Klausur Technische Strömungslehre

Größe: px
Ab Seite anzeigen:

Download "Klausur Technische Strömungslehre"

Transkript

1 Klausur Technische Strömungslehre Aufgabe (12 Punkte) Ein allon zur Erdumrundung besteht aus einer zweigeteilten allonhülle und soll eine Nutzlast der Masse m tragen. In der allonhülle befindet sich oben ein geschlossener, kugelförmiger Auftriebskörper (urchmesser ), der mit Helium (ϱ H ) gefüllt ist. arunter folgt ein offener Auftriebskörper (V, ϱ ), dessen Auftrieb durch Zufuhr von Heißluft aus einem Gasbrenner gesteuert werden kann. Zur Vereinfachung sollen beide Auftriebskörper als starr (Volumen=konst) angesehen werden. as restliche Volumen in der allonhülle sowie der Auftrieb der Nutzlast sind zu vernachlässigen. Nehmen Sie isotherme Atmosphäre mit T (z) = T 0 = konst an! Helium H RH g R V R p (z) (z) T (z)=t = konst Nutzlast (Masse m) z 0 Gegeben: m, g, V, T (z) = T 0 = konst; Gaskonstanten: R, R = R, R H ; für z = 0 : ϱ (z = 0) = ϱ 0, ϱ (z = 0) = ϱ 0, ϱ H (z = 0) = ϱ H0. a) Welchen urchmesser muss der mit Helium gefüllte Auftriebskörper haben, damit der gesamte allon mit Nutzlast in der Höhe z = 0 gerade schwebt? Im unteren Auftriebskörper herrscht atmosphärischer Zustand (ϱ 0, T 0 ). b) estimmen Sie für eine isotherme Atmosphäre (T (z) = T 0 = konst) den Verlauf der ichte ϱ(z) in Abhängigkeit von der Höhe z. c) er untere Auftriebskörper werde nun mit einem Gasbrenner für eine bestimmte Zeit beheizt, so daß die Temperatur auf T = 1.1 T 0 erhöht wird. eim Aufstieg des allons bleibt die Temperatur T konstant; es wird keine Wärme an den oberen Auftriebskörper (ϱ H = ϱ H0 ) bzw. an die Umgebung abgegeben. Welche maximale Höhe H erreicht der allon?

2 2. Aufgabe (10 Punkte) Aus einer üse (Querschnitt A) tritt ein Wasserstrahl mit der ichte ϱ und der Geschwindigkeit v 1 aus und trifft auf eine Werkzeugschneide. iese teilt den Wasserstrahl in zwei gleich große Strahlen (Querschnitt A/2) auf. Es soll eine ebene und verlustfreie Strömung vorliegen. use v 1 A P a α A/2 v 2 y x P a β A/2 v 3 Gegeben: A, v 1, p a, ϱ, α, β a) estimmen Sie die Geschwindigkeiten v 2 und v 3. b) estimmen Sie die Komponenten F x und F y der Kraft F im gegebenen Koordinatensystem (x, y), die vom Wasserstrahl auf die Werkzeugschneide ausgeübt wird. Im folgenden soll der Fall α = 0 betrachtet werden! c) ie Werkzeugschneide bewege sich nun mit konstanter Geschwindigkeit v F entlang der x-achse auf die üse zu. estimmen Sie die Komponenten F x und F y der resultierenden Kraft F des Wasserstrahls auf die Werkzeugschneide. Hinweis: er Einfluß der Erdbeschleunigung soll nicht berücksichtigt werden. Alle Reibungseinflüsse sind zu vernachlässigen. Auf die Werkzeugschneide wirkt von allen Seiten der Umgebungsdruck p a.

3 3. Aufgabe (12 Punkte) Zur estimmung der Zähigkeit η einer Flüssigkeit mit der ichte ϱ wird die abgebildete Vorrichtung benutzt. Über den Zulauf wird ein konstanter Volumenstrom Q in einen großen ehälter mit konstanter Füllhöhe gefördert. Von dort strömt das Fluid unter dem Einfluß der Erdschwere g durch einen Spalt mit rechteckigem Querschnitt ( reite, Tiefe s) ins Freie. ie Strömung im Spalt kann als eben und laminar betrachtet werden. Am Spalteintritt sei die Strömung bereits voll ausgebildet. er ruckgradient dp/dz in Strömungsrichtung z ist im Spalt über der auflänge konstant. Q Zulauf g, η x z Gegeben: Q,,, s, η, ϱ, g a) Ermitteln Sie aus dem Kräftegleichgewicht an einem differentiellen Element im Spalt die Schubspannungsverteilung τ(x) und die Geschwindigkeitsverteilung w(x) in Abhängigkeit von der Koordinate x und dem ruckgradienten dp/dz. b) Skizzieren Sie die Schubspannungs- τ(x) und Geschwindigkeitsverteilung w(x) qualitativ für einen negativen ruckgradienten in Strömungsrichtung (dp/dz < 0). c) estimmen Sie den ruckgradienten dp/dz, indem Sie einen Zusammenhang zwischen dem Volumenstrom Q des Zulaufs und der Geschwindigkeitsverteilung w(x) im Spalt herstellen. Hinweis: ie Flüssigkeit verhalte sich wie ein Newtonsches Fluid.

4 4. Aufgabe (8 Punkte) er dargestellte Teil einer geplanten Pipeline zur Förderung von Erdöl (ϱ, η) besteht aus zwei Rohrkrümmern mit den Verlustbeiwerten ζ K1 und ζ K2. ie Pipeline soll für eine urchflußgeschwindigkeit von v = 1, 5m/s und den über der auflänge konstanten urchmesser = 1m ausgelegt werden. In einem Modellversuch mit Wasser (ϱ, η ) wird an einem verkleinerten Modell ( / = 1/10) dieses Pipelineabschnitts aufgrund der strömungsmechanischen Verluste in den Krümmern ein ruckverlust von p v = 1, 2N/m 2 gemessen. er Einfluß der Erdschwere und der ruckverlust durch Rohrreibung soll vernachlässigt werden! v η ζ K2 p v ζ K1 Gegeben: Hauptausführung: = 1m, v = 1, 5m/s, ϱ = 850kg/m 3, η = 10 1 Ns/m 2 Modell: = 1 10, p v = 1, 2N/m 2, ϱ = 10 3 kg/m 3, η = 10 3 Ns/m 2 a) Welche Geschwindigkeit v ist im Modellversuch zu wählen? b) estimmen Sie den Gesamtverlustbeiwert ζ K = ζ K1 + ζ K2. c) Wie groß ist der zu erwartende ruckverlust p v für die Hauptausführung? d) Welche eistung P ist zur Überwindung der strömungsmechanischen Verluste in der Hauptausführung nötig?

5 5. Aufgabe (11 Punkte) Eine Strebe zur Aussteifung des Gehäuses im Saugmund einer Kreiselpumpe habe die Kontur (k) eines ebenen Halbkörpers, der potentialtheoretisch aus der Überlagerung einer Parallelströmung (u ) mit einer Quelle der Ergiebigkeit E entsteht. ie Kontur wird beschrieben durch: r k = 2 π π ϕ sinϕ Für diesen Halbkörper, der im Unendlichen die icke erreicht und als zweidimensional betrachtet wird, soll untersucht werden, auf welcher inie des Strömungsfeldes Kavitation einsetzt, d.h wo bei gegebener Zuströmgeschwindigkeit der ampfdruck p des Wassers unterschritten wird, so dass für den ruckbeiwert (p p )/ ϱ 2 u2 = 1/4 gilt. Verwenden Sie im folgenden Polarkoordinaten (r, ϕ; v r, v ϕ )! y P (r,ϕ) E r ϕ x u p Gegeben: p, p, u,, ϱ, p p ϱ 2 u2 = 1 4 a) estimmen Sie die für dieses Problem zugehörige komplexe Potentialfunktion F (z) und berechnen Sie daraus die Stromfunktion Ψ(r, ϕ). Ermitteln Sie die age des Staupunktes und die Gleichung (r = f(ϕ)) der Staupunktstromlinie, die die Körperkontur beschreibt. eiten Sie damit eine eziehung zwischen der Ergiebigkeit E und der Körperdicke her. b) Ermitteln Sie die den ruckbeiwert c p in einem beliebigen Punkt P (r, ϕ) des Strömungsfeldes. c) Ermitteln Sie das Polynom 2. Grades in r zur estimmung derjenigen Isobaren, auf der gerade der ampfdruck des Wassers erreicht wird. iese Gleichung soll nicht nach r aufgelöst werden! d) Skizzieren Sie die Konturstromlinie der Strebe und das zugehörige potentialtheoretische Strömungsfeld. ekannte komplexe Potentialfunktionen: Parallelströmung: F (z) = (u iv )z Potentialwirbel: Quelle/Senke: F (z) = iγ ln z 2π F (z) = ± E ln z 2π Staupunktströmung: F (z) = az 2 ipol: v r = Φ = 1 Ψ r r ϕ F (z) = M 2πz v θ = 1 r Φ = Ψ ϕ r z = r e iϕ = r (cos(ϕ) + i sin(ϕ))

6 6. Aufgabe (9 Punkte) Ein kugelförmiges Öltröpfchen (urchmesser, ichte Öl ) fällt stationär mit der Geschwindigkeit uöt durch ruhende uft ( uft ). In ruhendem Öl (Öl ) steigt stationär ein kugelförmiges uftbläschen ( uft ) gleichen urchmessers () mit der Geschwindigkeit u auf. Nehmen Sie an, dass es sich um schleichende Strömung (c = 24/Re; 0 Re 0, 5) handelt. Öltröpfchen Öl u ÖT uft η uft uftbläschen Öl g η Öl u uft Gegeben:, g, Öl, uft, ηöl, η uft a) estimmen Sie das Verhältnis der Geschwindigkeiten uöt /u. Im folgenden wird nur das Öltröpfchen (ϱöl, ηöl ) betrachtet. Es fällt stationär durch ruhende uft. ie Auftriebskraft sei zu vernachlässigen! Es handelt sich weiterhin um schleichende Strömung (0 Re 0, 5; c = 24/Re). b) is zu welchem Kugeldurchmesser max gilt das Gesetz (c = 24/Re)?

7 7. Aufgabe (8 Punkte) urch zwei Rohre mit jeweils konstantem urchmesser und einem dazwischen liegenden Übergangsstück strömt uft. Im Rohr 2 befindet sich ein sehr schlanker, rotationssymmetrischer, spitzer Körper. Seine Verdrängungswirkung ist zu vernachlässigen. ie Strömung sei isentrop. (1) Rohr 1 (2) Körper Rohr 2 Gegeben: p 2 /p 1 = 0, 7, γ = 1, 4, u 2 = 265m/s, T 2 = 300K, R = 287 Nm kg K a) estimmen Sie die Machzahl M 2 im Querschnitt 2. b) estimmen Sie das ichteverhältnis ϱ 2 /ϱ 1 und das Temperaturverhältnis T 2 /T 1. c) Wie groß ist die Temperatur T S an der vorderen Spitze des Körpers? Hinweis: ie uft wird als ideales Gas mit konstanten spezifischen Wärmekapazitäten betrachtet. c p = γ R γ 1 Isentropenbeziehungen: ( ) γ 1 ( ) γ 1 T p γ = = T 0 0 p 0

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 16. 3. 006 1. Aufgabe (6 Punkte) Eine starre, mit Luft im Umgebungszustand gefüllte Boje hat die Form eines Kegels (Höhe h 0, Radius

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 16. 08. 018 1. Aufgabe (14 Punkte) Das Kräftegleichgewicht in einer ausgebildeten, laminaren Rohrströmung unter Gravitationseinfluss wird

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 08. 08. 2014 1. Aufgabe (11 Punkte) Ein Fluid strömt über eine beheizte Platte. Die Temperatur des Fluids weit entfernt von der Platte

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Klausur Strömungslehre (Diplom)

Klausur Strömungslehre (Diplom) ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre (Diplom) 5. 8. 11 1. Aufgabe (1 Punkte) Zwischen den Polschuhen zweier Magnete befindet sich eine magnetisierbare Flüssigkeit der Dichte ρ F.

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden)

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden) Univ.-Prof. Dr.-Ing. Wolfram Frank 09.10.2003 Lehrstuhl für Fluiddynamik und Strömungstechnik Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Aufg. 2)... Beurteilung:...

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 05.10.2004 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Beurteilung:... Platz-Nr.:...

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Prüfungsklausur Dauer: 2 Stunden

Prüfungsklausur Dauer: 2 Stunden Fakultät für Verfahrens- und Systemtechnik Institut für Strömungstechnik und hermodynamik Lehrgebiet: Strömungsmechanik II Name Vorname Matrikel-Nr. Studiengang Seminargrue Immatrikulationsjahr Anzahl

Mehr

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0 ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 07. 03. 2012 1. Aufgabe a Vereinfachungen: stationär: t 0, inkompressibel: ϱ konst 2-dimensionales Problem: w 0, z 0, Druck in x-richtung

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 07. 08. 2015 1. Aufgabe (9 Punkte) In einem See stellt sich durch die Sonneneinstrahlung folgende Dichteverteilung ein. ( ρ(z) = ρ B 1

Mehr

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti:

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti: ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 05. 08. 011 1. Aufgabe a Konti: Impuls: Energie: u x + v = 0 ρ u u x + v u ρ c p u T x + v T = η u = λ T dimensionslose Größen: ū = u u

Mehr

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und tromfunktion kann man ein komplexes Potential definieren, wobei φ ( ) ( ) i ( ) F z =φ x,y +ψ x,y (2.8) z = x+

Mehr

Klausur. Strömungsmechanik

Klausur. Strömungsmechanik Strömungsmechanik Klausur Strömungsmechanik. Juli 007 Name, Vorname: Matrikelnummer: Fachrichtung: Unterschrift: Bewertung: Aufgabe : Aufgabe : Aufgabe 3: Aufgabe 4: Gesamtpunktzahl: Klausur Strömungsmechanik

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 003 Strömungsmechanik I Bearbeitungsdauer: PO 000 : 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 009/0, 606 VO+UE Univ Prof Dr Christoph Dellago ) Berechnen Sie cos (06) ohne Verwendung der Winkelfunktionen des Taschenrechners auf 4

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin 1.Klausur Strömungslehre Technik und Beispiele am Freitag, 23. Februar 2018 15:00-17:00 Raum H 0104, HE 101 Fakultät V Verkehr- und Maschinensysteme ISTA Institut für Strömungsmechanik

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr Klausur Strömungsmechanik Herbst 203 3. August 203, Beginn 5:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar TFD-Formelsammlung (ohne handschriftliche

Mehr

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik I 7. 02. 205 M U S T E R L Ö S U N G E I N S IC H T N A H M E Hinweis:

Mehr

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011 Integrierter Kurs I 2. Klausur, WiSe 2010/2011 03. März 2011 Name: Gruppenleiter: Aufgabe Punkte 1 / 5 2 /16 3 /10 4 /13 5 /10 6 /12 7 / 8 8 / 6 insgesamt (max. 80) 1. Gravitationskraft (5 Punkte) Im Jahr

Mehr

Ergänzung Thermo- und Strömungsdynamik SS 2018 LP 2 Ruhende und strömende Fluide

Ergänzung Thermo- und Strömungsdynamik SS 2018 LP 2 Ruhende und strömende Fluide Aufgabe.11) Ergänzung Thermo- und Strömungsdynamik SS 018 L Ruhende und strömende Fluide Ein Aluminiumrohr mit einer Masse von 10 g, einem Durchmesser d = 0 mm und einer Länge h = 300 mm ist mit 150 g

Mehr

6.Übung Strömungslehre für die Mechatronik

6.Übung Strömungslehre für die Mechatronik 6.Übung Strömungslehre für die Mechatronik Prof. Dr.-Ing Peter Pelz Dipl.-Ing. Thomas Bedar 18. Juli 2009 Inhaltsverzeichnis 1 Hinweise 1 2 Korrektur zur Vorlesung vom 14.07.2009 2 3 laminare Schichtenströmung

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck 000000000000000 111111111111111 000000000000000 111111111111111 u 000000000000000 111111111111111 000000000000000

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2017/2018 12.03.2018 Prof. Dr. rer. nat. M. Koch Vorgelet von: Ehsan Farmani 1 Aufgabe 46 Wie groß ist die relative Änderung (%) vom Druck, wenn a) wir die absolute Temperatur

Mehr

= 4 = x + 3. y(x) = x

= 4 = x + 3. y(x) = x Ü Aufgabenblatt Inhalt Brüche. Gleichungen. Summen. Potenzen. Logarithmen. Ebener Winkel (Definition und Einheiten). Trigonometrische Funktionen. Basisgrößen und Basiseinheiten des SI. Bequemes Rechnen

Mehr

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur, 3. August 2009 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung "Strömungslehre"

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung Strömungslehre Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung "Strömungslehre" Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Übungen im

Mehr

Klausur Strömungsmaschinen I WiSe 2008/09

Klausur Strömungsmaschinen I WiSe 2008/09 Klausur Strömungsmaschinen I WiSe 008/09 7 Februar 009, Beginn 4:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

KLAUSUR STRÖMUNGSLEHRE Fragenteil

KLAUSUR STRÖMUNGSLEHRE Fragenteil Prof. Dr.-Ing. Holger Foysi 30.01.2012 Lehrstuhl Strömungsmechanik Name:...... Vorname:...... Punkte:... Matr.-Nr.:...... MB-DI / MB-DII / IP-DII / WIW-DII BSc-MB / BSc-MBD / BSc-BIBME KLAUSUR STRÖMUNGSLEHRE

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines emperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte hermische enzschichtdicke hydraulische

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

Eintrittsdruck p E D E durchmesser D A geschwindigkeit c E [mm] [mm] [m/s] [bar] 1) ,5 1 2) ,5 1 3) ,5 1.

Eintrittsdruck p E D E durchmesser D A geschwindigkeit c E [mm] [mm] [m/s] [bar] 1) ,5 1 2) ,5 1 3) ,5 1. Zusatzaufgabe 1 Die Hauptaufgabe der (SM) ist die Umwandlung der Strömungsenergie des Fluids in mechanische Arbeit an der Welle oder umgekehrt. Die Arbeitsweise beruht dabei auf dem Impulsaustausch zwischen

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

Hydrodynamik: bewegte Flüssigkeiten

Hydrodynamik: bewegte Flüssigkeiten Hydrodynamik: bewegte Flüssigkeiten Wir betrachten eine stationäre Strömung, d.h. die Geschwindigkeit der Strömung an einem gegebenen Punkt bleibt konstant im Laufe der Zeit. Außerdem betrachten wir zunächst

Mehr

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II 1) Wie stellt sich der Druck p E im Austrittsquerschnitt beim Austritt eines Gases aus einem Kessel durch eine stetig konvergente Mündung,

Mehr

Thermodynamik 1 Klausur 06. August 2012

Thermodynamik 1 Klausur 06. August 2012 Thermodynamik 1 Klausur 06. August 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Mitschrift Thermodynamik

Mitschrift Thermodynamik Mitschrift hermodynamik Herleitung für den Gasdruck Berechnung des oberen Kreisradius d cosϕ dϕ dψ d N eilchen im Gesamtvolumen dn d N Aufschlagswahrscheinlichkeit eines eilchens Fläche df df sinϕ Gesamte

Mehr

Technische Thermodynamik II

Technische Thermodynamik II Technische Thermodynamik II Name,Vorname: Bitte deutlich (in Blockschrift) ausfüllen! Matr.-Nr: Studiengang: F 1 2 Σ Note 1 NAME, Vorname Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 16. 03. 2017

Mehr

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x): Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden

Mehr

Technische Thermodynamik

Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 6., überarbeitete und erweiterte Auflage 1.3 Thermische Zustandsgrößen 13 1 1.3.2 Druck Beispiel 1.2 In einer Druckkammer unter Wasser herrscht ein

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Klausur Strömungsmaschinen I SoSe 2008

Klausur Strömungsmaschinen I SoSe 2008 Klausur Strömungsmaschinen I SoSe 2008 9 August 2008, Beginn 3:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 11. 08. 2015 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Nur

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Klausur Technische Strömungslehre

Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömunslehre 2. 8. 25. Aufabe ( Punkte) Die Ausflussöffnun (Spalthöhe h, Tiefe T ) eines Wasserbehälters wird, wie in der Zeichnun darestellt,

Mehr

Analyse Auftriebs KKKraftwerk Fa Gaja 1 Erstellt am e.r.

Analyse Auftriebs KKKraftwerk Fa Gaja 1 Erstellt am e.r. Analyse Auftriebs KKKraftwerk Fa Gaja 1 Funktionsprinzip des Auftriebskraftwerks In einem mit Wasser gefüllten Tank befinden sich Behälter in Form eines halbierten Zylinders, die mit einem Kettentrieb

Mehr

Klausur Experimentalphysik I

Klausur Experimentalphysik I Universität Siegen Winter Semester 2017/2018 Naturwissenschaftlich-Technische Fakultät Prof. Dr. Mario Agio Department Physik Klausur Experimentalphysik I Datum: 21.3.2018-10 Uhr Name: Matrikelnummer:

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Hydromechanik Hausarbeiten 3

Hydromechanik Hausarbeiten 3 Institut für Dozent: Assistent: Dipl.-Ing. Tobias Bleninger Abgabedatum: Fr 24.01.03 Dies sind die zur. Ihr könnt alle Hilfsmittel zur Lösung der Aufgaben verwenden, wobei Abschreiben oder Gruppenarbeiten

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 8..04 Arbeitszeit: 0 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch. Aufgabenstellung Thermodynamik I SS Aachen, den 22.

Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch. Aufgabenstellung Thermodynamik I SS Aachen, den 22. Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch Aufgabenstellung Thermodynamik I SS 2014 Aachen, den 22. September 2014 Bachelorprüfung Thermodynamik I SS 2014 1/4 1 Aufgabe (25 Punkte)

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I NAME, Vorname Matr.-Nr. Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 26. 02. 2019 im Fach Technische Thermodynamik I Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 30 Dauer: 25 Minuten Regeln

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1 Lösung Klausur E1 Mechanik vom 11. April 2013 Aufgabe 1: Affentheater (16 Punkte) a) r(t) = x(t) = vx 0 t = v 0 cos α t y(t) v y 0 t 1 2 gt2 v 0 sin α t 1 2 gt2 b) y(x) = y(t(x)) mit t = x y(x) = x tan

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2014/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Besprechung am /

Besprechung am / PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 016/17 Übungsblatt 9 Übungsblatt 9 Besprechung am 10.01.017 / 1.01.017 Aufgabe 1 Dakota Access Pipeline. Die Dakota Access Pipeline ist eine

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Thermodynamik 1 Klausur 06. März 2015

Thermodynamik 1 Klausur 06. März 2015 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 06. März 2015 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Tutorium Hydromechanik I + II

Tutorium Hydromechanik I + II Tutorium Hydromechanik I + II WS 2015/2016 Session 3 Prof. Dr. rer. nat. M. Koch 1 Aufgabe 13 (Klausuraufgabe am 07.10.2012) Der bekannte Bergsteiger Reinhold Messner befindet sich mal wieder auf Himalaya

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Tutorium Hydromechanik I + II. S. Mohammad Hosseiny Sohi September-Okoteber 2015

Tutorium Hydromechanik I + II. S. Mohammad Hosseiny Sohi September-Okoteber 2015 Tutorium Hydromechanik I + II S. Mohammad Hosseiny Sohi September-Okoteber 2015 Berechne Sie die Kraft F, die aufgewendet werden muss, um den schwarzen Betonklotz, der zum Verschluss des Zulaufs von Seewasser

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Berechnungsformeln der Hydrostatik

Berechnungsformeln der Hydrostatik 1 Berechnungsformeln der Hydrostatik Hydrostatik ist die Lehre vom ruhenden Fluid. Damit ein Fluid in Ruhe sein kann, muß seine Umgebung Druckkräfte aufbringen, die der Volumenkraft auf das Fluid im folgenden

Mehr

3. Laminar oder turbulent?

3. Laminar oder turbulent? 3. Laminar oder turbulent? Die Reynoldszahl Stokes- Gleichung Typisch erreichbare Reynoldszahlen in der Mikrofluik Laminare Strömung Turbulente Strömung 1 Durchmesser L Dichte ρ TrägheitskraG: F ρ ρu 2

Mehr

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken?

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken? Der Millikan-Versuch Einstiegsfragen 1. Welche Körper untersuchte Millikan in seinem Versuch? 2. Welche Felder ließ er darauf wirken? Wie "erzeugte" er sie? Welche Richtungen hatten die betreffenden Feldstärken?

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr