Cauchysche Integralformel
|
|
|
- Hertha Schulz
- vor 9 Jahren
- Abrufe
Transkript
1 Aus der komplexen Differenzierbarkeit folgt somit die Existenz und Stetigkeit von Ableitungen beliebiger Ordnung. auchysche Integralformel 1-1 auchysche Integralformel Für ein beschränktes Gebiet D, das durch entgegen dem Uhrzeigersinn orientierte (Gebiet liegt links ) stückweise stetig differenzierbare Kurven k berandet wird, und eine in D analytische und in D stetige Funktion f gilt für alle z D. f (z) = 1 2πi f (w) w z dw, = k k, Durch Differenzieren unter dem Integral erhält man eine Darstellung für die Ableitungen: f (n) (z) = n! 2πi f (w) w z dw, z D.
2 Beweis: schneide aus dem Gebiet D eine Kreisscheibe D r um z mit Radius r aus auchysche Integralformel 2-1
3 Beweis: schneide aus dem Gebiet D eine Kreisscheibe D r um z mit Radius r aus Mit r dem entgegen dem Uhrzeigersinn orientierten Rand von D r berandet r das Teilgebiet D\D r (korrekte Orientierung des Randes: D\D r liegt links von r ). auchysche Integralformel 2-2
4 Beweis: schneide aus dem Gebiet D eine Kreisscheibe D r um z mit Radius r aus Mit r dem entgegen dem Uhrzeigersinn orientierten Rand von D r berandet r das Teilgebiet D\D r (korrekte Orientierung des Randes: D\D r liegt links von r ). auchys Theorem = 0 = r f (w) w z dz denn der Integrand ist auf D\D r analytisch... =... r auchysche Integralformel 2-3
5 Beweis: schneide aus dem Gebiet D eine Kreisscheibe D r um z mit Radius r aus Mit r dem entgegen dem Uhrzeigersinn orientierten Rand von D r berandet r das Teilgebiet D\D r (korrekte Orientierung des Randes: D\D r liegt links von r ). auchys Theorem = 0 = r f (w) w z dz denn der Integrand ist auf D\D r analytisch berechne das Integral über r... =... r auchysche Integralformel 2-4
6 Beweis: schneide aus dem Gebiet D eine Kreisscheibe D r um z mit Radius r aus Mit r dem entgegen dem Uhrzeigersinn orientierten Rand von D r berandet r das Teilgebiet D\D r (korrekte Orientierung des Randes: D\D r liegt links von r ). auchys Theorem = 0 = r f (w) w z dz... =... r denn der Integrand ist auf D\D r analytisch berechne das Integral über r Stetigkeit von f = u + iu 2π f (z + re it )... = r 0 re it ire it dt = 2πi ( u(z + re is ) + iv(z + re i s ) ) für s, s [0, 2π] nach dem Mittelwertsatz der Integralrechnung auchysche Integralformel 2-5
7 Beweis: schneide aus dem Gebiet D eine Kreisscheibe D r um z mit Radius r aus Mit r dem entgegen dem Uhrzeigersinn orientierten Rand von D r berandet r das Teilgebiet D\D r (korrekte Orientierung des Randes: D\D r liegt links von r ). auchys Theorem = 0 = r f (w) w z dz... =... r denn der Integrand ist auf D\D r analytisch berechne das Integral über r Stetigkeit von f = u + iu 2π f (z + re it )... = r 0 re it ire it dt = 2πi ( u(z + re is ) + iv(z + re i s ) ) für s, s [0, 2π] nach dem Mittelwertsatz der Integralrechnung r... 2πif (z) für r 0 = behauptete Integralformel auchysche Integralformel 2-6
8 f (z) = e z, : t e it, 0 t 2π auchysche Integralformel 3-1
9 f (z) = e z, : t e it, 0 t 2π auchysche Integralformel für einen Kreis = e z z dz = 2πi e0 = 2πi auchysche Integralformel 3-2
10 f (z) = e z, : t e it, 0 t 2π auchysche Integralformel für einen Kreis = e z z dz = 2πi e0 = 2πi Versuch der direkten Berechnung: auchysche Integralformel 3-3
11 f (z) = e z, : t e it, 0 t 2π auchysche Integralformel für einen Kreis = e z z dz = 2πi e0 = 2πi Versuch der direkten Berechnung: dz = i e it dt 2π 0 e eit e it ieit dt = i 2π 0 e eit dt auchysche Integralformel 3-4
12 f (z) = e z, : t e it, 0 t 2π auchysche Integralformel für einen Kreis = e z z dz = 2πi e0 = 2πi Versuch der direkten Berechnung: dz = i e it dt kein Erfolg! 2π 0 e eit e it ieit dt = i 2π 0 e eit dt auchysche Integralformel 3-5
13 f (w) = a k (w z) k, : t z + re it, 0 t 2π auchysche Integralformel 4-1
14 f (w) = a k (w z) k, Integraldarstellung für Ableitungen = 2πi f (n) (z) f (w) = dw = a n! (w z) n+1 k : t z + re it, 0 t 2π (w z) k n 1 dw auchysche Integralformel 4-2
15 f (w) = a k (w z) k, Integraldarstellung für Ableitungen = 2πi f (n) (z) f (w) = dw = a n! (w z) n+1 k : t z + re it, 0 t 2π (w z) k n 1 dw k n: Stammfunktion für die Monome (w z) k n 1 und... = 0 auchysche Integralformel 4-3
16 f (w) = a k (w z) k, Integraldarstellung für Ableitungen = 2πi f (n) (z) f (w) = dw = a n! (w z) n+1 k : t z + re it, 0 t 2π (w z) k n 1 dw k n: Stammfunktion für die Monome (w z) k n 1 und... = 0 = [ ] = 0 für m < n und für m n gilt dw [ ] = a n w z = a n (2πi) n(, z) = 2πi a }{{} n Umlaufzahl auchysche Integralformel 4-4
17 f (w) = a k (w z) k, Integraldarstellung für Ableitungen = 2πi f (n) (z) f (w) = dw = a n! (w z) n+1 k : t z + re it, 0 t 2π (w z) k n 1 dw k n: Stammfunktion für die Monome (w z) k n 1 und... = 0 = [ ] = 0 für m < n und für m n gilt dw [ ] = a n w z = a n (2πi) n(, z) = 2πi a }{{} n Umlaufzahl konsistent mit der direkten Berechnung der Ableitung auchysche Integralformel 4-5
Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.
Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen
TECHNISCHE UNIVERSITÄT MÜNCHEN
Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204
Cauchys Integralsatz und Cauchys Integralformel
Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine
6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und
Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,
Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt
Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung
6 Komplexe Integration
6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise
Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:
Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte
Lösungen zur Klausur Funktionentheorie I SS 2005
Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z
Musterlösung zu Blatt 11, Aufgabe 1
Musterlösung zu Blatt, Aufgabe Analysis II MIIA SoSe 7 Martin Schottenloher Musterlösung zu Blatt, Aufgabe I Aufgabenstellung Berechnen Sie folgende komplexe Kurvenintegrale vgl. 3.9: a zn dz für n N,
Komplexe Analysis D-ITET. Serie 8
Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...
................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
Kapitel 4. Der globale Cauchysche Integralsatz
Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen
Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6
Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme
Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3
4 Anwendungen des Cauchyschen Integralsatzes
4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
Grundzüge der Vektoranalysis
KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................
Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx
Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =
Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
Einige Standard-Aufgabentypen der Funktionentheorie I
Matthias Stemmler SS 6 [email protected] Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:
Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12
Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar
13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss
Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe
(Cauchysche Integralformel)
H.J. Oberle Komplexe Funktionen SoSe 203 8. Die Cauhyshe Integralformel Satz (8.) (Cauhyshe Integralformel) Ist f : D C holomorph auf einem Gebiet D und ist : [a, b] D \ {z 0 } ein geshlossener, zum Punkt
Harmonische und Holomorphe Funktionen
Harmonische und Holomorphe Funktionen Jonathan Bischoff LMU München illertal am 14.12.2014 Jonathan Bischoff Harmonische und Holomorphe Funktionen 1/14 Definition harmonische Funktion Sei G R 2 ein Gebiet.
2. Klausur zur Funktionentheorie SS 2009
Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel
Lösungen zum 9. Übungsblatt Funktionentheorie I
Universität Karlsruhe SS 25 Mathematisches Institut I Prof Dr M von nteln Dr C Kaiser Lösungen zum 9 Übungsblatt Funktionentheorie I Aufgabe 9 K a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung
Höhere Mathematik Vorlesung 9
Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C
Klausur: Höhere Mathematik IV
Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 [email protected]
Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw.
Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 04 3.06.04 Funktionentheorie Lösungsvorschläge zum 6. Übungsblatt Aufgabe (K) a) Zeigen
Lösungen zum 11. Übungsblatt Funktionentheorie I
Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion
Lösungsvorschlag Klausur MA9802
Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden
Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras
Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst
DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE
DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE Zusammenfassung. Ergänzend zur Übung vom 06.06.203 soll hier die Leibnizregel für die Differentiation parameterabhängiger Integrale formuliert und bewiesen
H.J. Oberle Komplexe Funktionen SoSe Residuensatz
H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe
Examenskurs Analysis Probeklausur I
Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils
Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0
Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil
D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.
Elemente der Funktionentheorie, Probeklausur
Elemente der Funtionentheorie, Probelausur Erlaubte Hilfsmittel: eine (im Anhang befindet sich eine leine Formelsammlung) Es sind 0 Punte erreichbar, jedoch zählen 00 Punte als 00 Prozent. Bitte auf jedem
Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes
Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung
Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1
Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,
Potenzreihenentwicklung im Reellen und Komplexen
Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und
Aufgabenkomplex 3: Integralrechnung, Kurven im Raum
Technische Universität Chemnit. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple : Integralrechnung, Kurven im Raum Letter Abgabetermin: 6. Mai in Übung oder Briefkasten bei Zimmer Rh. Str.
Mathematik für Anwender II
Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren
6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel
6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische
Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,
Funktionentheorie I. M. Griesemer
Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der
Totale Ableitung und Jacobi-Matrix
Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix
6.1 Komplexe Funktionen
118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft
3 Windungszahlen und Cauchysche Integralformeln
3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von
Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31
Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3
Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe
52 Andreas Gathmann. =: f + (z)
52 Andreas Gathmann 9. Laurent-Reihen In den letten beiden Kapiteln haben wir gesehen, dass sich holomorphe Funktionen lokal um jeden Punkt 0 in eine Potenreihe a n( 0 n entwickeln lassen, und daraus viele
Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning
Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon
Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I
Bachelor Informatik Mathematik Plus Titel Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Hochschule Stralsund Fakultät Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Bachelor Informatik
Satz von Gauß. Satz von Gauß 1-1
atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/
Komplexe Funktionen für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,
Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.
Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere
Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination
Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3
Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung
Mathematik II für Inf und WInf
Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell
Mathematik für Anwender I. Beispielklausur 2
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur 2 Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf. Es sind
1 Kurven. Themen: Wege und Kurven. Kurven Kurven im Ê 2 Kurvenlänge. Geometrie der Kurven. Kurvenintegrale. Wegintegrale.
1 Themen: Wege und integrale im Ê 2 länge integrale 1.1 im Ê 2 Wir haben eine anschauliche Vorstellung davon, was eine Kurve im Ê 2 ist, etwa in der Ebene der Graph einer Funktion f : [a, b] Ê. im Ê 2
Lösung zur Klausur zur Analysis II
Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes
Analysis II. Mehrdimensionale Differenzialund Integralrechnung
Übungen zur Vorlesung Analysis II Aufgaben Mehrdimensionale Differenzialund Integralrechnung gelesen von Prof. Dr. Heinrich Freistühler Martin Gubisch Konstanz, Sommersemester 28 Übungsaufgaben. Aufgabe
Höhere Mathematik II für die Fachrichtung Physik
Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe
(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.
Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie
Konvergenzverbesserung und komplexe Integrale
Konvergenzverbesserung und komplee Integrale Konvergenzverbesserung und komplee Integrale von Friedhelm Götze, Jena Vor kurzem erschien ein Artikel über den Residuensatz [] in der, in dem schon einige
AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann
AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der
Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):
C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei
23 Laurentreihen und Residuen
23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.
Analysis I. 6. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.
Integralrechnung. Mathematik-Repetitorium
Integralrechnung 6.1 Geometrische Interpretation 6.2 Grundaufgabe 6.3 Basisintegrale, Regeln 6.4 Produktregel: Partielle Integration 6.5 Quotienten 6.6 Variablensubstitution 6.7 Integration von Potenzreihen
Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen
Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,
April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil
April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten
Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung:
Beispiel 1: Wegverformung Berechne: Lösung: [Man sagt: Folglich ist, mit existiert für alle hat eine "Singularität" oder "Pol".] analytisch auf Deswegen kann Wegunabhängigkeit (i.2) genutzt werden, um
Verallgemeinerte Funktionen
Verallgemeinerte Funktionen. Der Raum der Grundfunktionen Für den Vektorraum R n, n N, über R betrachten wir die Euklidische Norm kk W R n! R; v x 7! p ux x > x WD t n und bezeichnen eine Menge A R n als
Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1
Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares
Freie Universität Berlin. FB Mathematik und Informatik. Funktionentheorie. Prof. Dr. Oliver Sander Sommersemester 2011
Freie Universität Berlin FB Mathematik und Informatik Funktionentheorie Prof. Dr. Oliver Sander Sommersemester 20 Typeset und Layout: Sylvia Rockel Inhaltsverzeichnis Komplexe Zahlen. Einleitung.............................................2
TU Dortmund. Residuensatz und Anwendungen
TU Dortmund Fakultät für Mathematik Residuensatz und Anwendungen Timo Putz Matrikelnummer: 127042 Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition der Laurent-Reihe.......................... 1
5 Der Gaußsche und Stokes sche Integralsatz
HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche
MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis
i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen
SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.
SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden
Repetitorium Analysis II für Physiker
Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen
Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =
Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i
10 Logarithmus- und Potenzfunktion
4 Logarithmus- und Potenzfunktion. Satz: Sei G einfach zusammenhängend, f H(G) und z G. Dann existiert genau eine Stammfunktion F von f mit F(z ) =. Für z G sei γ z ein beliebiger Integrationsweg in G,
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
8. Die Nullstellen der Zeta-Funktion
8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8
