2. Navier- Stokes- Gleichung

Größe: px
Ab Seite anzeigen:

Download "2. Navier- Stokes- Gleichung"

Transkript

1 2. Navier- Stokes- Gleichung Viskosität KonCnuumsbeschreibung eines Fluids 2. Newtonsches Gesetz für Fluide Navier- Stokes- Gleichung Beispiel: Fluss durch eine zylindrische Röhre 1

2 2. Navier- Stokes- Gleichung Wie kann man diese Phänomene beschreiben? 2

3 2.1 Viskosität Das Pech- Tropfen- Experiment: Start 1927 (Australien) ein Tropfen etwa alle 9 Jahre so etwa erscheint Wasser auf der Mikrometer- Skala! 3

4 The first Cme observing a falling drop 4

5 unfortunately not in Australia (University of Queensland) John Mainstone ( ) 5

6 Viskosität eines Newtonsches Fluids Micro- and nanofluidics: F A v DefiniCon: d F A =η v d 6

7 Viskosität eines Newtonsches Fluids Micro- and nanofluidics: Analog der DiffusionsrelaCon Impulstransfer: J( x - Komponente des Impulses) = η dv x dz η Viskositätskoeffizient [η] = kg/(ms) oder Poise (P) 1P = 10-1 kg/(ms) 7

8 2.2. Von Newton zu Navier- Stokes KonCnuumsbeschreibung eines Fluids Micro- and nanofluidics: ρ v(r,t) Das Fluid (Gas, Flüssigkeit) stellt ein koncnuierliches Medium dar Volumenelement hat die Dichte ρ Bewegung der Volumenelement wird durch ein Geschwindigkeitsfeld v(r,t) beschrieben (r PosiConsvektor) Tafel! 8

9 F = ma für Fluide r = (x,y,z) v(x,t) = v(x,t)e x Geschwindigkeit am Punkt v(x + Δx, t + Δt) (Taylor- Entwicklung 1. Ordnung): Daraus ergibt sich und für die Beschleunigung v( x + Δx,t + Δt) = v( x,t) + v v Δx + x t Δt ( ) = & v Δv x,t a( x,t) = $ t + v v ' ) % x ( Δt v( x,t) + v( x,t) t v( x,t) x konvek(ver Term Für ein beliebiges Geschwindigkeitsfeld kann geschrieben werden a = Dv/Dt. In allgemeiner Form gilt: D Dt = t + v 9

10 p(x,y,z,t) - Druckfeld Krap aufgrund von Druckunterschieden im Fluid: Gesamte Krap aufgrund von Druckunterschieden in posicver x- Richtung: δf p x = p( x,y,z,t)δyδz p( x + Δx,y,z,t)ΔyΔz Mit der Taylorentwicklung erhält: δf x p = p x ΔxΔyΔz Die y- und z- Komponenten können analog bescmmt werden und man erhält für die Krap: δf p = pδxδyδz 10

11 v = (0,0,v z (x)) Krap aufgrund viskoser Reibung durch Gradienten in der Flussgeschwindigkeit: ( x) ( x + Δx) δf v z = η v z ΔyΔze z +η v z ΔyΔze z x x Mit der Taylorentwicklung des zweiten Terms (1. Ordnung) erhält man: δf v z = η 2 v z x 2 ( x) ΔxΔyΔze z Für ein isotropes Fluid sind die beiden unabhängigen KombinaConen von v und zweier - Operatoren 2 v und ( v) Man erhält in der allgemeinen Form für die viskose Krap: ( ) ΔxΔyΔz 11 δf v = η 2 v +η' ( v)

12 Inkompressibilität des Fluids: Das Volumenelement ändert durch Streckung oder Verzerrung sein Volumen nicht! Da sich das Volumen nicht ändert, ist der zweite Term Null bzw. v = 0 δf v = η 2 vδxδyδz 12

13 Navier- Stokes Gleichung für ein Newtonsches Fluid Δma = δf p +δf v (2. Newtonsches Gesetz) mit Δm = ρδxδyδz und Dichte ρ. v t + v ( )v = 1 ρ p +ν 2 v mit der kinemacschen Viskosität ν = η/ρ. Eigentlich drei separate Gleichungen für jede einzelne Geschwindigkeitskomponente (v x,v y,v z ). Selbst die komplexesten Eigenschapen von Fluiden, die in der Natur vorkommen, können mit Hilfe dieser Gleichung beschrieben werden. Leider kann die Gleichung nur für die einfachsten Flüsse analycsch gelöst werden. 13

14 2.3. Beispiel: Fluss durch eine zylindrische Röhre Blutgefäss An der Wand ist die Geschwindigkeit Null ( no slip - Randbedingung). Wir nehmen einen staconären Zustand an, Der nichtlineare Term verschwindet, da keine Änderung des Geschwindigkeitsfelds in Fluss- (z)- Richtung aupriw. Die Navier- Stokes- Gleichung beschreibt in dieser SituaCon für jedes Fluidelement die Balance zwischen der Krap aufgrund des herrschenden Drucks und der Krap aufgrund der viskosen Reibung. Wird in Zylinderkoordinaten ausgedrückt. v t = 0 14

15 Druckkräpe: δf p z = [ p( z) p( z + Δz) ]2πrΔr = dp dz 2πrΔrΔz Reibungskräpe: ( ) dv r + Δr δf v z = η dr ( ) 2π ( r + Δr)Δz η dv r dr 2πrΔz = η dv dr 2πΔrΔz +η d2 v dr 2 2πrΔrΔz 15

16 Mit δf p z +δf v z = 0 ergibt sich: 1 dp η dz = 1 r dv dr + d 2 v dr = 1 2 r d # dr r dv & % ( $ dr ' Durch IntegraCon über z erhält man folgende DifferenCalgleichung 1 η Δp = 1 r d % dr r dv ( ' * l mit Δp = p 0 & dr ) ( ) p( l) Lösung der DifferenCal- Gleichung durch zweimaliges Integrieren: v( r) = Δp % r 2 ηl 4 C ( ' 1 ln r +C 2 * & ) 16

17 Die IntegraConskonstante C 1 = 0, da die Flussgeschwindigkeit finit bei r = 0 ist und C 2 = - d 2 /16 aufgrund der no- slip - Randbedingung, v(d/2) = 0. v( r) = Δp 4ηl % ' & 4 r ( 2 * ) d 2 Damit ergibt sich für die miwlere Flussgeschwindigkeit v = d 2 0 v( r)2πrdr π d 2 4 = Δpd 2 32ηl und für die Flussrate: Q = v πd 2 4 = πδpd 4 128ηl Jean Louis Poiseuille 17

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

Strömungen. Kapitel 10

Strömungen. Kapitel 10 Kapitel 10 Strömungen In Kapitel 9 behandelten wir die statistische Bewegung einzelner Moleküle in einem Gas, aber noch keine makroskopische Bewegung des Mediums. Der Mittelwert der Impulse aller Teilchen

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Abgabe: Gruppen 4-6: 07.12.09, Gruppen 1-3: 14.12.09 Lösungen zu den Aufgaben 1. [1P] Kind und Luftballons Ein Kind (m = 30 kg) will so viele

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Innere Reibung von Flüssigkeiten

Innere Reibung von Flüssigkeiten Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Bearbeitet: Versuch: L. Jahn RF M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Aktualisiert: am 29. 03. 2010 Innere Reibung von

Mehr

6 Dynamik der Atmosphäre

6 Dynamik der Atmosphäre 6 Dynamik der Atmosphäre Man braucht wirklich nicht viel darüber zu reden, es ist den meisten Menschen heute ohnehin klar, dass die Mathematik wie ein Dämon in alle Anwendungen unseres Lebens gefahren

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will [email protected] Reynoldszahl

Mehr

3. Mechanik deformierbarer Körper

3. Mechanik deformierbarer Körper 3. Mechanik deformierbarer Körper 3.1 Aggregatzustände 3.2 Festkörper Struktur der Festkörper Verformung von Festkörpern 3.3 Druck Schweredruck Auftrieb 3.4 Grenzflächen Oberflächenspannung, Kohäsion,

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

14. Strömende Flüssigkeiten und Gase

14. Strömende Flüssigkeiten und Gase 14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität

Mehr

Vergleich Auslaufbecher und Rotationsviskosimeter

Vergleich Auslaufbecher und Rotationsviskosimeter Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Millikan-Versuch. Christopher Bronner, Frank Essenberger. 13. September 2006

Millikan-Versuch. Christopher Bronner, Frank Essenberger. 13. September 2006 Millikan-Versuch Christopher Bronner, Frank Essenberger 13. September 2006 Inhaltsverzeichnis 1 Physikalische Grundlagen 1 2 Aufgaben 3 3 Messprotokoll 3 3.1 Geräte................................. 4 3.2

Mehr

Einführung in die Modellierung: Statische und dynamische Bilanzgleichungen

Einführung in die Modellierung: Statische und dynamische Bilanzgleichungen Einführung in die Modellierung: Statische und dynamische Bilanzgleichungen Mengenbilanzen: Beispiel 1: Kessel Wirkungsgraph Flussdiagramm Modellgleichungen Statische Mengenbilanz Deispiel 2: Chemische

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf Einführung in die Physik I Mechanik deformierbarer Körer O. von der Lühe und U. Landgraf Deformationen Deformationen, die das olumen ändern Dehnung Stauchung Deformationen, die das olumen nicht ändern

Mehr

Grundlagen der Strömungsmechanik

Grundlagen der Strömungsmechanik Franz Durst Grundlagen der Strömungsmechanik Eine Einführung in die Theorie der Strömungen von Fluiden Mit 349 Abbildungen, davon 8 farbig QA Springer Inhaltsverzeichnis Bedeutung und Entwicklung der Strömungsmechanik

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn

Mehr

Übung 4 - SIMPLE-Verfahren

Übung 4 - SIMPLE-Verfahren Übung 4 - SIMPLE-Verfahren Musterlösung C. Baur, M. Schäfer Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau 27.11.2008 TU Darmstadt FNB 27.11.2008 1/26 Aufgabe 1 - Problembeschreibung Geometrie

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken?

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken? Der Millikan-Versuch Einstiegsfragen 1. Welche Körper untersuchte Millikan in seinem Versuch? 2. Welche Felder ließ er darauf wirken? Wie "erzeugte" er sie? Welche Richtungen hatten die betreffenden Feldstärken?

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

für Studierende der Geoökologie: 4.8., 11.00-12.30, PK 2.1 für Studierende der Biologie und CuV: 5.9., 08.00-10.00

für Studierende der Geoökologie: 4.8., 11.00-12.30, PK 2.1 für Studierende der Biologie und CuV: 5.9., 08.00-10.00 Organisatorisches - Praktikum und Klausur Klausur für Studierende der Geoökologie: 4.8., 11.00-12.30, PK 2.1 für Studierende der Biologie und CuV: 5.9., 08.00-10.00 Praktikumsanmeldung für Studierende

Mehr

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015 Magnetohydrodynamik Ivan Kostyuk 11. Juni 2015 Zusammenfassung Dies ist eine Zusammenfassung meines Vortrages zum Thema Magnetohydrodynamik, welchen ich am 22.05.2015 im Rahmen des Seminares Elektrodynamik

Mehr

Turbulente Strömungen. Seminarvortrag von Sinan Özdür. Medizinphysikseminar WS06/07 31.01.07

Turbulente Strömungen. Seminarvortrag von Sinan Özdür. Medizinphysikseminar WS06/07 31.01.07 Turbulente Strömungen Seminarvortrag von Sinan Özdür Medizinphysikseminar WS06/07 31.01.07 Übersicht 1. Theoretische Grundlagen i. Bewegungsgleichung inkompressibler Fluide ii. Eigenschaften turbulenter

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Einführung in die Technische Strömungslehre

Einführung in die Technische Strömungslehre Einführung in die Technische Strömungslehre Bearbeitet von Gerd Junge 1. Auflage 2011. Buch. 288 S. Hardcover ISBN 978 3 446 42300 8 Format (B x L): 16,7 x 240,3 cm Gewicht: 546 g Weitere Fachgebiete >

Mehr

Phasengleichgewicht und Phasenübergänge. Gasförmig

Phasengleichgewicht und Phasenübergänge. Gasförmig Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

V1 - Dichtebestimmung

V1 - Dichtebestimmung Aufgabenstellung: Überprüfen Sie die Proportionalität zwischen Belastung und Verlängerung einer Feder. Bestimmen Sie die Federkonstante. Bestimmen Sie die Federkonstante mit Hilfe der dynamischen Methode.

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Zwei Paradoxa zur Existenz magnetischer Felder

Zwei Paradoxa zur Existenz magnetischer Felder Zwei Paradoa zur Eistenz magnetischer Felder Claus W. Turtur, Fachhochschule Braunschweig-Wolfenbüttel Wolfenbüttel, 14. Dez. 7 Zusammenfassung Ein Gedankeneperiment wird betrachtet, in welchem ein Beobachter

Mehr

Grundpraktikum der Physik. Versuch 05. Viskosität von Flüssigkeiten. Durchführung am 09.11.2007. Gruppe D12 Betreuer: Anne Kröske

Grundpraktikum der Physik. Versuch 05. Viskosität von Flüssigkeiten. Durchführung am 09.11.2007. Gruppe D12 Betreuer: Anne Kröske Grundpraktikum der Physik Versuch 05 Viskosität von Flüssigkeiten Durchführung am 09.11.2007 Gruppe D12 Betreuer: Anne Kröske Nadine Kremer [email protected] Rainer Pfeiffer [email protected]

Mehr

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung 1. Blut (Bettina Wiebe) 2. Gefäße und Kreislaufsystem (Stella Preußler)

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Wettstreit zwischen Gewicht und Auftrieb U-Boot Wasser in den Tanks

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14)

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung E Flüssigkeiten In der Hydrostatik wird das

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Einführung in die Hydrodynamik des Blutes. Ein Vortrag von Rachid Ramadan

Einführung in die Hydrodynamik des Blutes. Ein Vortrag von Rachid Ramadan Einführung in die Hydrodynamik des Blutes Ein Vortrag von Rachid Ramadan Inhaltsverzeichnis 1.Einleitung 2.Bestandteile des Blutes 3.Physikalische Grundlagen 4.Herz 5.Blutkreislauf 6.Blutdruckregulation

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

5. Hydro- und Aerodynamik

5. Hydro- und Aerodynamik Hydro- und Aerodynamik: 5. Hydro- und Aerodynamik (Strömung von Fluiden, also flüssigen und gasförmigen Substanzen) blaue Linien Bahnen von Partikeln der Flüssigkeit Dichte der Linien ist ein Maß für die

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik

Lehrstuhl für Fluiddynamik und Strömungstechnik Lehstuhl fü Fluiddynamik und Stömungstechnik Pof. D.-Ing. W. Fank Lösungen zu dem Aufgabenblatt Aufgabe 1 Gegeben: p =,981 ba (Duck fü z = ), T = 83 K (Tempeatu fü z = ), α = 6 1-3 K m -1, m = 9 kg/ kmol

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: 23.10.12 Jungius 9, Hörs 2 1 Organisatorisches Vorlesung am 1.11.: wird dankenswerterweise

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt.

Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt. Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt. Aufgabe 1: Hydrostatik (13 Pkt.) Eine senkrechte Wand trennt zwei mit unterschiedlichen Flüssigkeiten gefüllte Behälter der selben Grundfläche (Breite

Mehr

Die Burgers Gleichung

Die Burgers Gleichung Die Burgers Gleichung Vortrag im Rahmen der Vorlesung Spektralmethoden Elena Frenkel Samuel Voit Balthasar Meyer 29. Mai 2008 1 Einfürung Ein kurzer Überblick Physikalische Motivation 2 Cole-Hopf Transformation

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hydraulik für Bauingenieure Freimann schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser

Mehr

Viskosität und Reynoldszahlen

Viskosität und Reynoldszahlen 136 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil I Viskosität und Reynoldszahlen Stichworte: Reibung, Reibungskraft, Auftrieb, Viskosität,

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Chemisches Potential und Nernstgleichung Carsten Stick

Chemisches Potential und Nernstgleichung Carsten Stick Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

Thermodynamik II Musterlösung Rechenübung 8

Thermodynamik II Musterlösung Rechenübung 8 Thermodynamik II Musterlösung Rechenübung 8 Aufgabe a) Annahmen: (a) stationärer Zustand (b) -dimensionale Wärmeleitung (x-richtg.) (c) λ = konst., α = konst. (d) keine Wärmequellen (e) keine Wärmestrahlung

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Physik - Der Grundkurs

Physik - Der Grundkurs Physik - Der Grundkurs von Rudolf Pitka, Steffen Bohrmann, Horst Stöcker, Georg Terlecki, Hartmut Zetsche überarbeitet Physik - Der Grundkurs Pitka / Bohrmann / Stöcker / et al. schnell und portofrei erhältlich

Mehr

Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course

Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course Technische Universität Berlin Abt. I Studierenden Service Studienkolleg / Preparatory Course Schriftliche Prüfung zur Feststellung der Eignung ausländischer Studienbewerber zum Hochschulstudium im Lande

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Volumenstrommessung in industriellen Anwendungen

Volumenstrommessung in industriellen Anwendungen Sensoren Volumenstrommessung in industriellen Anwendungen Ralf Udally 09.07.2010 09.07.2010 Ralf Udally 1 Begriffe der Volumenstrommessung Messverfahren in der Industrie Die industrielle Anwendung Volumenstrommessung

Mehr

Physikalisches Praktikum I. Messung des Adiabatenexponenten (Gasfederresonanz)

Physikalisches Praktikum I. Messung des Adiabatenexponenten (Gasfederresonanz) Fachbereich Physik Physikalisches Praktikum I Name: Messung des Adiabatenexponenten (Gasfederresonanz) Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

5) Nennen Sie zwei Beispiele für Scheinkräfte! (2 Punkte)

5) Nennen Sie zwei Beispiele für Scheinkräfte! (2 Punkte) 1) a) Wie ist Dichte definiert? (2 Punkte) b) In welcher Einheit wird sie gemessen? (2 Punkte) c) Von welchen Parametern hängt die Dichte eines idealen Gases ab? Leiten sie dazu die Dichte aus dem idealen

Mehr

A40 Höppler- und Ostwaldviskosimeter - Viskosität von Flüssigkeiten -

A40 Höppler- und Ostwaldviskosimeter - Viskosität von Flüssigkeiten - 1 ufgabe Mit einem ugelfallviskosimeters nach Höppler ist die Viskosität von Wasser bei 5, 0, 40 und 50 C zu bestimmen. Mittels eines apillarviskosimeters nach Ostwald ist die Viskosität von Wasser, Ethanol

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gerd Junge Einführung in die Technische Strömungslehre ISBN: 978-3-446-42300-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42300-8 sowie im Buchhandel.

Mehr

IX. Strömende Flüssigkeiten und Gase

IX. Strömende Flüssigkeiten und Gase IX. Strömende Flüssigkeiten und Gase In Kapitel IIX haben wir nur ruhende Flüssigkeiten und Gase untersucht. Dabei konnten wir Gase und Flüssigkeiten meistens zusammen untersuchen. Das Gebiet der Physik,

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 2. Vorlesung Stefan Hickel Numerische Strömungsberechnung CFD vereinfacht das Design: einfache aber langwierige Experimente können ersetzt werden es können Lösungen zu Problemen

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr