9 Ergänzungen zur Funktionentheorie

Größe: px
Ab Seite anzeigen:

Download "9 Ergänzungen zur Funktionentheorie"

Transkript

1 9 Ergänzungen zur Funktionentheorie 9. Herausziehen von Polen und Nullstellen Das folgende Lemma hatten wir an zahlreichen Stellen verwendet, ohne es jemals streng bewiesen zu haben. Lemma 9. Die Funktion f sei in Umgebung von z mit Ausnahme von z holomorph und besitze die Laurent-Entwicklung fz) = a k z z ) k, a n, k=n wobei n eine ganze Zahl ist. Es ist also eine mehrfache Nullstelle oder ein Pol an der Stelle z erlaubt. Dann gilt fz) = z z ) n a n+k z z ) k = z z ) n gz). k= gz) ist holomorph fortsetzbar auf z und die Taylorreihe von g hat den gleichen Konvergenzradius wie die Reihe von f. Beweis: Wir müssen zeigen 9.) lim sup a n+k /k = lim sup a k /k =: a. Wir betrachten hier nur den Fall < a <. Es gibt Folgen k l und ε l mit Dann ist Es gilt a kl /k l = a + ε l a kl = a + ε l ) k l. lna + ε l ) k a kl l n = a + ε l ) k l k l n = k l k l n. k l k l n lna + ε l) l lna. Damit ist in 9.) gezeigt. Die andere Richtung beweist man genauso. 9.2 Hebbare Singularitäten Sei f in einer Umgebung von z holomorph. Wir hatten z hebbare Singularität genannt, wenn in der Laurent-Reihe um z a n = erfüllt ist für alle n Æ. Nun kennt man die Laurent-Reihe oft nicht und kann stattdessen den folgenden einfachen Satz anwenden: Satz 9.2 Sei f in einer Umgebung von z mit Ausnahme von z holomorph. Dann sind äquivalent: a) z ist hebbare Singularität. b) f ist in einer Umgebung von z beschränkt. c) lim z z z z )fz) =. Beweis: Aus b) folgt c). Sei die Bedingung c) erfüllt. Wegen des Satzes von Casorati- Weierstraß schließt die Bedingung c) eine wesentliche Singularität aus. Haben wir in z einen Pol der Ordnung n, so können wir mit Lemma 9. schreiben fz) = k= n a k z z ) k = z z ) n gz), gz ). Damit ist die Bedingung c) verletzt und z ist eine hebbare Singularität. 8

2 Ist z eine hebbare Singularität, so kann f nach Hebung der Singularität in eine Potenzreihe entwickelt werden. Dann ist f in einer Umgebung von z beschränkt. Als Anwendung zeigen wir, dass es keine in \ {} holomorphe Funktion gibt mit fz) 2 = z. Hieraus folgt nämlich fz) = z. Damit ist f in einer Umgebung von beschränkt und nach dem letzten Satz auf ganz holomorph fortsetzbar. Wegen der Stetigkeit folgt fz) =. Damit ist fz) = a z + Oz 2 ) und fz) 2 = a 2 z2 + Oz 3 ) mit einem Widerspruch. 9.3 Bestimmung von Residuen mit Taylor-Entwicklung Wir erinnern an Satz 5.5: Sei hz) holomorph in einer Umgebung von z mit hz ) und fz) = hz) z z ) m, m. Dann gilt Res z=z fz) = m )! hm ) z ). Anders ausgedrückt müssen wir Res z=z fz) = lim z z ) m fz) ) m ). z z m )! bestimmen. Auch nach Auswertung der Ableitung verbleibt ein Ausdruck der Form. Bei Singularitäten höherer Ordnung empfielt es sich, Zähler und Nenner von fz) nach Taylor zu entwickeln, wodurch sich die Rechnung vereinfacht. Beispiel 9.3 Seien f, g holomorph in Umgebung von z. Es sei fz ) und g besitze eine zweifache Nullstelle in z. Dann gilt fz) Res z=z gz) = 6f z )g z ) 2fz )g z ) 3g z ) 2 Beweis: Wir können z = annehmen. Mit den Taylorentwicklungen von f und g folgt fz) Res z= gz) = d f + zf + Oz 2 )! dz 2 g + 6 zg + Oz 2 ) z= = f 2 g f 6 g + Oz) z= 2 g + = 6f g 2fg 6 zg + Oz 2 )) 2 3g ) 2 Das nächste Beispiel zeigt eine weitere Variante, wie die Taylorreihe zum Einsatz gebracht werden kann: Beispiel 9.4 Sei g holomorph in Umgebung des Nullpunkts mit g 2k ) ) = für alle k Æ. Dann gilt Res z= gz) =. Beweis: Die Taylorreihe von g besteht nur aus geradzahligen Gliedern. Für a ist nichts zu zeigen. Andernfalls gilt für ein k > 9.2) Res z= gz) = lim z 2k )! z 2k a 2k z 2k + a 2k+2 z 2k ) 2k ), a2k. 8

3 Wir kürzen das z 2k heraus und verwenden für y = a 2k+2 z 2 + a 2k+4 z die geometrische Reihe a 2k + y = a 2k y a 2k ) = a 2k y ) i = b j z 2j. a 2k Damit besteht die Taylorreihe von z 2k /gz) nur aus geradzahligen Gliedern. Da diese in 9.2) ungeradzahlig oft abgeleitet wird, ist das Residuum von /g in der Tat Null. i= j= 9.4 Cauchy-Ungleichungen und polynomialbeschränkte ganze Funktionen Satz 9.5 Cauchy-Ungleichungen) Sei f holomorph im Gebiet D. Dann gilt für B R z ) D f n) z ) n! f C R n, f C = sup fz), wobei C = K R z ) den Rand von B R z ) bezeichnet. Beweis: Wir erhalten durch eine einfache Abschätzung der Cauchyschen Integralformel f n) z ) = n! fξ)dξ n! 2π 2πi C ξ z ) n+ 2π f n! C Rn+R dt 2π f CR n 2π. z C Satz 9.6 Ist f auf ganz holomorph mit fz) a z n + b, so ist f ein Polynom vom Grad n. Beweis: Nach dem letzten Satz gilt für beliebige R > f n+) z) n + )! ar + z )n + b R n+. Nach der binomischen Formel gilt für R, dass R + z ) n c z )R n und daher f n+) z) =. Damit ist f auf ein Polynom vom Grad n. 9.5 Einige Beweistechniken Um etwas über eine holomorphe Funktion fz) zu erfahren, betrachtet man /f, /fz) b) oder f/z). Eventuell zieht man anschließend mit Lemma 9. die möglichen Singularitäten heraus. Beispiel 9.7 Ist f auf ganz holomorph und nicht konstant, so ist das Bild f ) dicht in, es gibt also zu jedem a eine Folge z k ) mit fz k ) a. Beweis: Andernfalls wäre fz) a ε > für alle z. Die Funktion gz) = fz) a ist holomorph auf und durch ε beschränkt. Nach dem Satz von Liouville ist daher g und damit f konstant. Widerspruch zur Voraussetzung! Beispiel 9.8 Sei f eine ganze injektive Funktion. Dann ist fz) = az + b mit a. Insbesondere gibt es keine biholomorphe Abbildung von auf eine echte Teilmenge von. Beweis: f z ) muss einen Pol oder eine wesentliche Singularität im Nullpunkt besitzen, denn andernfalls wäre fz) beschränkt und nach dem Satz von Liouville konstant. Angenommen, z = wäre eine wesentliche Singularität. Wir wissen, dass das Bild einer beliebigen Kreisscheibe z z < r von fz) eine offene Menge ist. Da f injektiv ist, kommt diese Bildmenge sonst nicht mehr vor. 82

4 Dies widerspricht dem Satz von Casorati-Weierstraß, denn das Bild einer kleinen Umgebung von z = von f z ) liegt nicht dicht in. Damit besitzt f z ) einen Pol der Ordnung n > : f = z z) n gz), g) fz) = z n g. z) Da gz) holomorph ist, ist g z ) beschränkt. Nach Satz 9.6 ist fz) ein Polynom. Ein Polynom vom Grad 2 besitzt entweder zwei verschiedene Nullstellen oder eine mehrfache Nullstelle. Im Fall einer mehrfachen Nullstelle z gilt f z ) =. In beiden Fällen ist f nicht injektiv. Damit besitzt f die angegebene Form. Eine weitere wichtige Beweistechnik ist die Analyse der Taylor- oder Laurentreihe. Beispiele 9.9 i) Sei D ein beschränktes Gebiet mit D und f : D D sei holomorph. Gilt f) = und f ) =, so ist f linear. Beweis: Ist f nichtlinear mit f ) =, so hat die Taylorreihe von f die Form fz) = z + a n z n + Oz n+ ), a n. Dann gilt für f k = f f... f, dass f k z) = z + ka n z n + Oz n+ ). Da D beschränkt ist, gilt f k z) M unabhängig von k. Nach Satz 9.5 gilt für ein beliebiges B R ) D für g k = f k n!ka n = g n) n!m k ) R n, was für genügend großes k zu einem Widerspruch führt. ii) Sei f holomorph in B R ). Dann gilt fz) dz = 2πir 2 f ), < r < R. K r) Beweis Die Taylor-Reihe fz) = n= a nz n hat den gleichen Konvergenzradius wie die von f, n nämlich R, weil a n = n a n. Sie darf gliedweise integriert werden mit 2π z n dz = r n e n)it ri dt. K r) Für n = erhalten wir hier 2πir 2, ansonsten ist der Wert. Daher fz) dz = 2πir 2 a = 2πir 2 f ). K r) iii) Sei f in = B ) mit Ausnahme des Nullpunkts holomorph. Dann gilt Res z=z f z) =. Beweis: fz) lässt sich um in eine Laurent-Reihe entwickeln, fz) = Diese Reihe darf gliedweise differenziert werden, f z) = also verschwindet der Koeffizient von z. n= n= a n z n. na n z n, 83

5 9.6 Die Gamma-Funktion Die Gamma-Funktion lässt sich nach Euler für Re z > durch 9.3) Γz) = e t t z dt definieren. Im angegebenen Bereich ist das Integral auf der rechten Seite absolut konvergent. Es gilt e t t z = e t t x mit x = Re z. Im Intervall, ) ist t x integrierbar und für große t verwenden wir die Abschätzung e t t n /n!, also e t ct n. Mit partieller Integration folgt b d a dt e t e z ln t dt = b a e t e z ln t z t dt e t t z b a. Für Re z > konvergieren die Randterme für a und b gegen Null und wir erhalten Zusammen mit Γ) = folgt hieraus Γz + ) = zγz). Γn + ) = n! für alle n Æ. Die Gamma-Funktion ist daher eine Fortsetzung der Fakultätsfunktion auf die komplexe Ebene. Um zu zeigen, dass die Gamma-Funktion holomorph ist und auf fast ganz fortgesetzt werden kann, betrachten wir die folgende Zerlegung Γz) = e t t z dt + e t t z dt = F z) + F 2 z). Wie oben gezeigt wurde, vernascht e t jede Potenz von t. Daher ist F 2 z) auf ganz definiert und dort auch holomorph. Dies zeigt man am einfachsten mit dem Satz von Lebesgue über die majorisierte Konvergenz. Dazu müssen wir eine integierbare Majorante für den Differenzenquotienten finden. Wir verwenden Mit z = hlnt folgt dann h F 2z + h) F 2 z)) = h e t e z+h ) ln t e z ) ln t) dt e t e h ln t ) e z ) ln t dt h e z z + z 2! + z ) z e z. 3! e h ln t lnte h ln t = lntt h lnt + t) für h. h Die punktweise Konvergenz ist klar, weil e z ln t für jedes t nach z stetig differenzierbar ist. Für die Funktion F z) erhalten wir aus der Reihendarstellung der e-funktion 9.4) F z) = = t) n t z dt = n! n= ) n n! z + j. n= ) n n= n! t j+z dt 84

6 Wegen sup z m n=2m ) n n! z + j n=2m n! m < ist die Reihe 9.4) kompakt konvergent in \ Æ ) und stellt dort eine meromorphe Funktion dar. Satz 9. Durch ) n Γz) = n! n= z + j + e t t z dt 8 6 ist eine auf meromorphe Funktion erklärt. Alle nichtpositiven ganzen Zahlen sind Pole erster Ordnung mit Residuum ) n /n! 4 2 Aus 9.4) ersehen wir, dass die Werte der Gamma- Funktion reell sind für reelles z. Weiter stimmen die Funktionen Γz +) und zγz) auf der rechten Halbebene überein und nach dem Identitätssatz gilt die Funktonalgleichung Γz + ) = zγz) für alle z \ { Æ }. Zur weiteren Untersuchung der Gamma-Funktion benötigen wir einige elementare Hilfsmittel Lemma 9. Für alle t [, n] gilt -6 e t n) t n. -8 Beweis: Mit h n t) = e t t/n) n gilt für alle n Æ und alle t n h nt) = e t t n ) n ne t t n ) n ) = e t t ) n t n n n. Daher ist h n auf [, n] monoton wachsend. Wegen h) = folgt h n t) auf [, n] und daher e t n) t n = e t h n t) auf [, n]. Lemma 9.2 Der Grenzwert n ) γ = lim n j lnn j= existiert mit γ = γ heißt Eulersche Konstante manchmal auch Euler-Mascheroni- Konstante). Wegen Beweis: Es gilt < j+ j n j= j lnn = n n + j= j+ j j t ) dt. j ) j+ t j j+ dt = dt t j jt j j 2 dt = j 2 existiert der Grenzwert nach dem Majorantenkriterium. 85

Themen Potenzreihen Laurentreihen Residuenkalkül

Themen Potenzreihen Laurentreihen Residuenkalkül 5 Reihenentwicklungen und der Residuensatz Themen Potenzreihen Laurentreihen Residuenkalkül folgen 5.1 Potenzreihen und Taylorreihen Satz Sei und sei f(z) = a n (z z 0 ) n, a n, n=0 R = 1 lim sup n a n,

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.

Mehr

10. Isolierte Singularitäten

10. Isolierte Singularitäten 0. Isolierte Singularitäten 57 0. Isolierte Singularitäten Der wichtigste Spezialfall von Laurent-Reihen (und in der Tat auch der, den wir ab jetzt nur noch betrachten werden) ist der, bei dem der innere

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen D-MATH Funktionentheorie HS 208 Prof. Michael Struwe Lösungen Serie 8 Laurentreihen, isolierte Singularitäten, meromorphe Funktionen. Bestimmen Sie die Laurentreihenentwicklung der folgenden Funktionen:

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Wir wollen jetzt die Cauchys che Integralformel in mehreren Veränderlichen formulieren. (ζ 1 z 1 ) (ζ n z n ) dζ 1 (ζ 1 z 1 ) dζ n.

Wir wollen jetzt die Cauchys che Integralformel in mehreren Veränderlichen formulieren. (ζ 1 z 1 ) (ζ n z n ) dζ 1 (ζ 1 z 1 ) dζ n. 4 Kapitel Holomorphe Funktionen 2 Das Cauchy-Integral Wir wollen jetzt die Cauchys che Integralformel in mehreren Veränderlichen formulieren. Sei r (r,..., r n ) R n +, P P n (0, r), n (0, r), und f eine

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

H.J. Oberle Komplexe Funktionen SoSe Residuensatz

H.J. Oberle Komplexe Funktionen SoSe Residuensatz H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Bernhard Lamel und Gerald Teschl SS27 Bemerkung: Die meisten Beispiel sind aus dem Buch von K. Jähnich, Funktionentheorie, Springer. 1. Beweise folgende Eigenschaften des

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

Ferienkurs Analysis 3 - Funktionentheorie

Ferienkurs Analysis 3 - Funktionentheorie Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius 12.08.2009 1 Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Analysis I. 7. Beispielklausur mit Lösungen

Analysis I. 7. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 7. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine surjektive Abbildung f: L M. () Ein archimedisch

Mehr

Mathematik III für Physiker. Vorlesung

Mathematik III für Physiker. Vorlesung Mathematik III für Physiker Wintersemester /3 Vorlesung..3 Satz 6 (iduensatz) Sei f holomorph in G := C \ {z,..., z N } und G ein geschlossener, stückweise stetig dierenzierbarer Weg. Dann gilt f(ξ)dξ

Mehr

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu) ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition

Mehr

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben

Mehr

Funktionentheorie Nachholklausur

Funktionentheorie Nachholklausur Prof. Dr. Thomas Vogel Sommersemester 2014 Robert Schmidt 6.10.2014 Funktionentheorie Nachholklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor, PO 2007 2010 2011 Master, PO 2010

Mehr

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen Einleitung 28: Holomorphe Funktionen, Potenzreihen und Laurentreihen 28.1 Einleitung Wir wissen bereits, dass eine holomorphe Funktion f : M C unendlich oft komplex differenzierbar ist. Für jedes z 0 M

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Begleittext zum Vortrag Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Christian Offen 27.11.2013 Inhaltsverzeichnis 1 Die Struktur der Menge der elliptischen

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Michael Kunzinger und Gerald Teschl WS215/16 Bemerkung: Die meisten Beispiele sind aus dem Buch von K. Jänich, Funktionentheorie, Springer. 1. Bereiten Sie eine Kurzpräsentation

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

1 Das Additionstheorem und Folgerungen

1 Das Additionstheorem und Folgerungen Das Additionstheorem der -Funktion und elliptische Kurven Vortrag zum Seminar zur Funktionentheorie, 05.11.2007 Cornelia Wirtz Ziel dieses Vortrages ist es, das Additionstheorem der Weierstraß schen -Funktion

Mehr

5 Meromorphe Funktionen

5 Meromorphe Funktionen $Id: mero.tex,v.8 202/06/26 9:08:48 hk Exp $ $Id: residuum.tex,v.3 202/06/26 9:5:40 hk Exp hk $ 5 Meromorphe Funktionen 5.2 Laurentreihen In der letzten Sitzung hatten wir Laurentreihen eingeführt und

Mehr

Anhang. ν=1,...,n z ν.

Anhang. ν=1,...,n z ν. Komplexe Analysis von mehreren Veränderlichen 121 Anhang Komplexe Analysis von mehreren Veränderlichen 1 Holomorphe Funktionen Definition. Die euklidische Norm eines Vektors z C n wird gegeben durch z

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen

Mehr

4 Funktionen mit isolierten Singularitäten

4 Funktionen mit isolierten Singularitäten 4 Funktionen mit isolierten Singularitäten Funktionen wie z +z 2, z tanz oder z e /z sind mit Ausnahme einzelner Punkte in C holomorph. In diesem Abschnitt untersuchen wir solche Funktionen in der Nähe

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

γ j γ j (f) = f(z) dz.

γ j γ j (f) = f(z) dz. 27 6. Globale Versionen des Cauchyschen Integralsatzes. Residuensatz 6.. Ketten und Zyklen. Es seien γ,...,γ n Wege in der Ebene und K =Bildγ... Bild γ n. Jedes γ j liefert eine lineare Abbildung γ j :

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v 1.3 2016/06/22 16:12:36 hk Exp $ 3 Meromorphe Funktionen und der Residuenkalkül 3.3 Hauptteile und Residuen Am Ende der letzten Sitzung hatten wir die Laurententwicklung einer holomorphen

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen Die j-funktion, Abschätzung der Fourierkoeffizienten Vortrag zum Seminar zur Funktionentheorie, 0.04.00 Felix Voigtländer Diese Ausarbeitung beschäftigt sich zunächst mit der j-funktion. Diese stellt einerseits

Mehr

Dirichlet-Reihen I. 1 Motivation und Definition der Dirichlet-Reihen

Dirichlet-Reihen I. 1 Motivation und Definition der Dirichlet-Reihen Vortrag zum Seminar zur Funktionentheorie 10. 12. 2007 Corinna Wübling Dieser Vortrag beschäftigt sich mit Dirichlet-Reihen. Im ersten Abschnitt werden die Dirichlet-Reihen definiert und typische Beispiele

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

5. Funktional-Gleichung der Zetafunktion

5. Funktional-Gleichung der Zetafunktion 5. Funktional-Gleichung der Zetafunktion 5.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x O( x und f (x O( x für x ˆf(t : f(xe πixt dx. die Fourier-Transformierte

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Funktionentheorie Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 Funktionentheorie - Zusammenfassung Grundlagen Komplexe Funktion f (z)

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Komplexe Taylor-Reihe

Komplexe Taylor-Reihe Komplexe Taylor-Reihe Eine in einem Gebiet D analytische Funktion f lässt sich in jedem Punkt a D in eine Taylor-Reihe entwickeln: f (n) (a) n! (z a) n. Taylor-Reihe - Komplexe Taylor-Reihe Eine in einem

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

Windungszahl. Windungszahl II. Bemerkung. Beispiel

Windungszahl. Windungszahl II. Bemerkung. Beispiel Windungszahl Bemerkung. Für einen beliebigen z 0 homotopen Weg in G \ {z 0 }, der den Punkt z 0 niht notwendigerweise genau einmal durhläuft, gilt 2πi Uml (, z 0 ) f (z 0 ) 2. Nützlih ist folgende heuristishe

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 31.1.2017 Definition 2.2 (uneigentliches Riemann-Integral) Sei I = [a, b) mit a < b. Die Funktion f : I R sei Riemann-integrierbar auf [a, b ] für alle b < b. Falls x lim x b a f(ξ)

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober 2009 Musterlösung 5 1. Sei f : C C eine holomorphe Funktion, so dass f(z) < z n für ein n N und alle hinreichend grossen z. Dann ist

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November 009 Musterlösungen 6. Sei B r := { C < r} und f : C C durch 3 + definiert. Welches ist der grösste Wert von r so dass f Br injektiv

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik ................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.6 2016/11/16 12:37:19 hk Exp $ 2 Riemannsche Flächen 2.2 Karten und holomorphe Funktionen auf Flächen Am Ende der letzten Sitzung hatten wir einige der Grundeigenschaften holomorpher

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

Funktionentheorie - Zusammenfassung

Funktionentheorie - Zusammenfassung Funktionentheorie - Zusammenfassung Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: richard.gebauer@student.kit.edu

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

Der Primzahlsatz, Teil 2

Der Primzahlsatz, Teil 2 Vortrag zum Seminar zur Funktionentheorie, 4.5.22 Maike Gerhard Ziel dieses Vortrags ist es den Primzahlsatz zu beweisen. Dieser besagt π() π(), d.h. lim ln /ln =, wobei π() die Anzahl der Primzahlen kleiner

Mehr