Grundoperationen der Verfahrenstechnik. Sedimentation I

Größe: px
Ab Seite anzeigen:

Download "Grundoperationen der Verfahrenstechnik. Sedimentation I"

Transkript

1 Grundoperationen der Verfahrenstechnik 3. Übung, WS 2016/2017 Betreuer: Maik Tepper M.Sc., Morten Logemann M.Sc., Johannes Lohaus M.Sc., Jan-Bernd Vennekötter M.Sc., Sedimentation I 1. Aufgabe In einem Versuch soll die Bewegung von kugelförmigen Polyethylenpartikeln (Durchmesser d P, Dichte ρ P ) in einem ruhenden Fluid (Dichte ρ F Viskosität η F ) untersucht werden. Unter Einfluss der Gravitation g sinken die Partikel mit der stationären Sinkgeschwindigkeit v S ab. a) Stellen Sie alle für das Problem relevanten Einflussgrößen auf und geben Sie die dazugehörigen SI- Einheiten an. b) Bestimmen Sie die Kennzahlen mit Hilfe des Buckingham Theorems und führen Sie ggf. die gefundenen Kennzahlen auf Ihnen bekannte Ähnlichkeitsparameter der Strömungsmechanik zurück. c) Die Ergebnisse des Versuches mit Polyethylenpartikeln (Versuch 1, Index 1) werden für ein Experiment benötigt, in dem zur Strömungsmessung deutlich kleinere Nylon-Partikel (Durchmesser d P,2, Dichte ρ P,2 ) in Luft (Dichte ρ F,2, Viskosität η F,2 ) verwendet werden sollen (Versuch 2, Index 2). Wie müssen Dichte ρ F,1 und Viskosität η F,1 des Fluids in Versuch 1 gewählt werden, damit aus der vorher experimentell bestimmten Sinkgeschwindigkeit v S,1 die Sinkgeschwindigkeit der Nylon-Partikel in Versuch 2 v S,2 bestimmt werden kann? Wie groß ist dann v S,2? 2. Aufgabe Eine Kugel mit dem Durchmesser d und der Dichte ρ S sedimentiert in einer Flüssigkeit der Dichte ρ L und der Viskosität η L, die sich in einem zylindrischen Gefäß mit dem Durchmesser D befindet. Bestimmen Sie die stationäre Sinkgeschwindigkeit der Kugel unter Berücksichtigung der verdrängten Flüssigkeit. Nehmen Sie für die Geschwindigkeit des Fluids am Äquator der Kugel ein Kolbenprofil und die Kugelumströmung als schleichend an. Gegeben: d, ρ S, ρ L, η L, D

2 Musterlösung Lösung zur 1. Aufgabe a) A Ausgehend von Ges.: relevante Einflussgrößen SI-Einheiten Geg.: Parameter Skizze: g ρ P d P ρ F, η F v S Berechnung: Auflisten relevante Einflussgrößen + SI-Einheiten: Partikeldurchmesser d P = [m] Partikeldichte ρ P = [ kg ] m 3 Viskosität Fluid η F = [ kg m s ] Dichte Fluid ρ F = [ kg ] m 3 Sinkgeschwindigkeit v S = [ m s ] Erdbeschleunigung g = [ m s 2 ] b) Ausgehend von Ges.: vollst. Kennzahlensatz Geg.: Parameter 2

3 Berechnung: Methode 1: Kennzahlenermittlung mittels Dimensionsmatrix Mit 6 Einflussgrößen n und 3 Grundgrößen r, folgt nach: dass 3 unabhängige Kennzahlen i das System beschreiben. i = n r = 3 (1) Die Dimensionsmatrix ergibt: ρ F d P η F ρ P v S g [M] [L] [T ] Die Dimensionsmatrix wird nun in 2 Untermatrizen aufgeteilt. Links entsteht die Kernmatrix, rechts die Restmatrix. Als Einflussgrößen für die Kernmatrix werden hier ρ F, d P und η F gewählt. Die Einflussgrößen für die Restmatrix sind somit ρ P, v S und g. Durch Umformen der Kernmatrix zu einer Einheitsmatrix ergibt sich: ρ F d P η F ρ P v S g [M] [L] [T ] Es ergeben sich somit folgende Kennzahlen: Π 1 = ρ P ρ F (2) Π 2 = v S ρ F d P η F (3) Π 3 = g ρ2 F d3 P η 2 F (4) Die hier gefundenen Kennzahlen sind alle dimensionslos, aber sie entsprechen noch nicht bekannten Kennzahlen aus der Strömungsmechanik. Um diese Kennzahlen zu erhalten, kann man die erhaltenen Kennzahlen multiplizieren (Linearkombination). 3

4 Die Kennzahl Π 1 beschreibt ein Verhältnis von 2 Stoffparametern und muss daher nicht weiter bearbeitet werden. Die Kennzahl Π 2 ist in diesem Fall bereits die Reynolds-Zahl und muss auch nicht weiter betrachtet werden. Π 2 = Re (5) Die Kennzahl Π 3 ist die einzige, welche weiter bearbeitet werden muss. Da in dieser die Erdbeschleunigung g vorkommt, wird diese zur bekannten Froude-Zahl umgeformt: Π 4 = Π 3 Π 2 2 = g d P v 2 S = 1 F r 2 (6) Damit erhält man folgende bekannten Kennzahlen: Π 1 = ρ P ρ F (7) Π 2 = v S ρ F d P η F = Re (8) Π 4 = g d P v 2 S = 1 F r 2 (9) Beachte: Die hier bestimmten Kennzahlen Π 1 bis Π 3 sind nur eine Möglichkeit von dimensionslosen Kennzahlen. Diese Kennzahlen hängen von den 3 gewählten Größen in der Kernmatrix ab. Methode 2: Kennzahlenermittlung über Potenzprodukt Der allgemeine Ansatz des Π-Theorems: Π = x α 1 1 xα xαn n (10) lautet hier: Π = d α 1 p ρ α 2 p ρ α 3 p η α 4 F vα 5 S gα 6 (11) Aufstellen der Dimensionsmatrix ergibt: d p ρ P ρ F η F v S g [M] [L] [T ] Da die Kennzahlen dimensionslos sein müssen, folgt: [Π] = 1 (12) Mit Gl. 1 folgt, dass 3 Kenngrößen das System beschreiben. Es ergeben sich somit 3 lineare Beziehungen zur Bestimmung der Exponenten: 4

5 [M] 0 = α 2 + α 3 + α 4 (13) [L] 0 = α 1 3α 2 3α 3 α 4 + α 5 + α 6 (14) [T ] 0 = α 4 α 5 2α 6 (15) Dieses System besitzt 3 Freiheitsgrade, d. h. es müssen 3 Wahlgrößen bestimmt werden. Hier sollen α 1, α 2 und α 5 als solche dienen.bei der Wahl der wiederkehrenden Variablen muss darauf geachtet werden, dass: alle Grunddimensionen enthalten sind die Variablen linear unabhängig sind Umstellen von Gl. 13 nach α 2 liefert: Umstellen von Gl. 15 nach α 5 liefert: α 2 = α 3 α 4 (16) α 5 = α 4 2α 6 (17) Einsetzen von Gl. 16 und Gl. 17 in Gl. 14 und umstellen nach α 1 liefert: Einsetzen von Gl. 16, Gl. 17 und Gl. 18 in Gl. 11 liefert: α 1 = α 4 + α 6 (18) Π = d α 4+α 6 P ρ α 3 α 4 P ρ α 3 F ηα 4 F v α 4 2α 6 S g α 6 (19) Sortieren nach α i und zusammenfassen ergibt: ( ) α3 ( ρf η F Π = ρ P d P ρ P v S ) α4 ( ) g α6 dp vs 2 (20) Aus: Φ(Π 1, Π 2, Π 3 ) = 0 (21) folgen die 3 Fälle α 3 = 1, α 4 = 0, α 6 = 0 (22) α 3 = 0, α 4 = 1, α 6 = 0 (23) α 3 = 0, α 4 = 0, α 6 = 1 (24) und somit: Π 1 = ρ F ρ P (25) η F Π 2 = d P ρ P v S = 1 Re (26) Π 3 = g d P v 2 S = 1 F r 2 (27) 5

6 c) Ausgehend von Ges.: ρ F,1 η F,1 v S,2 Geg.: Kennzahlensatz ρ F,2 d P,1 η F,2 d P,2 g ρ P,1 v S,1 ρ P,2 Berechnung: Damit eine Übertragung möglich ist, muss vollständige Ähnlichkeit des Problems betrachtet werden und somit: Π i idem Π i,h = Π i,m (28) Daraus folgt für die gesuchte Fluiddichte ρ F,1 : Π 1,H = Π 1,M (29) und somit: ρ F,1 ρ P,1 = ρ F,2 ρ P,2 ρ F,1 = ρ F,2 ρp,1 ρ P,2 (30) Für die gesuchte Fluidviskosität η F,1 gilt: Π 2,H = Π 2,M (31) und somit: η F,1 d P1 ρ P1 v S,1 = η F,2 d P2 ρ P2 v S,2 η F,1 = η F,2 dp,1 d P,2 ρp,1 ρ P,2 vs,1 v S,2 (32) Hier ist der Ausdruck v S,1 v S,2 noch unbekannt. Dieser lässt sich über Π 3,H = Π 3,M (33) bestimmen. g d P,1 v 2 S,1 = g d P,2 v 2 S,2 v S,2 = v S,1 d P,2 d P,1 (34) Hier erhält man zudem noch die letzte gesuchte Größe v S,2. Einsetzen von Gl. 34 in Gl. 32 ergibt: η F,1 = η F,2 ρp,1 ρ P,2 ( dp,1 d P,2 ) 3 2 (35) 6

7 Lösung zur 2. Aufgabe Bestimmung der stationären Sinkgeschwindigkeit einer Kugel unter dem Wandeinfluss v,w Ges.: v,w Geg.: D d ρ S ρ L η L Skizze: v L v 8 v 8,w Berechnung: Ausgangspunkt der Berechnung ist ein Kräftegleichgewicht für die Kugel. Die auftretenden Kräfte sind: die Auftriebskraft die Gewichtskraft F A = π 6 d3 ρ L g (36) F G = π 6 d3 ρ S g (37) die Widerstandskraft und die Trägheitskraft F W = ξ ρ L π 4 d2 v2 2 (38) F T = π 6 d3 (ρ S + α ρ L ) dv dt (für Kugel ist α = 0,5) (39) 7

8 Die Kräftebilanz lautet: F G F A F W F T = 0 (40) Die Trägheitseffekte fallen im stationären Zustand weg: mit dv dt = 0 ist F T = 0 (41) Im stationären Zustand ist v = v. Auflösen nach v ergibt: 4 d g (ρ S ρ L ) v = (42) 3 ξ ρ L Die Umströmung der Kugel soll schleichend sein. Daher ist nach Stokes: mit: ξ = 24 Re (43) Re = d v ρ L η L (44) Für die schleichende Strömung (Stokes, Re 0,1) - ohne Wandeinfluss ergibt sich dann: v = d2 g(ρ S ρ L ) 18 η L (45) Die stationäre Sinkgeschwindigkeit der Kugel entspricht bei Berücksichtigung des Wandeinflusses der Umströmgeschwindigkeit der Kugel. Diese setzt sich zusammen aus: v = v,w + v L (46) mit v L als Strömungsgeschwindigkeit der verdrängten Flüssigkeit. Dabei bezeichnet v die absolute Geschwindigkeit des Partikels, mit welcher ein Partikel in einem ruhenden Fluid absinkt. Die Geschwindigkeit v,w bezeichnet hingegen die relative Geschwindigkeit des Partikels, welche es relativ zum aufsteigenden Flà 1 4ssigkeitsstrom besitzt. Dabei handelt es sich also um die Differenz zwischen absoluter Geschwindigkeit und Geschwindigkeit des Fluids. Anschaulich ist es die Geschwindigkeit, welche in einem Zylinder-Versuch von einem außen stehenden Beobachter gemessen wird. v L lässt sich unter Annahme eines Kolbenprofils aus dem Wissen berechnen, dass der aufsteigende Flüssigkeitsvolumenstrom gleich dem verdrängten sein muss. Also gilt: V auf = V v (47) oder auch: A d v,w = (A D A d ) v L (48) π ( π 4 d2 v,w = 4 D2 π 4 d2) v L (49) v L = v,w d 2 D 2 d 2 (50) (51) 8

9 Einsetzen in Gl. 46 führt zu: d 2 v,w + v,w D 2 d 2 = v (52) d 2 v,w (1 + D 2 d 2 ) = v (53) v,w = v 1 (1 + d2 D 2 d 2 ) = v 1 = v ( D2 d 2 +d 2 D 2 d 2 (1 d2 D 2 ) = v ) 1 D ( 2 ) = v D 2 d 2 D 2 d 2 D 2 (54) (55) 9

Musterlösung: Partikelbewegung im Fluid

Musterlösung: Partikelbewegung im Fluid Musterlösung: Partikelbewegung im Fluid 0. Januar 016 Wiederholung Ein Ausschnitt notwendiger Grundlagen für die Berechnung stationärer Sinkgeschwindigkeiten von Partikeln im Fluid. Annahmen: Partikel

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

Freie Universität Berlin

Freie Universität Berlin 2.5.2014 Freie Universität Berlin - Fachbereich Physik Kugelfallviskosimeter Protokoll zum Versuch des physikalischen Grundpraktikums I Teilnehmer: Ludwig Schuster, ludwig.schuster@fu- berlin.de Florian

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am Übungen zur Vorlesung PN1 Übungsblatt 6 Lösung Besprechung a7.11.2012 Aufgabe 1: Zentrifuge Eine Zentrifuge habe einen Rotor mit einem Durchmesser von 80 cm. An jedem Ende hängen Schwinggefäße mit einer

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

3. Innere Reibung von Flüssigkeiten

3. Innere Reibung von Flüssigkeiten IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen

Mehr

Hydrodynamische Wechselwirkung und Stokes Reibung

Hydrodynamische Wechselwirkung und Stokes Reibung Hydrodynamische Wechselwirkung und Stokes Reibung 9. Februar 2008 Problemstellung Kolloidsuspension aus Teilchen und Lösungsmittel Teilchen bewegen sich aufgrund von externen Kräften Schwerkraft Äußere

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Klausur zur Mathematik für Geowissenschaftler II, und diskutieren Sie, ob es sich um lokale Maximal- oder Minimalwerte handelt.

Klausur zur Mathematik für Geowissenschaftler II, und diskutieren Sie, ob es sich um lokale Maximal- oder Minimalwerte handelt. Klausur zur Mathematik für Geowissenschaftler II, 4.07.04 Musterlösung Aktualisiert.07.04 Aufgabe Finden Sie die Etremwerte der Funktion f : R R, f, y + y y 0, und diskutieren Sie, ob es sich um lokale

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Priv.-Doz. Dr. P. C. Kunstmann Dipl.-Math. Sebastian Schwarz SS 6.4.6 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

V.2 Ähnlichkeitsgesetz

V.2 Ähnlichkeitsgesetz V2 Ähnlichkeitsgesetz Die inkompressible Strömung eines Fluids genügt der Kontinuitätsgleichung vt, r = 0 und der Navier Stokes-Gleichung III34 Um den Einfluss der Eigenschaften des Fluids ρ und η bzw

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

7 Zusammenfassung Zusammenfassung

7 Zusammenfassung Zusammenfassung 107 Es wurden mit dem Lattice-Boltzmann-Verfahren dreidimensionale numerische Simulationen der Partikelumströmung unter verschiedenen Bedingungen durchgeführt und der Widerstands-, der dynamische Auftriebs-

Mehr

6.Übung Strömungslehre für die Mechatronik

6.Übung Strömungslehre für die Mechatronik 6.Übung Strömungslehre für die Mechatronik Prof. Dr.-Ing Peter Pelz Dipl.-Ing. Thomas Bedar 18. Juli 2009 Inhaltsverzeichnis 1 Hinweise 1 2 Korrektur zur Vorlesung vom 14.07.2009 2 3 laminare Schichtenströmung

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

4. Hydrodynamik, Transport und -formen,

4. Hydrodynamik, Transport und -formen, 4. Hydrodynamik, Transport und -formen, Sedimentstrukturen Stoke s Gesetz Partikel-Sinkgeschwindigkeit in stationären Fluiden, z.b. stehendes Gewässer: u = 2 r2 (ρ 1 -ρ 2 )g 9 η mit: r = Partikelradius

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R:

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R: Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 205/206 Prof. Dr. Eckhard Bartsch / M. Werner M.Sc. Aufgabenblatt 3 vom 3..5 Aufgabe 3 (L) Leitfähigkeiten

Mehr

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase 600 Mechanik der Kontinua 60 Feste Körer 60 Flüssigkeiten und Gase um was geht es? Beschreibung on Bewegungen (hys. Verhalten) des nicht-starren Körers (elastisch, lastisch) Kontinuum Hydro- und Aerodynamik

Mehr

Millikan-Versuch. Einleitung

Millikan-Versuch. Einleitung Millikan-Versuch Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik Vorlesung Physik für Pharmazeuten PPh - 05 Hydrostatik Grenzflächenspannung Hydrodynamik 21.05.2007 Ruhende lüssigkeiten (Hydrostatik) Der hydrostatische Druck : P = A A [P]=N/m 2 = Pa(scal) 1 bar=10 5

Mehr

Schweredruck von Flüssigkeiten

Schweredruck von Flüssigkeiten Schweredruck von Flüssigkeiten Flüssigkeiten sind nahezu inkompressibel. Kompressibilität κ: Typische Werte: Wasser: 4.6 10-5 1/bar @ 0ºC Quecksilber: 4 10-6 1/bar @ 0ºC Pentan: 4. 10-6 1/bar @ 0ºC Dichte

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3 Lösung 4.1 4.1/1 Gegeben: Rechteckkanal, von Diphyl durchströmt w = 0,2 m/s, t i = 400 o C Stoffdaten von Diphyl: λ = 0,083 /(m K), c p = 2,57 kj/(kg K), η = 1, 405 10 4 Pa s, ϱ = 717 kg/m 3 Modellkanal

Mehr

Besprechung am /

Besprechung am / PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 10 Übungsblatt 10 Besprechung am 16.01.2018/18.01.2018 Aufgabe 1 Bluttranfusion: Ein Patient benötigt dringend eine Bluttransfusion.

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr 013 06. März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum:

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch M11 - Viskosität von Flüssigkeiten Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER Heinz Herwig Strömungsmechanik Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER vii 0 Das methodische Konzept dieses Buches 1 A Einführung

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Physik 1 Mechanik Tutorium Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten.

Physik 1 Mechanik Tutorium Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten. Seite1(6) Übung 7 Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten. Aufgabe 1 ISS (IRS) Die ISS (IRS) hat eine Masse von 455 t und fliegt aktuell in einer mittleren

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis

VORSCHAU. zur Vollversion. Inhaltsverzeichnis Inhaltsverzeichnis Körpereigenschaften Volumen (1)... 1 Volumen (2)... 2 Masse, Volumen und Dichte (1)... 3 Masse, Volumen und Dichte (2)... 4 Dichte... 5 messen (1)... 6 messen (2)... 7 Wirkungen von

Mehr

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Abgabe: Gruppen 4-6: 07.12.09, Gruppen 1-3: 14.12.09 Lösungen zu den Aufgaben 1. [1P] Kind und Luftballons Ein Kind (m = 30 kg) will so viele

Mehr

M 7 Innere Reibung von Flüssigkeiten

M 7 Innere Reibung von Flüssigkeiten M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1.2 Überprüfen Sie, ob für die verwendeten

Mehr

Geschiebetransport im gegenständlichen Modell: Neue Ansätze zur naturähnlichen Abbildung komplexer morphodynamischer Prozesse

Geschiebetransport im gegenständlichen Modell: Neue Ansätze zur naturähnlichen Abbildung komplexer morphodynamischer Prozesse Geschiebetransport im gegenständlichen Modell: Neue Ansätze zur naturähnlichen Abbildung komplexer morphodynamischer Prozesse Prof. Dr.-Ing. Bernd Ettmer, Hochschule Magdeburg-Stendal Dipl.-Ing. Bernd

Mehr

Elastizität Hooke sches Gesetz

Elastizität Hooke sches Gesetz Elastizität Hooke sches Gesetz Im linearen (elastischen) Bereich gilt: Die Spannung ist proportional zur Dehnung F E A E l l Die Proportionalitätskonstante heißt: Elastizitätsmodul. Das makroskopische

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2014/15 Lösung der Übungsklausur Lösung der Übungsklausur Aufgabe 1 Verständnisfragen (30 Punkte. a Zeichnung: Erklärung: Wenn die Person,,steht

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Mathematik in Strömungen

Mathematik in Strömungen Mathematik in Strömungen Ein Rätsel und ein Paradoxon László Székelyhidi Jr. Leonardo da Vinci 1452-1519 Tinte und Sirup Tinte und Sirup Wirbelstürme Tinte und Sirup Wirbelstürme Turbulenzen beim Fliegen

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Vorlesung: Mechanische Verfahrenstechnik Seminar - Siebklassierung

Vorlesung: Mechanische Verfahrenstechnik Seminar - Siebklassierung Vorlesung: Mechanische Verfahrenstechnik Seminar - Siebklassierung Aufgabe 1: Auslegung eines Kreiswuchtschwingsiebes Aufgabenstellung: Für die Klassierung eines trockenen Kieses der Schüttgutdichte ρ

Mehr

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7 Musterlösungen Lehrbrief 0 Technik (Mathematische Grundlagen) Seite von 7 Bei diesen, wie auch bei allen folgenden Musterlösungen, zeigen wir in der egel nur einen Weg zum Ziel. Alle anderen Wege, die

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Klausur Strömungsmechanik 1 WS 2010/2011

Klausur Strömungsmechanik 1 WS 2010/2011 Klausur Strömungsmechanik 1 WS 2010/2011 09. März 2011, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 011/1 Übungsblatt 6 (7.01.01) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr 1:15-13:45

Mehr

Versuch 9. Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das

Versuch 9. Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das Versuch 9 Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das Tragflächenprofil Gö 818 Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und Raumfahrt Georg-August-Universität

Mehr

Analytische Modellierung von Hydrodynamik der Wirbelschicht

Analytische Modellierung von Hydrodynamik der Wirbelschicht Analytische Modellierung von Hydrodynamik der Wirbelschicht Vincent Verbaere vincent.verbaere@doosan.com 10. Dez. 2015 Gliederung 1 Einführung 2 Mikroskopische Ebene 3 Stationäre Wirbelschicht 4 Abschluss

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

2. Navier- Stokes- Gleichung

2. Navier- Stokes- Gleichung 2. Navier- Stokes- Gleichung Viskosität KonCnuumsbeschreibung eines Fluids 2. Newtonsches Gesetz für Fluide Navier- Stokes- Gleichung Beispiel: Fluss durch eine zylindrische Röhre 1 2. Navier- Stokes-

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Vergleich Auslaufbecher und Rotationsviskosimeter

Vergleich Auslaufbecher und Rotationsviskosimeter Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen

Mehr

Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen

Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen CAE Herbsttagung 2013 Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen Prof. Dr.-Ing. Alexander Steinmann Dr. Binde Ingenieure Design

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik Frühjahr 205 5. März 205, Beginn 6:30 Uhr Taschenrechner (nicht programmierbar) Lineal und Schreibmaterial (nur dokumentenecht,

Mehr

Korngrößenanalytik. LÜ-Sedimentologie Sedimentation 1

Korngrößenanalytik. LÜ-Sedimentologie Sedimentation 1 Korngrößenanalytik Messen (nur bei größeren Korngrößen) Sieben Trockensiebung (rollige Materialien) Naßsiebung (bindige Materialien) Sedimentationsmethoden Aräometer Pipette-Methode Laser Particle Sizer

Mehr

Dimensionsanalysemethoden in der Physik

Dimensionsanalysemethoden in der Physik Dimensionsanalysemethoden in der Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Wintersemester 2013/2014 Steffen Finger Tobias Lettmann Westfälische Wilhelms-Universität Münster

Mehr

Bei der Wärmeübertragung handelt es sich um die Veränderung des thermischen Anteils der inneren Energie. Thermische Energie ist definiert als

Bei der Wärmeübertragung handelt es sich um die Veränderung des thermischen Anteils der inneren Energie. Thermische Energie ist definiert als Prof. r.-ing. Matthias ind Institut für hermische Verfahrenstechnik r.-ing. homas etzel ärmeübertragung I Lösung r 1. Übung (inleitung: Bilanz, inetik ie innere nergie U ist eine extensive Zustandsgröße,

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2014/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Dimensionsanalytische Methoden zur Optimierung zerstäubungstechnischer Prozesse in der Verfahrenstechnik

Dimensionsanalytische Methoden zur Optimierung zerstäubungstechnischer Prozesse in der Verfahrenstechnik IBR Zerstäubungstechnik Gmb Auf der orst 10-48147 ünster imensionsanalytische ethoden zur Optimierung zerstäubungstechnischer Prozesse in der Verfahrenstechnik - Scale-up beziehungsweise Scale-down am

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNSCHE UNVERSTÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RCHTER-GEBERT, VANESSA KRUMMECK, MCHAEL PRÄHOFER Höhere Mathematik für nformatiker Wintersemester 23/24 Aufgabenblatt 2 23 Januar 24 Präsenzaufgaben

Mehr