Besprechung am /
|
|
|
- Adam Günther
- vor 7 Jahren
- Abrufe
Transkript
1 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 10 Übungsblatt 10 Besprechung am / Aufgabe 1 Bluttranfusion: Ein Patient benötigt dringend eine Bluttransfusion. Das Blut soll aus einem Infusionsbeutel über einen Schlauch und durch eine dünne Kanüle (Nadel) fließen, die in die Vene eingeführt ist. Die Kanüle sei 5,00 cm lang und habe einen kreisförmigen Innendurchmesser von 00 µm. Dem Patienten sollen 3,00 cm 3 Blut pro Minute zugeführt werden. Die dynamische Viskosität von Blut beträgt η B = 3, Pa s; die Dichte ρ B = 1, kg/m 3. Der Fluss durch die Kanüle kann durch das Gesetz von Hagen-Poiseuille beschrieben werden und die Reibung des Fluides im Schlauch kann vernachlässigt werden. a) Welche Druckdifferenz muss zwischen Anfang und Ende der Kanüle liegen, um die benötigte Flussrate zu erreichen? Hagen-Poiseuille: dv dt = π(p 1 p 2 ) 8ηl R p = (p 1 p 2 ) = dv dt 8ηl πr = 6 m3 min = 3, /60 8 3, Pa s 0,05 m min s π (0,0002 m) = 1,39 10 Pa b) In welcher Höhe h über dem Veneneingang muss der Infusionsbeutel aufgehängt werden, um die benötigte Flussrate zu erreichen? Der Infusionsbeutel ist oben offen und der Blutdruck in der Vene beträgt 200 Pa über Atmosphärendruck. Druck am venenseitigen Ende der Kanüle ( = Druck in der Vene): p 2 = p V + p A, hierbei sind p A der Atmosphärendruck und p V der Venenüberdruck. Druck am schlauchseitigen Ende der Kanüle : p 1 = p S +p A = p +p 2 = p +p V + p A, mit p S als dem erforderlichen Schweredruck des Infusionsbeutels. Umformen nach p S ergibt: p S = p + p V = 1,39 10 Pa Pa = 1,63 10 Pa 1
2 Um diesen Druck zu erzeugen, muss der Beutel auf die Höhe h gehängt werden, sodass p S = ρ B g h h = p S ρ B g = 1,63 10 Pa 1, kg/m 3 9,81 m/s 2 = 1,57 m Aufgabe 2 Schwingende Wassersäule im U-Rohr: In einem U-Rohr mit einem Innendurchmesser von d = 25,0 mm befindet sich Wasser mit der Dichte ρ W = 1000 kg/m 3 und einer dynamischen Viskosität η W = 1, kg/(m s), welches im rechten Teil des Rohres bis zur Höhe h über dem Ruhepegel steht und im Linken bis zur Höhe h (siehe Abbildung). Die gesamte Wassersäule hat die Länge L = 0,70 m. a) Bestimmen Sie zunächst die Masse m W der schwingenden Wassersäule und die vorhandene Rückstellkonstante k. Hinweis: Nehmen Sie dazu die Schwingung als Hooke sche Schwingung an. Rückstellkonstante: ( ) 2 d m W = ρ W V W = ρ W A L mit A = πr 2 = π 2 m W = π kg 1000 m 3 ( m) 2 0,7 m = 0,3 kg Hooke sches Gesetz: F = kx mit x = h Rückstellkraft: p A = ρ W g 2h πd 2 k = 2ρ W g πd 2 kh = 2ρ W gh πd 2 kg = m 3 9,81 m s 2 π ( m) 2 = 9,6 kg s 2 2
3 b) Stellen Sie die allgemeine Bewegungsgleichung mit Dämpfung auf und bestimmen Sie die ungedämpfte und gedämpfte Eigenfrequenz sowie die Abklingkonstante τ = 1 δ = 2m γ Hinweis: Nach dem Gesetz von Hagen-Poiseuille gilt für die Dämpfung bei der Strömung in einem Rohr γ = 8πηL Die Bewegungsgleichung der gedämpften harmonischen Schwingung lautet: Für die freie Eigenfrequenz gilt: mẍ + γẋ + kx = 0 ω = 2π T = 2π f und ω 0 = f 0 = 1 k 2π m = 1 9,6 kg/s 2 2π 0,3 kg Die gedämpfte Eigenfrequenz ergibt sich aus: k m = 0,857 Hz 0,85 Hz ωd 2 = ω0 2 δ 2 = ω 0 γ2 m 2 f d = 1 π 2π 2 f0 2 (8πηL)2 = m 2 = 1 π 2π 2 (0,857 Hz) 2 (8π 1, kg/(m s) 0,70 m) 2 = 0,857 Hz 0,85 Hz (0,3 kg) 2 Der Effekt durch die Reibung ist also vernachlässigbar klein. Abklingkonstante: τ = 2m γ = m πηl = 0,3 kg π 1, kg/(m s) 0,70 m = 38,65 s 39 s 3
4 Aufgabe 3 Wiesnschaukel: Auf der Wiesn gibt es kleine Schiffschaukeln (l =,0 m), die von bis zu 2 Personen nur durch Gewichtsverlagerung angetrieben werden können (siehe Abbildung). Zunächst schaukelt nur Jan (m J = 80,0 kg) auf der Schaukel (m S = 100 kg. Nehmen sie an, die Schaukel startet aus der Ruhe 1,50 m über dem tiefsten Punkt der Schaukel. Sie können den Effekt der Reibung vernachlässigen. a) Wie groß ist seine Geschwindigkeit, wenn Jan den tiefsten Punkt erreicht? Betrachte Energieerhaltung: Zu Beginn: E ges = E kin + E pot = 0 + m g h Am tiefsten Punkt: E ges = E kin + E pot = 1 2 m v Mit E ges = const folgt: 1 2 mv 2 = mgh v = 2 g h = 2 9,81 kg m s 2 1,5 m = 5, m s b) Wie groß ist die Kraft, die auf die Aufhängung wirkt, wenn Jan den tiefsten Punkt erreicht? F = F G + F Z = m g + m v ( 2 = (m J + m S ) g + 2gh ) = r R ( = (80,0 kg kg) 9,81 kg m s ,81 kg ) m/s2 1,5 m = 3,1 kn m c) Unter der Annahme, dass Sie das System als ideales (mathematisches) Pendel nähern können, wie lange dauert es, bis Jan vom Zeitpunkt an dem er den tiefsten Punkt erreicht, wieder in seiner Ausgangslage ankommt?
5 Für ein ideales Pendel gilt: T = 2π l. g Vom tiefsten Punkt bis zu Ausgangslage: 3 T t = 3 T = 3 2π l g = 3π 2 m 9,81 kg m/s 2 = 3,0 s d) Wie viel Energie müsste Jan durch Gewichtsverlagerung noch in die Schwingung stecken, damit er den Überschlag gerade eben schafft? Welcher Geschwindigkeit am tiefsten Punkt entspricht das und wie ändert sich nun die Kraft auf die Aufhängung? Erforderliche Energie: E pot,d) für h = 8,0 m am höchsten Punkt. zusätzliche Energie: E = E pot,d) E pot,a) = m g (8 m 1,5 m) = = (80,0 kg kg) 9,81 kg m s 2 6,5 m = 11,8 kj 11 kj Geschwindigkeit: analog zu a) v = 2 g h v = 2 g h = 2 9,81 kg m s 2 8,0 m = 12,53 m s 13 m s Kraft auf die Aufhängung: analog zu b) ( F = (m J + m S ) g + 2gh ) = R ( = (80,0 kg kg) 9,81 kg m s ,81 kg ) m/s2 8 m m = 8,8 kn e) Wie ändern sich die Ergebnisse der ersten vier Teilaufgaben, wenn Jans Freund Martin (m M = 80 kg) mit auf der Schaukel steht? Teilaufgabe a): v = 2 g h unabhängig von der Masse. ändert sich nicht. Teilaufgabe b): Die Kraft auf die Aufhängung ist proportional zur Masse. Wir können also entweder die Kraft mit der neuen Gesamtmasse erneut ausrechnen oder wir teilen die Kraft aus Teilaufgabe b) durch die alte Gesamtmasse und multiplizieren mit der neuen Gesamtmasse: F e) = F b) mj + m S + m M m J + m S 5 = 3,1 kn 260 kg 180 kg =,5 kn
6 Teilaufgabe c): t = 3 2π l g unabhängig von der Masse. ändert sich nicht. Teilaufgabe d): Kraft auf die Aufhängung und zusätzlich benötigte Energie für den Überschlag beide proportional zur Masse: F e) = F d) mj + m S + m M m J + m S = 8,8 kn 260 kg 180 kg = 12,71 kn 13 kn E e) = E d) mj + m S + m M m J + m S = 11,8 kj 260 kg 180 kg = 16,58 kj 17 kj 6
Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)
7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser
Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen
Vorlesung Physik für Pharmazeuten und Biologen
Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Übungsaufgaben Physik II
Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen
Vakuum und Gastheorie
Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2
Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................
I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1
I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge
Besprechung am
PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M
Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1
Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
Experimentalphysik E1
Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +
TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS
4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische
14. Mechanische Schwingungen und Wellen
14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige
Physik für Mediziner Flüssigkeiten II
Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie [email protected]
Experimentalphysik I: Mechanik
Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m
Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)
Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die
F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T
Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden
Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.
Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser
Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte
1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe
Physik I Übung 11 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter WS 0/ Moritz Kütt Stand: 7. Februar 0 Franz Fujara Aufgabe Christbaumkugeln Kater Nocturno lässt seine trainierten (d.h. todesängstigen) Mäuse folgendes
Grundlagen der Physik 2 Schwingungen und Wärmelehre
Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti [email protected] Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.
Allgemeine Bewegungsgleichung
Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
PN 1 Klausur Physik für Chemiker
PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.
Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )
Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall
Übung zu Mechanik 4 Seite 28
Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche
Grundlagen der Physik 2 Schwingungen und Wärmelehre
(c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
Schwingungen und Wellen
Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man
Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O
Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine
Übungsblatt 13 Physik für Ingenieure 1
Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
3.2 Das physikalische Pendel (Körperpendel)
18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild
Inhalt dieses Vorlesungsteils - ROADMAP
Inhalt dieses Vorlesungsteils - ROADMAP 2 Von der Kavitation zur Sonochemie 21 Industrieller Einsatz von Ultraschall 22 Physikalische Grundlagen I Was ist Ultraschall? 23 Einführung in die Technik des
Ferienkurs Experimentalphysik 1
1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov [email protected] Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische
Übungsblatt 06 Grundkurs IIIb für Physiker
Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, ([email protected]) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation
Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)
Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, ([email protected]) 0. 0. 009 1 Aufgaben
Versuch P1-20 Pendel Vorbereitung
Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung
Prüfungsklausur - Lösung
Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems
Mechanische Schwingungen Aufgaben 1
Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und
Übungsblatt 1 (13.05.2011)
Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt
Physik I Übung 10 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der
Versuch M1 für Nebenfächler mathematisches Pendel
Versuch M1 für Nebenfächler mathematisches Pendel I. Physikalisches Institut, Raum HS126 Stand: 19. April 2016 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner
Tutorium Physik 1. Arbeit, Energie, Leistung
1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische
Tutorium Physik 2. Rotation
1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009
Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Abgabe: Gruppen 4-6: 07.12.09, Gruppen 1-3: 14.12.09 Lösungen zu den Aufgaben 1. [1P] Kind und Luftballons Ein Kind (m = 30 kg) will so viele
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
Lösungen zu den Aufgaben zur Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Lösungen zu den Aufgaben zur Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.0.014 1) Welche der folgenden Formeln für die Geschwindigkeit
Versuch e - Lineares Pendel
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch e - Lineares Pendel 23. überarbeitete Auflage 2011 Dr. Stephan
Experimentalphysik EP, WS 2013/14
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung
Schweredruck von Flüssigkeiten
Schweredruck von Flüssigkeiten Flüssigkeiten sind nahezu inkompressibel. Kompressibilität κ: Typische Werte: Wasser: 4.6 10-5 1/bar @ 0ºC Quecksilber: 4 10-6 1/bar @ 0ºC Pentan: 4. 10-6 1/bar @ 0ºC Dichte
Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie
Aufgaben 2 Translations-Mechanik Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Lernziele - den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers anwenden können. - das
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60
D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht
Physikalisches Praktikum
Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches
Amplitude, Periode und Frequenz Lesetext, Lückentext, Arbeitsblatt
Lehrerinformation 1/7 Arbeitsauftrag In Partnerarbeiten sollen die Informationen zum Schall zusammengetragen werden und mithilfe des Arbeitsblattes sollen Lückentexte ausgefüllt, Experimente durchgeführt
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:
Fakultät Grundlagen. Februar 2016
Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen
5) Nennen Sie zwei Beispiele für Scheinkräfte! (2 Punkte)
1) a) Wie ist Dichte definiert? (2 Punkte) b) In welcher Einheit wird sie gemessen? (2 Punkte) c) Von welchen Parametern hängt die Dichte eines idealen Gases ab? Leiten sie dazu die Dichte aus dem idealen
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................
1. Probe - Klausur zur Vorlesung E1: Mechanik
Fakultät für Physik der LMU 27.12.2011 1. Probe - Klausur zur Vorlesung E1: Mechanik Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Frank Jäckel Name:... Vorname:... Matrikelnummer:...
Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.
Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu
Physikalisches Praktikum für Studierende der Medizin. Klausur Nr. 2, SS Klausurabschrift. Lösungen ohne Gewähr
Physikalisches Praktikum für Studierende der Medizin Klausur Nr. 2, SS 21 Klausurabschrift Lösungen ohne Gewähr Für die richtige Beantwortung einer Frage wird ein Punkt gegeben. Bitte die Buchstaben Ihrer
Schwingungen und Wellen
Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen
Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 16.5.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung
Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,
1. Klausur in K2 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit
Arbeit und Energie. Brückenkurs, 4. Tag
Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
Druck, Kompressibilität, Schweredruck
Aufgaben 6 Statik der Fluide Druck, Kompressibilität, Schweredruck Lernziele - einen Druck bzw. eine Druckkraft berechnen können. - wissen, ob eine Flüssigkeit bzw. ein Gas kompressibel ist oder nicht.
Aufgaben zum Thema Elektromagnetische Schwingungen
Aufgaben zum Thema Elektromagnetische Schwingungen 10.03.2011 1.Aufgabe: a)an eine vertikal aufgehängte Schraubenfeder wird ein Körper mit der Masse m = 0,30 kg gehängt. Dadurch wird die Feder um x = 1,2
Übungen zu Experimentalphysik 1 für MSE
Physik-Department LS für Funktionelle Materialien WS 201/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin
Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005
Abschlussprüfung an Fachoberschulen im Schuljahr 00/005 Haupttermin: Nach- bzw. Wiederholtermin: 10.0.005 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 10 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk
Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2008/09 Klausur ( )
Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 1 Note Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 28/9 Klausur (6.2.29 Name: Studiengang: In die Wertung der Klausur
Vergleich Auslaufbecher und Rotationsviskosimeter
Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen
b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3
Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von
Übungsblatt 3 - Lösungen
Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.
Versuch 14 Mathematisches Pendel
Versuch 14 Mathematisches Pendel II Literatur W. Walcher, Praktikum der Physik, B.G.Teubner Stuttgart. Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Homepage des Praktikums: http://www.physi.uni-heidelberg.de/einrichtungen/ap/
Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit
Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A
9.Vorlesung EP WS2009/10
9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik
Versuch V1 - Viskosität, Flammpunkt, Dichte
Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel
Physikalisches Praktikum für Studierende der Medizin. Klausur Nr. 2, SS Klausurabschrift. Lösungen ohne Gewähr
Physikalisches Praktikum für Studierende der Medizin Klausur Nr. 2, SS 21 Klausurabschrift Lösungen ohne Gewähr Für die richtige Beantwortung einer Frage wird ein Punkt gegeben. Bitte die Buchstaben Ihrer
Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:
Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
