Komplexe Analysis D-ITET. Serie 8
|
|
|
- Katharina Scholz
- vor 8 Jahren
- Abrufe
Transkript
1 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen zu berechnen. Damit klar ist was genau gemacht werden soll, gibt es zu jeder Teilaufgabe ein kleines Beispiel. (8.a) Zeichne vier jeweils verschiedene Zyklen. Als Beispiel betrachte den Zyklus in Abbildung 8.. Abbildung 8.: Ein Beispiel für einen Zyklus. (8.b) Berechne alle vorkommenden Umlaufzahlen innerhalb der vier Zyklen, die du in Aufgabe (8.a) gezeichnet hast. Für den Zyklus in Abbildung 8. sähe das so aus wie in Abbildung 8.2. Aufgabe 8.2 Umlaufzahlen Berechnen - Teil II Fixiere n, k Z und r > 0 mit r. Bestimme die Umlaufzahl des geschlossenen Weges (t) := e 2πint + re 2πikt, 0 t um den Nullpunkt. In anderen Worten: Bestimme ind (0). HINWEIS: Gibt es eine Homotopie, welche den kleineren Kreis auf null zusammenzieht, ohne dabei über den Ursprung zu gehen? Lösung: Zuerst wollen wir den Fall r < untersuchen. Wir betrachten den Hinweis und merken, dass es eine Homotopie H : [0, ] 2 C gibt, welche den kleineren der beiden Kreise auf null zusammenzieht. Diese ist gegeben durch H(λ, t) := λ(e 2πint + re 2πikt ) + ( λ)( + r)e 2πint. Problem Sheet 8 Page Problem 8.
2 Abbildung 8.2: Der Zyklus aus Abbildung 8. mit Umlaufzahlen. Um zu überprüfen, dass dies eine Homotopie ist, bemerken wir zuerst, dass H stetig ist. Desweiteren gilt H(0, t) = ( + r)e 2πint, H(, t) = (t), H(λ, 0) = + r = H(λ, ). und somit ist H eine Homotopie. Nun wollen wir die Homotopieversion des Satzes von Cauchy anwenden (siehe zum Beispiel: Freitag, Busam: Funktionentheorie, dritte Auflage, Theorem A5, s. 236). Betrachte zuerst einmal das Integral, welches wir berechnen wollen ind (0) = Man sieht also, dass wir, um die Homotopieversion des Integralsatzes zu nutzen, zuerst zeigen müssen, dass unsere Homotopie nicht durch die Singularität bei null geht. Betrachte also Dies ist der Fall genau dann, wenn dz z. H(λ, t) = 0 λ(e 2πint + re 2πikt ) = ( λ)( + r)e 2πint. λ = + r r e 2πi(k n)t. Diese Gleichung kann aber nicht gelten für λ (0, ), da t = gelten muss, damit die rechte 2 Seite überhaupt eine reelle Zahl ist und somit λ = + r >. 2r Nun können wir also die Homotopieversion des Satzes von Cauchy anwenden und erhalten dz ind (0) = z = dz z = dz z = n. H(, ) Für den zweiten Fall (r > ) können wir nun ein sehr ähnliches Argument anführen, um zu zeigen, dass ind (0) = k. Die Homotopie ist in diesem Falle, gegeben durch H(0, ) H(λ, t) := λ(e 2πint + re 2πikt ) + ( λ)( + r)e 2πikt. Problem Sheet 8 Page 2 Problem 8.2
3 Aufgabe 8.3 (8.3a) und die Wege Anwendungen des Residuensatzes Betrachte die Funktion Berechne die Integrale f(z) := + z 2 k (t) := e i πk 2 + e 2πit, 0 t. k f(z) dz. Lösung: Wir berechnen die Residuen in den beiden Polen z = i und z 2 = i von f. Bemerke dazu, dass beide Pole Vielfachkeit haben und dass wir deswegen mit g(z) := z 2 + haben, dass Res i f = g (i) =, Res i f = g ( i) = gilt. Nun wenden wir den Residuensatz an und erhalten f(z) dz = 2πi Res i (f) ind (i) = 2πi = π, (8.3b) f(z) dz = 2πi Res i (f) ind 3 ( i) = 2πi 3 Betrachte erneut Diesmal definieren wir den Weg Berechne erneut den Wert von f(z) := + z 2. (t) := 2e 2πit, 0 t. f(z) dz. = π, f(z) dz = 0, 2 4 f(z) dz = 0. Lösung: Wir benutzen, was wir in Aufgabe (8.3a) bereits berechnet haben und bekommen daher mit dem Residuensatz ( f(z) dz = 2πi(Res i (f) ind (i) + Res i (f) ind ( i)) = 2πi ) = 0. (8.3c) Bestimme die Menge der Nullstellen der Funktion f(z) := e z. Lösung: Wir bemerken, dass die Funktion f eine Nullstelle in z C hat genau dann, wenn e z =. Man sieht also leicht, dass die Nullstellenmenge der Funktion f gegeben ist durch { N := 2πin }. n Z \ {0} Problem Sheet 8 Page 3 Problem 8.3
4 (8.3d) Wir definieren den Weg (t) := i eit, 0 t 2π. Berechne das Integral e z z 2 (e z ) dz. Lösung: Der Weg entspricht der Parametrisierung des Kreises mit Mittelpunkt z 0 = i und Radius r = 7. Somit ist insbesondere z 8 = i die einzige Nullstelle des Nenners die von 2π umlaufen wird, da der Nenner genau z 2 f(z) entspricht, wobei f wie in Aufgabe (8.3c) definiert ist. Um das Residuum des Integranden an z zu berechnen, bemerken wir, dass f (z ) = z 2 e z = 4π 2 0 gilt. Somit ist z ein Pol erster Ordnung und wir erhalten mit g(z) := z 2 f(z), dass e z Res z z 2 (e z ) = g (z ) = 2z f(z ) + zf 2 (z ) = gilt. Wir wenden nun den Residuensatz an und erhalten ( (8.3e) Betrachte Welche Werte kann e z z 2 (e z ) dz = 2πi Res z f(z) := e z z 2 (e z ) ) z (z )(z 2). f(z) dz ind (z ) = 2πi. annehmen, wenn irgendein geschlossener Weg ist, der weder z = noch z 2 = 2 durchläuft? Lösung: Wir berechnen zuerst die Residuen in den Polen erster Ordnung z = und z 2 = 2. Diese sind Res f =, Res 2 f = 2. Mit dem Residuensatz erhalten wir f(z) dz = 2πi(Res (f) ind () + Res 2 (f) ind (2)). In der Vorlesung hatten wir gesehen, dass ind (z) Z für alle z C \ {im()}. Wir folgern daraus, dass f(z) dz {2πin n Z}. Das Integral kann also alle Werte aus 2πiZ annehmen. Problem Sheet 8 Page 4 Problem 8.3
5 Aufgabe 8.4 Der Satz von Casorati-Weierstrass Das Ziel der Aufgabe ist es den Satz von Casorati-Weierstrass zu beweisen. Bevor wir dies in Angriff nehmen sind zwei Definitionen von Nöten: Eine Singularität einer Funktion f heisst wesentlich, wenn sie weder hebbar noch ein Pol ist. Ein gutes Beispiel dafür ist die Funktion sin ( ) z, welche in z = 0 eine Singularität hat, die weder ein Pol noch hebbar ist. Eine Menge M heisst dicht, wenn jeder Ball B r (z 0 ), für r > 0 und z 0 C, einen Punkt aus M enthält. Der Satz von Casorati-Weierstrass lautet: Sei z 0 U C eine wesentliche Singularität der analytischen Funktion f : U C und B ɛ (z 0 ) \ {z 0 } U eine punktierte ɛ-umgebung von z 0, für ɛ > 0. Dann gilt, dass dicht in C ist. M := f(b ɛ (z 0 ) \ {z 0 }) HINWEIS: Wenn der Satz von Casorati-Weierstrass nicht gilt, so gibt es ein δ > 0 und ein ω 0 C, sodass B δ (ω 0 ) keinen Punkt aus M enthält. Schliesse aus dem Riemannschen Hebbarkeitssatz, dass h(z) = f(z) ω 0 in z 0 eine hebbare Singularität hat. Lösung: Wir folgen dem Hinweis. Beachte, dass f nicht konstant ist, denn sonst wäre die Singularität in z 0 sicher hebbar. Wenn B δ (ω 0 ) keine Punkte aus M enthält, so ist h beschränkt in B ɛ (z 0 ) \ {z 0 } (um genau zu sein durch ). Dank dem Riemannschen Hebbarkeitssatz ist die Singularität von h in z 0 hebbar. Damit ist h(z 0 ) 0 oder z 0 ist eine Nullstelle endlicher Ordnung, δ (wäre z 0 eine Nullstelle unendlicher Ordnung, dann wäre h(z) 0, und somit wäre auch f(z) konstant). Damit folgt aber nun, dass f(z) = h(z) + ω 0 in z 0 auch keine wesentliche Singularität haben kann, denn f(z 0 ) ist entweder definiert oder z 0 ist ein Pol endlicher Ordnung. Publiziert am 25.April. Einzureichen am 4. Mai. Letzte Modifikation: 5. Mai 206 Problem Sheet 8 Page 5 Problem 8.4
2. Klausur zur Funktionentheorie SS 2009
Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel
Lösungen zur Klausur Funktionentheorie I SS 2005
Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z
Komplexe Analysis D-ITET. Serie 1
Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Aufgabe. echnen mit komplexen Zahlen (.a) Berechnen Sie die folgenden Terme: i) ( 4 + 7i) + (8
Komplexe Analysis D-ITET. Serie 3
Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Die reellen Cauchy-Riemann Gleichungen Die Cauchy-Riemann Gleichung i f(x + iy = f(x + iy
D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen
D-MATH Funktionentheorie HS 208 Prof. Michael Struwe Lösungen Serie 8 Laurentreihen, isolierte Singularitäten, meromorphe Funktionen. Bestimmen Sie die Laurentreihenentwicklung der folgenden Funktionen:
Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom
Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben
Musterlösung zu Übungsblatt 11
Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung
Komplexe Funktionen für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,
4 Anwendungen des Cauchyschen Integralsatzes
4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem
Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.
Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen
10. Isolierte Singularitäten
0. Isolierte Singularitäten 57 0. Isolierte Singularitäten Der wichtigste Spezialfall von Laurent-Reihen (und in der Tat auch der, den wir ab jetzt nur noch betrachten werden) ist der, bei dem der innere
Komplexe Analysis D-ITET. Serie 4
Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie 4 ETH Zürich D-MATH Aufgabe 4. Benutzen Sie Ihre Lieblingsprogrammiersprache, um die folgenden Vektorfelder zu
Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen
Funktionentheorie Nachholklausur
Prof. Dr. Thomas Vogel Sommersemester 2014 Robert Schmidt 6.10.2014 Funktionentheorie Nachholklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor, PO 2007 2010 2011 Master, PO 2010
9 Ergänzungen zur Funktionentheorie
9 Ergänzungen zur Funktionentheorie 9. Herausziehen von Polen und Nullstellen Das folgende Lemma hatten wir an zahlreichen Stellen verwendet, ohne es jemals streng bewiesen zu haben. Lemma 9. Die Funktion
3 Meromorphe Funktionen und der Residuenkalkül
$Id: mero.tex,v 1.3 2016/06/22 16:12:36 hk Exp $ 3 Meromorphe Funktionen und der Residuenkalkül 3.3 Hauptteile und Residuen Am Ende der letzten Sitzung hatten wir die Laurententwicklung einer holomorphen
Musterlösung zu Übungsblatt 12
Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 8. Dezember 17 HS 17 Musterlösung zu Übungsblatt 1 Die folgenden Aufgabe entwickelt Techniken, um mit Möbiustransformationen (auch gebrochen-lineare
Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz
Ferienkurs Analysis 3 für Physiker Laurentreihen und Residuensat Autor: Benjamin Rüth Stand:. Mär 204 Inhaltsvereichnis Inhaltsvereichnis Inhaltsvereichnis Singularitäten 3 2 Laurentreihen 4 2. Laurententwicklung...............................
Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie
Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen
MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass
Ferienkurs Analysis 3 - Funktionentheorie
Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius 12.08.2009 1 Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch
Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt
Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung
Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5
Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober 2009 Musterlösung 5 1. Sei f : C C eine holomorphe Funktion, so dass f(z) < z n für ein n N und alle hinreichend grossen z. Dann ist
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006
Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,
Einige Standard-Aufgabentypen der Funktionentheorie I
Matthias Stemmler SS 6 [email protected] Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:
H.J. Oberle Komplexe Funktionen SoSe Residuensatz
H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe
Proseminar Komplexe Analysis 1
Proseminar Komplexe Analysis 1 Bernhard Lamel und Gerald Teschl SS27 Bemerkung: Die meisten Beispiel sind aus dem Buch von K. Jähnich, Funktionentheorie, Springer. 1. Beweise folgende Eigenschaften des
Höhere Mathematik Vorlesung 9
Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C
Ferienkurs Analysis 3 für Physiker. Funktionentheorie
Ferienkurs Analysis 3 für Physiker Funktionentheorie Autor: Benjamin Rüth, Korbinian Singhammer Stand: 28. Februar 25 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Was ist Funktionentheorie?
(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.
Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie
6.7 Isolierte Singularitäten
6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert
Musterlösung zur Serie 11
D-MATH, D-PHYS Funktionentheorie HS 203 Prof. J. Teichmann Musterlösung zur Serie. (a) Die Identitätsfunktion ϕ : Ω C, ϕ(z) = z erfüllt die Bedingungen von Satz 4.7, weshalb es eine holomorphe Funktion
Komplexe Funktionen für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden
Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen
Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine
Klausur zur Vorlesung Funktionentheorie Sommersemester Mittwoch, , 9:00 12:00 Uhr
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Klausur zur Vorlesung Funktionentheorie Sommersemester 2012 Mittwoch, 1.8.2012, 9:00 12:00 Uhr Willkommen
Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3
Funktionentheorie I. M. Griesemer
Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der
Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung
Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation
Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i
A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)
Mathematik III für Physiker. Übungsblatt 15 - Musterlösung
Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil
Cauchysche Integralformel
Aus der komplexen Differenzierbarkeit folgt somit die Existenz und Stetigkeit von Ableitungen beliebiger Ordnung. auchysche Integralformel 1-1 auchysche Integralformel Für ein beschränktes Gebiet D, das
3 Der Cauchysche Integralsatz
3 Der Cauchysche Integralsatz Die in der Funktionentheorie meist vorkommenden Integrale (insbesondere im Cauchyschen Integralsatz) sind Kurvenintegrale und wie folgt definiert: Definition Sei U C, f :
Serie 3 - Komplexe Zahlen II
Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe
4 Isolierte Singularitäten und Laurentreihen
35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph
Funktionentheorie - Zusammenfassung
Funktionentheorie - Zusammenfassung Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: [email protected]
Meromorphe Funktionen
Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung
Klausur: Höhere Mathematik IV
Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 [email protected]
D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy
D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.
Proseminar Komplexe Analysis 1
Proseminar Komplexe Analysis 1 Michael Kunzinger und Gerald Teschl WS215/16 Bemerkung: Die meisten Beispiele sind aus dem Buch von K. Jänich, Funktionentheorie, Springer. 1. Bereiten Sie eine Kurzpräsentation
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)
................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion
Tutor: Martin Friesen, [email protected] Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion. Die Exponentialfunktion ist exp z Wie in der reellen Analysis werden auch die trigonometrischen Funktionen
6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und
Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,
3 Meromorphe Funktionen und der Residuenkalkül
$Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und
13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss
Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe
Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie)
Universität Kassel Fakutät 0/6 PD Dr. Sebastian Petersen 2.09.207 Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Version mit Lösungsskizzen Es können 30 Punkte erreicht
4.4 Die Potentialgleichung
Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche
Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6
Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November 009 Musterlösungen 6. Sei B r := { C < r} und f : C C durch 3 + definiert. Welches ist der grösste Wert von r so dass f Br injektiv
Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev
Begleittext zum Vortrag Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Christian Offen 27.11.2013 Inhaltsverzeichnis 1 Die Struktur der Menge der elliptischen
Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz
Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.
Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen
Doppel-periodische Funktionen und die Weierstraßsche -Funktion Vortrag zum Seminar zur Funktionentheorie, 30.03.2009 Stefanie Kessler Die komplexen Zahlen als Erweiterung der reellen Zahlen ermöglichen
TU Dortmund. Residuensatz und Anwendungen
TU Dortmund Fakultät für Mathematik Residuensatz und Anwendungen Timo Putz Matrikelnummer: 127042 Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition der Laurent-Reihe.......................... 1
Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis
Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 24 2.5.24 Funktionentheorie Lösungsvorschläge zum 3. Übungsblatt Aufgabe (K) a) Beweisen
6 Komplexe Integration
6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise
Elliptische Funktionen
Elliptische Funktionen Jeff Schomer Universität Freiburg (Schweiz) 27.09.2007 Einleitung In diesem Seminar werden wir über doppelt periodische und elliptische Funktionen sprechen. Nachdem wir grundlegende
AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann
AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der
Elemente der Funktionentheorie, Probeklausur
Elemente der Funtionentheorie, Probelausur Erlaubte Hilfsmittel: eine (im Anhang befindet sich eine leine Formelsammlung) Es sind 0 Punte erreichbar, jedoch zählen 00 Punte als 00 Prozent. Bitte auf jedem
Lösung - Schnellübung 13
D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene
Lösungen zum 11. Übungsblatt Funktionentheorie I
Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion
Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw.
Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 04 3.06.04 Funktionentheorie Lösungsvorschläge zum 6. Übungsblatt Aufgabe (K) a) Zeigen
23 Laurentreihen und Residuen
23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.
Komplexe Analysis D-ITET. Serie 5
Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 8 Komplexe Analysis D-ITET Serie 5 ETH Zürich D-MATH Aufgabe 5. Anwendung des Satzes von Cauchy I Sei die Parametrisierung entgegen des Uhrzeigersinns
Kapitel 4. Der globale Cauchysche Integralsatz
Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen
Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =
Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende
1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) =
Musterlösung Analysis III f. Ing., 09. Oktober 0. Aufgabe 9 Punkte Partialbruchzerlegung: (z )(z +3) z z +3 Um eine im Ringgebiet < z < 5 konvergente Laurent-Reihe zu erhalten, entwickelt man den Term
Examenskurs Analysis Probeklausur I
Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils
Potenzreihenentwicklung im Reellen und Komplexen
Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und
86 Klassifizierung der isolierten Singularitäten holomorpher
86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer
Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion
Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe
Übungen zur Funktionentheorie
Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine
ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)
ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition
Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)
Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden
