Lösungen zum 11. Übungsblatt Funktionentheorie I

Größe: px
Ab Seite anzeigen:

Download "Lösungen zum 11. Übungsblatt Funktionentheorie I"

Transkript

1 Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion f ihr Maximum in einem Randpunkt an, man hat also f(z) c für alle z G. Das Minimumprinzip liefert analog f(z) c für alle z G. Somit ist f in ganz G konstant, d. h. in jedem Punkt z 0 G hat f ein lokales Maximum. Wäre f nicht konstant, so hätten wir einen Widerspruch zum Maximumprinzip. Auf die Nullstellenfreiheit kann man dabei nicht verzichten: Beispielsweise ist f(z) := z auf dem beschränkten Gebiet G := D holomorph und auf dessen Abschluss stetig, für alle z G gilt f(z) = z = 1, die Funktion f ist aber offenbar nicht konstant. b) Wir führen die folgenden Schreibweisen ein: M(c) := { z C : f(z) < c }, M[c] := { z C : f(z) c }. Offensichtlich gilt M(c) M[c]. Wegen der Stetigkeit von f ist die Menge M[c] abgeschlossen, also erhalten wir die Inklusion M(c) M[c] = M[c]. Nun sei umgekehrt z 0 M[c]. Wäre z 0 / M(c), so hieße dies: Es gibt keine Folge (z n ) in C mit f(z n ) < c und z n z 0. Das bedeutet, dass in einer kleinen Kreisscheibe U um z 0 die Abschätzung f(z) c besteht. In z 0 hat f somit ein lokales Minimum und wegen c > 0 ist f in U nullstellenfrei. Da f in U nicht konstant ist (wegen des Identitätssatzes wäre sonst f in ganz G konstant), ist dies ein Widerspruch zu a). Stetigkeit reicht nicht aus: Setzt man f(z) := z für z < 1 und f(z) := 1 für z 1, so ist f stetig und nicht konstant, aber für c = 1 ist die Mengengleichheit nicht erfüllt. c) Ist g(z) = 0 für alle z C, so ist die Behauptung trivial. Sonst betrachten wir h := f/g. Diese Funktion ist nur in den Nullstellen von g nicht definiert, in ihrem ganzen Definitionsbereich ist sie holomorph und erfüllt dort nach Voraussetzung die Abschätzung h(z) 1. Nach dem Identitätssatz ist die Nullstellenmenge von g diskret; zu jeder Nullstelle z 0 von g findet man also eine Kreisumgebung K von z 0, so dass g(z) 0 für z K \ {z 0 } gilt. Als in K \ {z 0 } beschränkte und holomorphe Funktion kann h dann gemäß Riemannschem Hebbarkeitssatz in z 0 holomorph fortgesetzt werden. Somit wird h zu einer beschränkten ganzen Funktion, und diese muss nach dem Satz von Liouville konstant sein. Es gibt also ein c C mit f(z) = c g(z) für alle z mit g(z) 0. Nach Voraussetzung gilt dies auch im Falle g(z) = 0, d. h. es ist f = c g.

2 Aufgabe 11.2 Hat f die angegebene Gestalt, so ist f holomorph in D und stetig auf D, denn wegen a k < 1 gilt 1 a k z 1 a k z = 1 a k z > 0 für alle z D, d. h. keine Nennernullstelle liegt in D. Für z D gilt f(z) = 1, denn e it = 1 und z a k 1 a k z = z a k zz a k z = z a k (z a k )z = 1 = 1 für z = 1 ( ) z (vgl. auch Aufgabe 2.2b). Nun zur Umkehrung: Für eine auf D stetige und in D holomorphe Funktion f gelte f(z) = 1 für z D. Zu zeigen ist, dass f eine Darstellung der gegebenen Form hat. Wir nehmen zunächst an, dass f in D nullstellenfrei ist. Nach Aufgabe 11.1 a) ist f auf D konstant und (wegen der Stetigkeit) auch auf D. Es ist also f(z) = e it mit t R, und dies ist eine Darstellung der behaupteten Form. Jetzt sei f nicht länger als nullstellenfrei vorausgesetzt. Wegen f(z) = 1 auf D kann f nicht konstant 0 sein, und nach dem Identitätssatz besitzen die Nullstellen von f keinen Häufungspunkt in D. Auch am Rand von D können sich die Nullstellen nicht häufen, denn f ist stetig, und es gilt f(z) = 1 auf D. Folglich besitzt f in D nur endlich viele Nullstellen a 1,...,a n. (Nullstellen höherer Ordnung sollen dabei so oft aufgezählt sein, wie es ihrer Ordnung entspricht.) Wir betrachten nun / n z a k g(z) := f(z) 1 a k z. Die Funktion g ist in D \ {a 1,...,a n } holomorph, und in den Punkten a k hat g hebbare Singularitäten. (Man beachte: Hat f in a k eine Nullstelle der Ordnung m, so besteht in einer Umgebung von a k die Darstellung f(z) = (z a k ) m f 1 (z), wobei f 1 eine holomorphe Funktion mit f 1 (a k ) 0 ist. Bei g(z) kann man dann also den Faktor (z a k ) m kürzen.) Somit ist g in ganz D holomorph (fortsetzbar) und nullstellenfrei. Da g zudem auf D stetig ist und gemäß ( ) auch g(z) = 1 auf D erfüllt, folgt aus dem oben Bewiesenen, dass g(z) = e it mit einem t R gilt, und dies liefert dann die behauptete Darstellung für f. (Zunächst ergibt sie sich nur für z D \ {a 1,...,a n }, aber in den Nullstellen von f gilt sie natürlich ebenfalls.) k=1 Aufgabe 11.3 a) Wir führen einen Widerspruchsbeweis und nehmen dazu an, zu einem gewissen a C gebe es keine derartige Folge. Dann existiert ein ǫ > 0 mit f(z) a ǫ für alle z C. Also ist h := (f a) 1 eine ganze Funktion, die durch ǫ 1 beschränkt ist. Nach dem Satz von Liouville ist h konstant, also auch f. Dies ist ein Widerspruch zur Voraussetzung. b) Bemerkung: Genau dann existiert eine Folge (z n ) mit z n und f(z n ) a, wenn zu jedem R > 0 eine Folge (z n ) mit z n R für alle n N und f(z n ) a existiert.

3 Wir nehmen nun an, die Aussage sei falsch. Dann gibt es a C, ǫ > 0 und R > 0 mit f(z) a ǫ für alle z C mit z R. Somit hat die ganze Funktion g := f a im Äußeren der Kreisscheibe z < R keine Nullstellen. Da nach dem Identitätssatz die Nullstellenmenge von g diskret ist, kann g also nur endlich viele Nullstellen a 1,...,a k besitzen. (Diese seien entsprechend ihrer Ordnung mehrfach aufgezählt; auch k = 0 ist möglich.) Wir setzen nun h(z) := P(z) g(z), wobei P(z) := (z a 1) (z a k ). Die Funktion h hat in den Punkten a 1,...,a k hebbare Singularitäten und ist sonst holomorph; sie kann also als eine in ganz C holomorphe Funktion aufgefasst werden. Für das Polynom P gilt wegen a j R P(z) = z a 1 z a k ( z + R) k 2 k z k für z R. Für die Funktion h folgt die Abschätzung h(z) = P(z) f(z) a 2k z k ǫ für z R. Aufgabe 11.4 liefert nun, dass h ein Polynom ist. Da h zudem nullstellenfrei ist (in den hebbaren Singularitäten wird h ja mit Werten 0 fortgesetzt), folgt aus dem Fundamentalsatz der Algebra, dass h(z) = c 0 für alle z C gilt. Somit ist g = P/c ein Polynom und damit auch f. c) Wenn wir annehmen, dass f nicht konstant ist, dann muss f(c) wegen a) sowohl Punkte der oberen als auch der unteren Halbebene enthalten. Nach dem Satz von der Gebietstreue ist f(c) ein Gebiet, also zusammenhängend. Dies kann nur gelten, wenn es in f(c) auch Punkte aus R gibt, im Widerspruch zur Voraussetzung. Aufgabe 11.4 Ist die Funktion f ein Polynom mit Grad n, gilt also f(z) = a 0 + a 1 z + + a n z n, und setzt man b := a 0 + a a n, so folgt für z 1 die Abschätzung f(z) a 0 + a 1 z + + a n z n a 0 z n + + a n z n = b z n. Wegen der Stetigkeit von f ist zudem a := max z 1 f(z) <. Wir haben damit f(z) a für z 1 und f(z) b z n für z 1. Insbesondere folgt dann f(z) a + b z n für alle z C. Nun nehmen wir umgekehrt an, dass eine derartige Abschätzung gilt. Die Cauchysche Integralformel für Ableitungen liefert für alle m N 0 und r > 0 f (m) (0) = m! f(z) dz. 2πi z =r (z 0) m+1

4 Für z = r gilt die Abschätzung f(z) (z 0) m+1 a + b z n z m+1 = a + brn r m+1. Da die Kreislinie z = r die Länge 2πr hat, ergibt sich f (m) (0) m! a + brn 2πr 2π r m+1 = ar + brn+1 r m+1 /m! r 0 für m > n. Das bedeutet, dass f (m) (0) = 0 für m > n gilt; die Potenzreihenentwicklung von f um den Punkt 0 enthält also nur Potenzen n, d. h. f ist ein Polynom mit Grad n. Aufgabe 11.5 a) Wir verwenden die aus der Vorlesung bekannte Darstellung cos z = eiz + e iz 2 der Kosinus-Funktion: Die Gleichung cos z = 1 2 ist gleichbedeutend mit eiz + e iz = 1. Substituieren wir w = e iz, so ergibt sich w + 1 w = 1, also w2 + 1 = w. Wegen w 2 w + 1 = (w 1 2 ) besitzt diese Gleichung die zwei Lösungen w 1,2 = 1 2 ± i = e ±iπ/3. Die Gleichung für z ist somit genau dann erfüllt, wenn e iz = e ±iπ/3 gilt, wenn also iz = ±iπ/3 + 2kπi mit einem gewissen k Z. Wir haben damit die Lösungen z = ( k)π oder z = ( k)π mit einem k Z. b) Wir wählen ρ > 0 und φ ( π, π] mit w = ρe iφ. Es gilt also w = e ln ρ e iφ = e ln(ρ)+iφ, und die Gleichung e 1/z = w = e ln(ρ)+iφ ist genau dann erfüllt, wenn 1/z = ln(ρ) + iφ + 2kπi mit einem gewissen k Z gilt. Die Gleichung hat damit die Lösungen z k = 1 ln(ρ) + i(φ + 2kπ) (k Z). Offenbar sind die z k paarweise verschieden und es gilt z k 0 für k. Also existieren zu jedem r > 0 unendlich viele z k mit z k r. c) Zunächst zeigen wir die Mengengleichheit log(z 1 z 2 ) = log(z 1 ) + log(z 2 ). Sei w log(z 1 z 2 ), d. h. es gelte e w = z 1 z 2. Wählen wir ein w 1 log(z 1 ), etwa w 1 := Log z 1, und setzen w 2 := w w 1, so ist e w 2 = e w w 1 = e w /e w 1 = z 1 z 2 /z 1 = z 2. Also ist w 2 log(z 2 ) und damit w = w 1 + w 2 log(z 1 ) + log(z 2 ).

5 Gilt w k log(z k ), so ist e w 1+w 2 = e w 1 e w 2 = z 1 z 2, d. h. w 1 + w 2 log(z 1 z 2 ). Insbesondere haben wir also log(z 1 /z 2 ) = log(z 1 ) + log(1/z 2 ), und müssen nur noch log(1/z 2 ) = log(z 2 ) beweisen. Dies sieht man folgendermaßen ein: w log(z 1 2 ) ew = z 1 2 e w = z 2 w log(z 2 ) w log(z 2 ). Aufgabe 11.6 a) Definitionsgemäß gilt für die Hauptzweige von Potenzfunktion und Logarithmus z c = e c Log z, Log z = ln z + iarg z, wobei arg z ( π, π]. Wegen Log(1 + i) = ln 1 + i + iarg(1 + i) = ln 2 + iπ/4 ergibt sich (1 + i) i = e ilog(1+i) = e i(ln 2+iπ/4) = e iln 2 π/4 = e π/4( cos(ln 2 ) + isin(ln 2 ) ). Man liest ab: Re((1 + i) i ) = e π/4 cos( 1 2 ln2) und Im((1 + i)i ) = e π/4 sin( 1 2 ln 2). Es gilt 1/i = i und Log i = ln i + iarg i = iπ/2, also i 1/i = e (1/i) Log i = e i(iπ/2) = e π/2. Somit ist Re(i 1/i ) = e π/2 und Im(i 1/i ) = 0. Wegen Log i = iπ/2 ergibt sich Log(Log i) = Log(iπ/2) = ln iπ/2 + iarg(iπ/2) = ln(π/2) + iπ/2. Damit erhalten wir (Log i) i = e ilog(log i) = e iln(π/2) π/2 = e π/2 cos ( ln(π/2) ) + ie π/2 sin ( ln(π/2) ), und Real- und Imaginärteil können unmittelbar abgelesen werden. Wegen Log i = iπ/2 gilt i i = e i(iπ/2) = e π/2, also i (ii) = i (e π/2) = exp(e π/2 Log i) = exp( 1 2 πe π/2 i) = cos( 1 2 πe π/2 ) + isin( 1 2 πe π/2 ). b) Setzen wir w := e α Log z, so ergibt sich nach Definition von z α z α = e α log z = exp [ α(log z + 2kπi) ] = w exp[2αkπi] (k Z). Das Quadrieren bringt keine zusätzliche Mehrdeutigkeit für den Ausdruck; man erhält (z α ) 2 = w 2 exp[4αkπi] (k Z). Da 2 Log z ein Logarithmus von z 2 ist (denn e 2Log z = (e Log z ) 2 = z 2 ), folgt (z 2 ) α = e α log z2 = exp [ α(2 Log z + 2kπi) ] = w 2 exp[2αkπi] (k Z). Die beiden Punktmengen stimmen somit genau dann überein, wenn exp[2αkπi] und exp[4αkπi], mit k Z, die gleiche Punktmenge beschreiben, wenn also exp[2απi] = exp[4αk 0 πi]

6 für ein gewisses k 0 Z gilt. (Im Falle der Gleichheit muss offensichtlich ein solches k 0 existieren; umgekehrt folgt aus der Existenz von k 0 wegen exp[2αkπi] = exp[4αkk 0 πi] die Gleichheit der Mengen.) Dies bedeutet, dass k 0, m Z existieren mit 2απ + 2mπ = 4αk 0 π, also α + m = 2αk 0, d. h. α = m 2k 0 1. Fazit: Die beiden Mengen stimmen genau dann überein, wenn α eine rationale Zahl ist, die sich als Bruch mit ungeradem Nenner darstellen lässt. c) Nach Definition der allgemeinen Exponentialfunktion ist a z = e z Log a. Die Kettenregel liefert dann die komplexe Differenzierbarkeit und (a z ) = e z Log a Log a = a z Log a.

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis Wachstumsverhalten ganzer Funktionen Vortrag zum Seminar zur Funktionentheorie, 11.6.212 Simon Langer Inhaltsverzeichnis 1 Einleitung 2 2 Wachstumsverhalten ganzer Funktionen 3 3 Ganze Funktionen endlicher

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

sin(e z +z 2 ). tan der

sin(e z +z 2 ). tan der Das Testat besteht aus einer festgesetzten Zahl von Entscheidungsfragen des folgenden Typs: Zu finden ist die schärfste der folgenden drei Holomorphieeigenschaften, die eine Funktion haben kann: Holomorphie

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

4 Die Hauptsätze über holomorphe Funktionen

4 Die Hauptsätze über holomorphe Funktionen $Id: holo.tex,v 1.7 2012/06/08 07:55:28 hk Exp hk $ 4 Die Hauptsätze über holomorphe Funktionen 4.2 Identitätssatz und erste Folgerungen Am Ende der letzten Sitzung hatten wir eine der wichtigsten Eigenschaften

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0 UNIVESITÄT KALSUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Kapitel 7 STETIGKEIT

Kapitel 7 STETIGKEIT Kapitel 7 STETIGKEIT Fassung vom 8. Juni 2002 Claude Portenier ANALYSIS 29 7. Der Begri Stetigkeit 7. Der Begri Stetigkeit DEFINITION I.a. sagt man, daßeine Abbildung von einer Menge X in K n, wobei K

Mehr

Prüfungsprotokoll. Prüfer: Dr. Rosen Kurs: Funktionentheorie I Datum:

Prüfungsprotokoll. Prüfer: Dr. Rosen Kurs: Funktionentheorie I Datum: Prüfungsprotokoll Prüfer: Dr. Rosen Kurs: Funktionentheorie I Datum: 14.12.2015 Wie ist komplexe Differenzierbarkeit definiert? Gibt es äquivalente Kriterien? (Cauchy-Riemannsche Dgl) Wie kommt man auf

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012 Zahlentheorie = Algebra + Geometrie + Analysis 19. Januar 2012 Inhalt 1 Dreieckszahlen 2 3 4 Dreieckszahlen Eine rationale Zahl D > 0 heißt Dreieckszahl (oder Kongruenzzahl), falls D die Fläche eines rechtwinkligen

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Einführung in die Funktionentheorie 1

Einführung in die Funktionentheorie 1 Einführung in die Funktionentheorie Martin Ziegler Freiburg, WS 994/95, WS 2000/0, SS 2006 Literatur [] Klaus Jänich. Funktionentheorie. Springer Verlag, 993. [2] H.Behnke und F.Sommer. Theorie der analytischen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Laurent-Reihen und isolierte Singularitäten

Laurent-Reihen und isolierte Singularitäten Laurent-Reihen und isolierte Singularitäten Seminar Analysis III (SoSe 203) Pascal Niehus - Vortrag vom 27.05.203 - Kontaktdaten: Name: Studiengang: Fächer: E-Mail: Pascal Niehus BfP Mathematik, Physik

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Zur Ästhetik mathematischer Beweisführung

Zur Ästhetik mathematischer Beweisführung Zur Ästhetik mathematischer Beweisführung Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 23.10.2006 TUHH Jens-Peter M. Zemke Zur Ästhetik

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Konvergenz interpolierender Polynome

Konvergenz interpolierender Polynome Technische Universität Berlin Institut für Mathematik Konvergenz interpolierender Polynome Seminar Differentialgleichungen im Sommersemester 2012 bei Prof. Dr. Etienne Emmrich vorgelegt von David Breiter

Mehr

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen Doppel-periodische Funktionen und die Weierstraßsche -Funktion Vortrag zum Seminar zur Funktionentheorie, 30.03.2009 Stefanie Kessler Die komplexen Zahlen als Erweiterung der reellen Zahlen ermöglichen

Mehr

Bernd Dreseler. Funktionentheorie I. Sommersemester Vorlesungsmitschrift von J.Breitenbach. Siegen 2002

Bernd Dreseler. Funktionentheorie I. Sommersemester Vorlesungsmitschrift von J.Breitenbach. Siegen 2002 Bernd Dreseler Funktionentheorie I Sommersemester 1991 Vorlesungsmitschrift von J.Breitenbach Siegen 2002 Inhaltsverzeichnis Vorbemerkung ii 0 Abbildungen f : U lc lc, (x, y) f(x, y) 2 1 Holomorphe Funktionen

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Mitschrift der Vorlesung. Funktionentheorie I. von Prof. G. Wiese im SS 11 an der Universität Duisburg-Essen

Mitschrift der Vorlesung. Funktionentheorie I. von Prof. G. Wiese im SS 11 an der Universität Duisburg-Essen Mitschrift der Vorlesung Funktionentheorie I von Prof. G. Wiese im SS an der Universität Duisburg-Essen Klausur Samstag 6.07.20 Zeit: 9 00 2 00 Uhr Ort: T03 R02 D39 Nachklausur Mittwoch 24.08.20 Zeit:

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Aufgaben zu Kapitel 7

Aufgaben zu Kapitel 7 Aufgaben zu Kapitel 7 1 Aufgaben zu Kapitel 7 Verständnisfragen Aufgabe 7.1 Bestimmen Sie jeweils den größtmöglichen Definitionsbereich D R und das zugehörige Bild der Funktionen f : D R mit den folgenden

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Die Exponentialfunktion. exp(x)

Die Exponentialfunktion. exp(x) Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Diplom-Prüfung Physik Nebenfach Mathematik. Funktionentheorie Gewöhnliche DGL s und dynamische Systeme

Diplom-Prüfung Physik Nebenfach Mathematik. Funktionentheorie Gewöhnliche DGL s und dynamische Systeme Diplom-Prüfung Physik Nebenfach Mathematik Funktionentheorie Gewöhnliche DGL s und dynamische Systeme Martin-I. Trappe (Dated: 30. September 2005) Quellen: E. Freitag, R. Busam, Funktionentheorie, Springer

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr