5. Hydro- und Aerodynamik
|
|
|
- Insa Kurzmann
- vor 9 Jahren
- Abrufe
Transkript
1 Hydro- und Aerodynamik: 5. Hydro- und Aerodynamik (Strömung von Fluiden, also flüssigen und gasförmigen Substanzen) blaue Linien Bahnen von Partikeln der Flüssigkeit Dichte der Linien ist ein Maß für die Geschwindigkeit Strömungsfeld charakterisiert durch Geschwindigkeitsverteilung im Raum stationär = nicht zeitabhängig (zunächst ohne Reibung, Viskosität)
2 Volumenstrom und Kontinuitätsgleichung: Teilchen- oder Massenstrom J J = M t = ρ V t Volumenstrom durch eine Fläche A I = V t = A v = const. Kontinuitätsgleichung (für inkompressibles, ideales Fluid) Die Strömungsgeschwindigkeit nimmt an einer Engstelle zu, Ursache der Beschleunigung?
3 Energiebilanz an der Engstelle: Beschleunigung Kraft auf Strecke (Arbeit) Druckdifferenz (p 2 > p 1 ) Aus Kin. Energie + Stempelarbeit = const. folgt ρ v p = const = Gesamtdruck Bernoulli Gleichung Staudruck (dynamischer Druck) + Stempeldruck (statischer Druck) = const. Ändert sich außer dem Rohrdurchmesser auch noch die Höhe h über dem Boden (ansteigendes oder abfallendes Rohr), so muß zusätzlich der Schweredruck berücksichtigt werden: ( ρ gh) + ρ v p = const.
4 Herleitung der Bernoulli-Gleichung E kin = ½ M v 1 ² < ½ M v 2 ², weil wegen der Kontinuitätsgleichung v 1 /v 2 = A 2 /A 1. Energie-Erhaltung: ½ M v 2 ² - ½ M v 1 ² = Arbeit durch Druck F 1 x 1 F 2 x 2 =p 1 A 1 x 1 p 2 A 2 x 2 =p 1 V p 2 V ½ M v² 2 + p 2 V = ½ M v² 1 +p 1 V = const. (d.h. überall). Geteilt durch V: ρ v 2 + p const. 2 =
5 Hydrodynamisches Paradoxon: In Bereichen mit hoher Strömungsgeschwindigkeit herrscht ein reduzierter statischer Druck (hohe Geschw. = hoher Staudruck) Bunsenbrenner Haus im Sturm Innendruck > stat. Druck oben Zerstäuber Tragfläche
6 Weitere Beispiele für die Verringerung des statischen Drucks in Regionen hoher Geschwindigkeit: Die Gebiete zusammengedrängter Stromlinien (Unterdruck) ziehen An den Seiten der Scheibe ( Drehmoment im mittleren Bild) Beispiel: fallende Blätter
7 Magnus-Effekt bei Umströmung eines rotierenden Körpers Wegen der Adhäsion an der Kugeloberfläche führt die Kugel eine Wasserschicht mit sich herum. Dadurch ist die Geschwindigkeit des Wassers rechts größer als links. Der gleiche Effekt tritt bei rotierenden Bällen in Luft auf.
8 Strömung viskoser Flüssigkeiten und Gase Kohäsionskräfte behindern die Bewegung der Teilchen in einem Fluid ( innere Reibung). Wir betrachten zunächst laminare Strömung. Flüssigkeitsschichten gleiten aneinander vorbei und üben eine Schubspannung auf die benachbarten Schichten aus. Ist die Adhäsion zur Wand größer als die Kohäsion, so haftet die an die Wand angrenzende Schicht (v=0). Andernfalls bewegt sie sich reibend an der Wand ( äußere Reibung). Die innere Reibungskraft ist proportional zum Geschwindigkeits- Gradienten v/ z: Reibungskraft F R = η A v z Materialkonstante η = Viskosität
9 η in [Pa s] (Pascalsekunde) = Ns 2 m Zahlenwerte für η bei 20 C in Einheiten [Pa s]: Stoff Öl Wasser Luft Blut η ~ , Flüssigkeiten mit η unabhängig von v/ z heißen Newtonsche Flüssigkeiten. Blut ist eine nicht-newtonsche Flüssigkeit (oben ist der Mittelwert seiner Viskosität eingetragen). Druck F R /A ist nötig, um konstanten Volumenstrom I z.b. durch ein Rohr zu erreichen. Für Newtonsche Flüssigkeiten und laminare Stoffe (unverwirbelt) gilt p = R s I p 1 p 2 Mit p = p 1 -p 2, R s =Konstante=Strömungswiderstand, I = V/ t Damit ergibt sich ein Druckgefälle beim Durchströmen eines Rohrsystems:
10 Bei gleichmäßiger Strömung muss die Reibungskraft durch eine Druckdifferenz ausgeglichen werden. Es folgt ein linearer Druckabfall im Rohr: I = V/ t = 1 R s p Bei hohen Geschwindigkeiten v> v k geht die laminare Strömung in eine turbulente über v k 1000 η/ρr mit r = Rohrradius. R s steigt dramatisch (etwa prop. v 2 )
11 Kugelfallviskosimeter: Stokes sche Reibung bremst ~ η r v Schwerkraft (-Auftrieb) beschleunigt ~ ρ r 3 Konstante Sinkgeschwindigkeit, wenn beide Kräfte sich kompensieren ist proportional zum Quadrat des Radius Medizin: Messung der Blutsenkung (Sinkgeschwindigkeit der im Blutplasma suspendierten roten Blutkörperchen), durch Agglomeration bei Infektionen reduziert
12 Strömung nach Hagen-Poiseuille Strömt ein viskoses Fluid durch ein Rohr (Ader), so bildet sich eine parabolische Geschwindigkeitsverteilung aus u(r) ~ (R-r) 2 Der gesamte Volumenstrom ist proportional zur Druckdifferenz umgekehrt prop. zur Viskosität und zur Rohrlänge prop. zur vierten Potenz des Radius
13 Folgen der R 4 Abhängigkeit des Volumenstroms Bei Verengung des Rohrs entweder starke Stromreduzierung oder zur Kompensation starke Druckerhöhung notwendig...
14 Blutkreislauf Blutkreislauf ist parallel angelegt, Lunge und Körper aber in Serie Gesamtquerschnittsfläche der Kapillaren ist ca fach größer als in der Aorta, also die Geschwindigkeit entsprechen kleiner Druckabfall erfolgt in den Kapillaren mit kleinem Radius Druck Querschnitt mittlere Geschwindigkeit Arterien Kapillaren Venen
15 Druckabfall erfolgt in den Kapillaren mit kleinem Radius um Hagen Poiseuille zu entschärfen, reduziert sich die Viskosität des Bluts in den Kapillaren (Fahraeus-Lindquist Effekt) Arterien, Venen Kapillaren Ordnung der roten Blutkörperchen reduziert Strömungswiderstand dv ~ dz = Druck Rote Blutkörperchen in einer Glaskapillare von 10 µm Durchmesser
16 Bemerkung zum Blutkreislauf beim Menschen Typische Drucke im Blutkreislauf: im Lungenkreislauf p = 10 bis 20 Torr im Körperkreislauf p = 70 bis 140 Torr Blutvolumen gepumpt: ca. 5 Liter/Minute Aortadurchmesser ca. 2,5 cm. Gesamtquerschnitt der verzweigten Blutgefäße (Kapillaren) entspricht dem Tausendfachen des Querschnitts in der Aorta. Deshalb ist die Geschwindigkeit in den Kapillaren ein Tausendstel der Geschwindigkeit in der Aorta (Kontinuitätsgleichung). Die Geschwindigkeit in den Kapillaren ist 0,3 mm/sek. Kleiner Radius in den Kapillaren ergibt sehr hohen Widerstand, d.h. der Druckabfall erfolgt im Wesentlichen in den dünnen Blutgefäßen. Blutverteilung im Körper kann über die Radiusänderung der Adern gesteuert werden. Beim gesunden Körper ist die Blutströmung im allgemeinen laminar (Ausnahme Herzklappen). Beim kranken Körper werden durch Ablagerungen an den Blutgefäßen turbulente Strömungen auftreten, die hörbar werden. Im Körperkreislauf variiert der Blutdruck zwischen der Systole (Kontraktion des Herzens) mit ca. 140 Torr und der Diastole mit 80 Torr (Rückbewegung im Herzen). Die Aorta ist elastisch und gleicht Druckschwankungen, die von der Pumpe Herz erzeugt werden, aus.
17 Blutdruckmessung Druck in einer großen Arterie ist etwa gleich dem in der Aorta Abdrücken des Blutflusses mit Manschette bis kein Puls mehr spürbar Druckablassen bis Turbulenzgeräusche hörbar (systolischer Druck) Ablassen bis Turbulenzgeräusche verschwinden, das Blut zirkuliert jetzt laminar (diastolischer Druck)
I. Mechanik. 10.Vorlesung EP WS2009/10
10.Vorlesung EP WS2009/10 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Definition von Viskosität Hagen-Poiseuille - und Stokes - Gesetz 7. Schwingungen Versuche: Druckabfall
I. Mechanik. 10.Vorlesung EP WS2008/9. 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille
10.Vorlesung EP WS2008/9 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille 7. Schwingungen Versuche: Pendel mit zwei Längen Sandpendel
I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1
I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge
9.Vorlesung EP WS2008/9
9.Vorlesung EP WS2008/9 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik
9.Vorlesung EP WS2009/10
9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik
Physikalisches Grundpraktikum
Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:
Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung
Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung 1. Blut (Bettina Wiebe) 2. Gefäße und Kreislaufsystem (Stella Preußler)
Physik für Mediziner Flüssigkeiten II
Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie [email protected]
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und
Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung
016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das
Hydrodynamik y II - Viskosität
Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden
b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck:
b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck: = Druck einer senkrecht über einer Fläche A Stehenden Substanz (auch Flächen innerhalb der Flüssigkeit, nicht nur am Boden) Schweredruck steigt linear
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
3.4. Oberflächenspannung und Kapillarität
3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke
Strömungen. Kapitel 10
Kapitel 10 Strömungen In Kapitel 9 behandelten wir die statistische Bewegung einzelner Moleküle in einem Gas, aber noch keine makroskopische Bewegung des Mediums. Der Mittelwert der Impulse aller Teilchen
Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich
Dr.-Ing. habil. Jörg Wollnack 18.12.2008 GHY.1. Hydraulische Systeme
GHY.1 Hydraulische Systeme GHY.2 Hydraulische Motoren GHY.3 p i const, p i Fi i F F 1 2 1 2 F 1 2 F 1 2 Hydraulische Presse I GHY.4 Energieerhaltungssatz S + s S + s 01 1 02 2 S F ds F ds 1 1 2 2 S 01
Physik 1 für Chemiker und Biologen 9. Vorlesung
Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,
Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik
Vorlesung Physik für Pharmazeuten PPh - 05 Hydrostatik Grenzflächenspannung Hydrodynamik 21.05.2007 Ruhende lüssigkeiten (Hydrostatik) Der hydrostatische Druck : P = A A [P]=N/m 2 = Pa(scal) 1 bar=10 5
Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)
Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die
Labor Medizinische Gerätetechnologie
Labor Medizinische Gerätetechnologie Anleitung Flusscharakteristik von Implantaten Versuch 2 1 Vorbereitung Zentralvenöser Katheter Laminare Strömung (Bernoulli, Hagen- Poiseuille) Turbulente Strömung
Labor zur Vorlesung Physik
Labor zur Vorlesung Physik 1 Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Laminare und turbulente Strömung, Kontinuitätsgleichung, Bernoulli Gleichung, statischer und
Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7
1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche
2.9 Hydrodynamik und Ärodynamik
- 92-2.9 Hydrodynamik und Ärodynamik In diesem Kapitel werden ebenfalls Fluide diskutiert, wobei wir jetzt bewegte Medien betrachten. Der wichtigste Unterschied zwischen den strömenden Flüssigkeiten und
Physik 1 für Chemiker und Biologen 9. Vorlesung
Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik
df Druck p 1.5 Fluide: Mechanik der Flüssigkeiten und Gase 1.5.1 Ruhende Flüssigkeiten und Gase 1.5.1.1 Druck
.5 Fluide: Mechanik der Flüssigkeiten und Gase Wir haben im Kaitel Mechanik bisher behandelt: ) Masseunkte ) Feste Körer (Starre Körer, elastische Körer siehe Vorl. techn. Mechanik!) Feste Körer haben
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit
Versuch 1. Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch)
Versuch 1 Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch) Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und Raumfahrt Georg-August-Universität
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik
Vorlesung Physik für Pharmazeuten PPh - 05
Vorlesung Physik für Pharmazeuten PPh - 05 Festkörper Mechanik deformierbarer Körper Hydrostatik Grenzflächenspannung Hydrodynamik Der kristalline Festkörper Kristallformen - Raumgitter (Kristallgitter)
Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron
Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz
Physik 1 für Chemiker und Biologen 9. Vorlesung
"I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about
Aerodynamische Untersuchungen. 1.2 Grundgleichungen von Strömungen idealer, inkompressibler Fluide
M7 Aerodynamische Untersuchungen Die Abhängigkeiten von Druck und Strömungsgeschwindigkeit in einer Luftströmung sowie die Kraftwirkung auf Körper in dieser Luftströmung sollen veranschaulicht werden..
3. Mechanik deformierbarer Körper
3. Mechanik deformierbarer Körper 3.1 Aggregatzustände 3.2 Festkörper Struktur der Festkörper Verformung von Festkörpern 3.3 Druck Schweredruck Auftrieb 3.4 Grenzflächen Oberflächenspannung, Kohäsion,
3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******
3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau
3.4. Oberflächenspannung und Kapillarität
3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke
Physik 1 für Chemiker und Biologen 9. Vorlesung
"I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about
Kapitel 3 Mechanik von Flüssigkeiten und Gasen. 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide
Kapitel 3 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide Das hydrostatische Paradoxon h 1 2 3 A A A Beobachtung: Gleicher Druck am Boden Das hydrostatische Paradoxon h
Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:
Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******
Physik 1 für Chemiker und Biologen 9. Vorlesung
"I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von
Physik 1 für Chemiker und Biologen 10. Vorlesung
Physik 1 für Chemiker und Biologen 10. Vorlesung 15.01.2018 The Universal Label https://xkcd.com/1123/ Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte - Schwingungen - harmonisch
14. Strömende Flüssigkeiten und Gase
14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität
Strömende Flüssigkeiten und Gase
Strömende Flüssigkeiten und Gase Laminare und turbulente Strömungen Bei laminar strömenden Flüssigkeiten oder Gasen bewegen sich diese in Schichten, die sich nicht miteinander vermischen. Es treten keine
Biophysik für Pharmazeuten
Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Biophysik für Pharmazeuten 11. 4. 016. Transportprozesse Elektrischer Strom en I. Elektrischer Strom (el. Ladungstransport) IV.
Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v
Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms
Das menschliche Kreislauf- System
Das menschliche Kreislauf- System Eine Powerpoint Presentation von: Erwin Haigis Copyright by Erwin Haigis / VIP-Divepoint 1 Herzkreislaufsystem Das Transportsystem unseres Körpers o Die roten Gefäße stellen
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Vorlesung 25.11.2016 Kapitel 8: Ruhende Gase, Hydrodynamik, Viskosität Dr. Björn Wonsak 1 Platz für Fehlerrechnung 2 Platz für Fehlerrechnung 3 Platz für Fehlerrechnung
Grundlagen der Mechanik
Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben
1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit
1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der
Auswertung. Versuch P1-26,28 - Aeromechanik. Ingo Medebach, Jan Oertlin. 16. November 2009. Inhaltsverzeichnis
Versuch P1-2,2 - Aeromechanik Auswertung Von Ingo Medebach und Jan Oertlin 1. November 29 Inhaltsverzeichnis Demonstrationsversuche...2 D.1. und D.2...2 D.3. (Venturirohr)...2 D.. (Aerodynamisches Paradoxon)...3
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov [email protected] Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen
Physik 1 für Chemiker und Biologen 10. Vorlesung
Physik 1 für Chemiker und Biologen 10. Vorlesung 15.01.2018 The Universal Label https://xkcd.com/1123/ Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte - Schwingungen - harmonisch
Physik I im Studiengang Elektrotechnik
hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:
B.3 Lösungsskizzen der Übungsaufgaben zum Kapitel 3
B sskizzen B.3 sskizzen der Übungsaufgaben zum Kapitel 3 Aufgabe 9 (Stahlseil) An einem Stahlseil (Länge L 0, Querschnittsfläche A, Dichte ρ, Elastizitätsmodul E) hängt ein Körper der Masse m. Um welchen
Stationäre Rohrströmung ohne Reibung. 2002 Büsching, F.: Hydromechanik 07.1
Stationäre Rohrströmung ohne Reibung. 00 Büsching, F.: Hydromechanik 07.1 Stationäre Rohrströmung mit Reibung. 00 Büsching, F.: Hydromechanik 07. FLIEßVORGANG REALER FLÜSSIGKEITEN: 1. Laminare und turbulente
M 7 Innere Reibung von Flüssigkeiten
M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1.2 Überprüfen Sie, ob für die verwendeten
Grundpraktikum der Physik. Versuch 05. Viskosität von Flüssigkeiten. Durchführung am 09.11.2007. Gruppe D12 Betreuer: Anne Kröske
Grundpraktikum der Physik Versuch 05 Viskosität von Flüssigkeiten Durchführung am 09.11.2007 Gruppe D12 Betreuer: Anne Kröske Nadine Kremer [email protected] Rainer Pfeiffer [email protected]
10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)
0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung
9. Turbulenz in Flüssigkeiten
9. Turbulenz in Flüssigkeiten Experimentelle Beobachtungen bei strömungen in Rohren (Osborne, Reynolds 1883) Laminare Strömung laminare Strömung bei geringer Strömungsgeschwindigkeit Durchfluss j ist proportional
Kugelfallviskosimeter
S20 Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)
Medizinische Biophysik 20
Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Medizinische Biophysik 0 Transportprozesse en I. Elektrischer Strom (el. Ladungstransport) IV. Wärmeleitung (Energietransport) V.
Klausur Strömungsmechanik 1 WS 2009/2010
Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche
Die Pole sind die Stellen der stärksten Anziehungskraft.
Name: Klasse: 2 Magnetismus Das Magnetfeld durchdringt die meisten Stoffe. Die Pole sind die Stellen der stärksten Anziehungskraft. So kann man sich das Magnetfeld der Erde vorstellen. Ein Magnet zieht
Physik 1 für Chemiker und Biologen 10. Vorlesung
Physik 1 für Chemiker und Biologen 10. Vorlesung 14.01.2019 The Universal Label https://xkcd.com/1123/ Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte - Schwingungen - harmonisch
Zusammenfassung 23.10.2006, 0. Einführung
Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,
Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre
Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet
12.1 Fluideigenschaften
79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend
Medizinische Biophysik Transportprozesse
Medizinische Biophysik Transportprozesse III. Volumentransport (en) Fortsetzung 4. von reellen Flüssigkeiten Newtonsches Reibungsgesetz 016. 04. 05. Viskosität Anwendung: Viskosität des Blutes Kritische
6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?
1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die
8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler
8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:
Seite 1 von 10. Für eine ideale Flüssigkeit (inkompressibel und ohne innere Reibung) gilt das Gesetz von Bernoulli wie folgt:
Seite 1 von 10 Strömungslehre Für eine ideale Flüssigkeit (inkompressibel und ohne innere Reibung) gilt das Gesetz von Bernoulli wie folgt: p + gh + ½ v² = konstant oder für zwei verschiedene Punkte auf
Blutkreislauf, Arbeit des Herzens
Blutkreislauf, Arbeit des Herzens Physikalische Grundprinzipien der Hämodynamik Blutmenge im Körper 80 ml Blut pro kg Körpergewicht 8 % des Körpergewichtes Erwachsener: 5-6 l Blutvolumen Blutverlust: 10
Vorlesung STRÖMUNGSLEHRE Zusammenfassung
Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung
Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)
Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches
Wie wird der Blutdruck gemessen?
AB BD1 Wie wird der Blutdruck gemessen? Während der Herzkontraktion (Systole) wird das Blut mit ca. 120 mmhg in die gepumpt. Die Gefäßwände dehnen sich dabei aus, wodurch eine die Gefäße entlang wandert.
[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010
Inhalt Freier Fall ohne Luftwiderstand... 1 Herleitung des Luftwiderstandes... 3 Freier Fall mit Luftwiderstand... 4 Quellen... 9 Lässt man einen Körper aus einer bestimmt Höhe runter fallen, so wird er
M5 Viskosität von Flüssigkeiten
Christian Müller Jan Philipp Dietrich M5 Viskosität von Flüssigkeiten I. Dynamische Viskosität a) Erläuterung b) Berechnung der dynamischen Viskosität c) Fehlerrechnung II. Kinematische Viskosität a) Gerätekonstanten
3. Innere Reibung von Flüssigkeiten
IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen
Versuch 6. Zähigkeit (Viskosität) Abbildung 1. v τ=η (1) y
Versuch 6 Zähigkeit (Viskosität) Gesetz von Stokes Wenn zwei feste Körper aufeinander gleiten, so wird ihre Bewegung dadurch gehet, dass zwischen den Körpern ein Reibungswiderstand herrscht. in ähnliches
Einführung in die Technische Strömungslehre
Einführung in die Technische Strömungslehre Bearbeitet von Gerd Junge 1. Auflage 2011. Buch. 288 S. Hardcover ISBN 978 3 446 42300 8 Format (B x L): 16,7 x 240,3 cm Gewicht: 546 g Weitere Fachgebiete >
Naturwissenschaft und Technik Modul Technikanalyse. Blutdruckmessgerät 1. Grundlagen und Handhabung
Grundlagen: 1. Grundlagen und Handhabung 1. Blutkreislauf und Blutdruck Der Blutkreislauf ist in den Lungen- und Körperkreislauf gegliedert. Vom Herz aus fließt das Blut durch Arterien und Kapillaren.
Besprechung am /
PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 10 Übungsblatt 10 Besprechung am 16.01.2018/18.01.2018 Aufgabe 1 Bluttranfusion: Ein Patient benötigt dringend eine Bluttransfusion.
Strömungstechnik und Druckverlustberechnung
Kamprath-Reihe Obering. Walter Wagner Strömungstechnik und Druckverlustberechnung Mit Beispielsammlung 2., überarbeitete und neu zusammengestellte Auflage Vogel Buchverlag Inhaltsverzeichnis Vorwort 5
Zur Erinnerung Stichworte aus der 12. Vorlesung:
Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Experimentalphysik I SS 2008 13-1 Hydrostatik
Anatomisch / physiologische. Grundlagen. des Herz-Kreislauf-Systems
Anatomisch / physiologische Grundlagen des Herz-Kreislauf-Systems 24.10.2015 Anatomie / Physiologie Herz-Kreislaufsystem 1 Ist ein Hohlmuskel Das Herz Funktioniert wie eine sogenannte Saug-Druck-Pumpe
Dynamik. 4.Vorlesung EPI
4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip
Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016
Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden
Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf
Einführung in die Physik I Mechanik deformierbarer Körer O. von der Lühe und U. Landgraf Deformationen Deformationen, die das olumen ändern Dehnung Stauchung Deformationen, die das olumen nicht ändern
