Komplexe Analysis D-ITET. Serie 3
|
|
|
- Bettina Frank
- vor 8 Jahren
- Abrufe
Transkript
1 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Die reellen Cauchy-Riemann Gleichungen Die Cauchy-Riemann Gleichung i f(x + iy = f(x + iy wird häufig in folgender reeller x y Form hingeschrieben: Man spaltet f(x + iy = u(x + iy + iv(x + iy in Real- und Imaginärteil auf und schreibt x u = y v, y u = x v. Welche der folgenden Funktionen erfüllen die reellen Cauchy-Riemann Gleichungen? (3.a f(x + iy := x 2 y 2 + 2ixy. Lösung: Zuerst schreiben wir Real- und Imaginärteil der Funktion f hin. Diese sind gegeben durch u(x + iy = x 2 y 2, v(x + iy = 2xy, mit der üblichen Notation f = u + iv. Die partiellen Ableitungen dieser Ausdrücke sind u(x + iy = 2x, x u(x + iy = 2y, y v(x + iy = 2y, x v(x + iy = 2x. y Somit sehen wir, dass die Cauchy-Riemannschen Gleichungen u = x erfüllt sind. Es sei hier noch angemerkt, dass mit z = x + iy v und u = v y y x f(z = z 2 gilt und dass somit a-priori klar ist, dass f die Cauchy-Riemann Gleichungen erfüllen muss. (3.b g(x + iy := x 2 + y 2 + 2ixy. Lösung: Real- und Imaginärteil von g sind gegeben durch u(x + iy = x 2 + y 2, v(x + iy = 2xy. Damit berechnen sich die Ableitungen zu u(x + iy = 2x, x u(x + iy = 2y, y v(x + iy = 2y, x v(x + iy = 2x y und man sieht, dass g die Cauchy-Riemann Gleichungen nicht erfüllt. Wir bemerken auch hier, dass g(z = z 2 gilt und dass somit von vorne herein klar ist, dass g die Cauchy-Riemannschen Gleichungen nicht erfüllen kann. Problem Sheet 3 Page Problem 3.
2 (3.c h(x + iy := x2 +y 2 x iy. Lösung: Wir berechnen h(x + iy := x2 + y 2 x iy = (x2 + y 2 (x + iy (x iy(x + iy = x + iy. Somit sind Real- und Imaginärteil von h gegeben durch u(x + iy = x und v(x + iy = y. Also sind die partiellen Ableitungen u(x + iy =, u(x + iy = 0, v(x + iy = 0 und x y x v(x + iy =. Wir sehen leicht, dass damit die Cauchy-Riemann Gleichungen erfüllt sind. y Bemerke, dass h(z = z und dass somit die Cauchy-Riemannschen Gleichungen gelten müssen. Aufgabe 3.2 Die Komplexen Zahlen als Matrizen Identifiziere z = a + ib C mit der Matrix ( a b M z := R 2 2. b a Seien nun z, w C. Rechne nach: (3.2a M z + M w z+w. Lösung: Wir betrachten z = a + ib und w = c + id. Damit haben wir ( a + c b d M z + M w = b + d a + c z+w. (3.2b M z M w z w. Lösung: Seien z = a + ib und w = c + id. Somit gilt z w = (ac bd + i(ad + bc. Also ( ac bd ad bc M z M w = ad + bc ac bd z w. (3.2c M z z. Lösung: Sei z = a + ib. Damit gilt ( ( a b a ( b Mz = = b a ( b a z. (3.2d Interpretiere die Spur und die Determinante von M z. Lösung: Zuerst betrachten wir die Spur der Matrix M z, wobei z = a + ib. Es gilt Nun berechnen wir die Determinante tr M z = 2a = 2 Re z. det M z = a 2 + b 2 = z 2. Problem Sheet 3 Page 2 Problem 3.2
3 (3.2e Rechne nach, dass die Matrix M z für z = r e iϕ einer Drehstreckung entspricht. Lösung: Wir haben z = r e iϕ = r cos ϕ + ir sin ϕ. Somit gilt ( cos ϕ sin ϕ M z = r. sin ϕ cos ϕ Diese Matrix entspricht einer Drehstreckung des R 2. Um genau zu sein dreht die Matrix die Ebene im Gegenuhrzeigersinn um den Winkel ϕ und Multiplikation mit r streckt die Ebene um einen Faktor r. Aufgabe 3.3 Potenzreihen Stelle die folgenden Funktionen als Potenzreihen dar und bestimme ihren Konvergenzradius. (3.3a f(z := ( z 2. Lösung: Wir bemerken, dass f die Ableitung der Funktion F (z = z ist. In der Vorlesung hatten wir gesehen, dass innerhalb des Konvergenzradius F (z = gilt. Insbesondere lässt sich F formal ableiten zu z n (3.3. d dz F (z = nz n. Diese formale Ableitung entspricht der echten Ableitung von F auf dem Konvergenzradius der Potenzreihe (3.3.. Dieser ist ρ(f =, wie man einfach nachprüft. Damit gilt f(z = nz n für z <. Da desweiteren der Konvergenzradius einer Potenzreihe mit dem Konvergenzradius ihrer Ableitung übereinstimmt, gilt ρ(f =. (3.3b g(z := 2z (+z 2 2. Lösung: Bemerke, dass g Ableitung der Funktion ist. Die Potenzreihe dieser Funktion ist: G(z = G(z = + z 2 ( z 2 = ( z 2 n = ( n z 2n Problem Sheet 3 Page 3 Problem 3.3
4 Der Konvergenzradius dieser Potenzreihe ist ρ(g =. Nun berechnen wir die Ableitung g(z = d dz ( n z 2n = ( n 2nz 2n und haben ρ(g =. HINWEIS: Die Funktionen sind Ableitungen von Funktionen, deren Potenzreihen einfach ju bestimmen sind. Aufgabe 3.4 Das Wirtinger Kalkül Die Wirtinger-Ableitung = z 2 als zusammenzufassen. ( + i x y erlaubt es uns, die Cauchy-Riemann Gleichungen z f(z = 0 Berechne die Wirtinger-Ableitung der folgenden Funktionen einerseits durch direktes Ableiten nach der Variable z und andererseits durch Einsetzen in die Definition der Wirtinger-Ableitung. (3.4a f(z := z, Lösung: Wenn wir direkt nach der Variable z ableiten so erhalten wir f(z = 0, da f nicht z von z abhängt. Setzen wir in die Definition der Wirtinger-Ableitung ein so gilt 2 ( x + i y f(z = 2 (3.4b g(z := z, Lösung: Ableitung ( x + i y (x + iy = 2 ( x x y y = 0 Direkt nach z abgeleitet ergibt sich g(z =. Mit der Definition der Wirtinger- z ( 2 x + i g(z = ( y 2 x + i (x iy = ( y 2 x x + y y = (3.4c h(z = z 2 = zz, Lösung: Direkt nach z abgeleitet ergibt sich h(z = z. Mit der Definition der Wirtinger- z Ableitung 2 ( x + i y h(z = ( 2 x + i (x 2 + y 2 = ( y 2 x x2 + i y y2 = x + iy = z Bemerkung: Formal gilt, dass eine Funktion f komplex differenzierbar ist, wenn f nicht von der komplex konjugierten ihres Arguments z abhängig ist. Die Wirtinger-Ableitung überprüft genau dies. Problem Sheet 3 Page 4 Problem 3.4
5 Publiziert am 4. März. Einzureichen am 23./24. März. Letzte Modifikation:. April 206 Problem Sheet 3 Page 5 Problem 3.4
Komplexe Analysis D-ITET. Serie 4
Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie 4 ETH Zürich D-MATH Aufgabe 4. Benutzen Sie Ihre Lieblingsprogrammiersprache, um die folgenden Vektorfelder zu
Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt
Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung
Komplexe Zahlen und konforme Abbildungen
Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy
Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen
Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,
Komplexe Analysis D-ITET. Serie 8
Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen
Kapitel 1. Holomorphe Funktionen
Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.
13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss
Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe
2D-Visualisierung komplexer Funktionen
2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare
4.4 Die Potentialgleichung
Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche
Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi
Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge
ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)
ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition
Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning
Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon
Komplexe Analysis D-ITET. Serie 1
Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Aufgabe. echnen mit komplexen Zahlen (.a) Berechnen Sie die folgenden Terme: i) ( 4 + 7i) + (8
Lösungsvorschlag zu den Hausaufgaben der 3. Übung
Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen
Kapitel 22. Einführung in die Funktionentheorie
Kapitel 22 Einführung in die Funktionentheorie In Kapitel 17 wurde die Differentialrechnung von Funktionen f: R m R n mehrerer Veränderlicher besprochen. Der Ableitungsbegriff war dabei nicht als Verallgemeinerung
Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)
Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden
Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg
Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel
Brückenkurs Mathematik. Freitag Freitag
Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10
Vorlesung. Komplexe Zahlen
Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind
D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8
D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines
Serie 3 - Komplexe Zahlen II
Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe
Komplexe Zahlen. Darstellung
Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst
KOMPLEXE ZAHLEN UND FUNKTIONEN
Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition
Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen
A Komplexe Zahlen A.1 Definition Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 +z 2 (x 1,y 1 )+(x 2,y 2 ) := (x
2.9 Die komplexen Zahlen
LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in
ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS
ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Beweisen Sie aus den Axiomen für komplexe Zahlen, dass für alle z, w C gilt: zw = z w; b) Schreiben
2. Stetigkeit und Differenzierbarkeit
2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,
Stefan Ruzika. 24. April 2016
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers
Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung
Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation
Körper der komplexen Zahlen (1)
Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen
Prüfung zur Vorlesung Mathematik I/II
Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte
Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres
Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,
Komplexe Zahlen und Allgemeines zu Gruppen
Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von
Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom
Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben
6.1 Komplexe Funktionen
118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft
6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und
Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,
Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 11.10.18 Übung 4 (für Pharma/Geo/Bio Uni Basel Besprechung der Lösungen: 15. Oktober 018 in den Übungsstunden Aufgabe 1 (a Sei f(x = cosx. Der Graph
1 Differentiation im Komplexen
1 Differentiation im Komplexen 1.1 Definition und einface Eigenscaften Die folgende Definition der komplexen Differenzierbarkeit mittels der komplexen Division ist eine folgenreice Verscärfung der Differentiation
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe
Prüfung zur Vorlesung Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe
LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN
Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare
Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010
Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-
konvergent falls eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der darstellen mittels einer Potenzreihe in
C5 Funktionen: Taylorreihen & Fourieranalysis C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen
ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang
ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der
A Die Menge C der komplexen Zahlen
A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl
Ferienkurs Analysis 3 - Funktionentheorie
Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius 12.08.2009 1 Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch
Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl
Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan Prof. Dr. Johann Hartl Kapitel 1 Komplexe Zahlen Wozu brauchen wir komplexe Zahlen? 1 Für das Rechnen in
SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.
SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden
konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in
C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich
(a) Motivation zur Definition komplexer Zahlen
1 Anhang B (a) Motivation zur Definition komplexer Zahlen Neue Zahlen wurden stets dann definiert, wenn die Anwendung von Rechenoperationen auf bekannte Zahlen innerhalb der Menge letzterer keine Lösung
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg
Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen
Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog
Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung
Musterlösung zu Blatt 1
Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z
C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =
1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition
Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17
1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website
TECHNISCHE UNIVERSITÄT MÜNCHEN
Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204
(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z
Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =
Lösung: Serie 2 - Komplexe Zahlen I
Dr. Meike Akveld HS 05. (Induktion) : Serie - Komplexe Zahlen I a) Zeigen Sie die Ungleichung von Bernoulli: Für alle x > und n N gilt: b) Zeigen Sie für alle n N: ( + x) n + nx. n n, wobei a b bedeutet,
Kapitel 10 Komplexe Zahlen
Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)
Prüfung zur Vorlesung Mathematik I/II
Prof. W. Farkas ETH Zürich, Februar 2018 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total
C. Eicher Analysis Study Center ETH Zürich HS Extremwerte
C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der
Mathematischer Vorkurs NAT-ING1
Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs
(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil
14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit
02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.
0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...
................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential
Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und tromfunktion kann man ein komplexes Potential definieren, wobei φ ( ) ( ) i ( ) F z =φ x,y +ψ x,y (2.8) z = x+
Mathematischer Vorkurs NAT-ING II
Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite
Komplexe Zahlen. z = a + i b
Komplexe Zahlen Definition 7. Da keine reelle Zahl existiert, deren Quadrat -1 ist, definieren wir die imaginäre Einheit i durch die Gleichung i 2 = 1. Als die Menge aller komplexen Zahlen C definieren
Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen
Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.
Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2
Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen
2 Algebraische Grundstrukturen
30 2 Algebraische Grundstrukturen Definition. Eine Verknüpfung auf einer Menge G ist eine Abbildung : G G G (a, b) a b. Schreibweise. a b, a b, ab, a + b. Beispiele. (i) G = N : N N N (a, b) a + b. G =
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Einige Standard-Aufgabentypen der Funktionentheorie I
Matthias Stemmler SS 6 [email protected] Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:
Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte
