundt, Delf Sachau 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Schwingungslehre mit Maschinendynamik

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Technische Mechanik. Dynamik. Peter Hagedorn. Band 3. Verlag Harri Deutsch

Technische Mechanik. Dynamik. Peter Hagedorn. Band 3. Verlag Harri Deutsch Peter Hagedorn 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Technische Mechanik Band 3 Dynamik Verlag Harri Deutsch

Mehr

Schwingungen. Kurt Magnus Karl Popp Walter Sextro

Schwingungen. Kurt Magnus Karl Popp Walter Sextro Kurt Magnus Karl Popp Walter Sextro 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Schwingungen Eine Einführung

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:

Mehr

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gerd Junge Einführung in die Technische Strömungslehre ISBN: 978-3-446-42300-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42300-8 sowie im Buchhandel.

Mehr

Peter Hagedorn. Technische Mechanik. Band 3. Dynamik. 2., überarbeitete und erweiterte Auflage. Verlag Harri Deutsch

Peter Hagedorn. Technische Mechanik. Band 3. Dynamik. 2., überarbeitete und erweiterte Auflage. Verlag Harri Deutsch Peter Hagedorn Technische Mechanik Band 3 Dynamik 2., überarbeitete und erweiterte Auflage Verlag Harri Deutsch Inhaltsverzeichnis 1 Einleitung 1 2 Kinematik 3 2.1 Kinematik des Punktes 3 2.1.1 Die geradlinige

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Technische Mechanik kompakt

Technische Mechanik kompakt ,, '"""",.""''-.,..,..' f.' " \ Peter Wriggers, Udo Nackenhorst, Sascha Beuermann, Holger Spiess, Stefan löhnert Technische Mechanik kompakt Starrkörperstatik Elastostatik Kinetik 2., durchgesehene und

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

1 Grundlagen der Statik. 2 Das zentrale ebene Kraftsystem. 4 Schwerpunkte

1 Grundlagen der Statik. 2 Das zentrale ebene Kraftsystem. 4 Schwerpunkte 1 Grundlagen der Statik 1.1 Die Kraft 1.2 Axiome der Statik 1.3 Das Schnittprinzip 2 Das zentrale ebene Kraftsystem 2.1 Äquivalenz 2.2 Gleichgewicht 3 Das allgemeine ebene Kraftsystem (Äquivalenz) 3.1

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

Lehrfach: Technische Mechanik I Dozent: Steinmann. Sicheres Beherrschen der Stereostatik. Übungsschein (nicht für MV, UV). Klausur 75 Minuten

Lehrfach: Technische Mechanik I Dozent: Steinmann. Sicheres Beherrschen der Stereostatik. Übungsschein (nicht für MV, UV). Klausur 75 Minuten Lehrfach: Technische Mechanik I Dozent: Steinmann LV-Nummer: 86-001 SWS: 3 V, 1 Ü Credits: 5 Stereostatik: Kräfte und Momente, Zentrale und nichtzentrale Kräftesysteme, Mittelpunkte, Kinematische und statische

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Grundlagen und Grundgleichungen der Strömungsmechanik

Grundlagen und Grundgleichungen der Strömungsmechanik Inhalt Teil I Grundlagen und Grundgleichungen der Strömungsmechanik 1 Einführung... 3 2 Hydromechanische Grundlagen... 7 2.1 Transportbilanz am Raumelement... 7 2.1.1 Allgemeine Transportbilanz... 7 2.1.2

Mehr

Herleitung der LG 2. Art

Herleitung der LG 2. Art Herleitung der LG 2. Art Ausgangspunkt: 3N Koordinaten mit R Zwangsbedingungen: Anzahl Freiheitsgrade LG 1. Art (N2 mit Zwangskräften): Ziel: Wähle verallgemeinerte Koordinaten, so, dass die Zwangsbedingungen

Mehr