Übungen zur Modernen Theoretischen Physik I SS 15

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Modernen Theoretischen Physik I SS 15"

Transkript

1 Karlsruhr Institut für Tchnologi Institut für Thori dr Kondnsirtn Matri Übungn zur Modrnn Thortischn Physik I SS 5 Prof. Dr. Jörg Schalian Blatt 3 Lösungn Dr. Andras Ponick, Patrik Hlobil Abgab: , Bsprchung: Rchnn it Opratorn II 0 Punkt, schriftlich a Punkt Translation Zign Si, dass dr Zustand φx iˆpa/ ψx d u di Distanz a vrschobnn Zustand ψx ntspricht, d.h. φx ψx + a, wobi ˆp dr Ipulsoprator ist. Wir nutzn di Rihndarstllung dr Exponntialfunktion und wndn si auf di Wllnfunktion ψx an: b ˆp {}}{ φx iˆpa/ i ψx a i x n ψx n x ψxa n Dr ltzt Ausdruck ist allrdings grad di Taylorntwicklung ψx+a n x ψxa n. Es gilt also φx ψx + a.  und ˆB sin Hrit sch Opratorn. i Punkt U zu zign, dass dr Erwartungswrt [Â, ˆB] rin iaginär ist, btrachtn wir zunächst [Â, ˆB]  ˆB ˆB ˆB   ˆB ˆB  ˆB [Â, ˆB] Dait gilt für inn blibign Zustand ψ ψ [Â, ˆB] ψ ψ [ Â, ˆB] ψ ψ [Â, ˆB] ψ. Dr Erwartungswrt [Â, ˆB] ist dait rin iaginär. ii Punkt Das dr Erwartungswrt {Â, ˆB} ds Antikoutators rin rl ist läßt sich analog zign: {Â, ˆB}  ˆB + ˆB ˆB  +  ˆB ˆB +  ˆB {Â, ˆB} 3 Dait gilt für inn blibign Zustand ψ ψ {Â, ˆB} ψ ψ { Â, ˆB} ψ ψ {Â, ˆB} ψ. 4 Dr Erwartungswrt {Â, ˆB} ist dait rin rl. iii Punkt  ˆB  ˆB   ˆB Hrit sch i  i  i  nicht Hrit sch i [Â, ˆB] i [Â, ˆB] i [Â, ˆB] Hrit sch Gl.

2 iv Punkt d Es soll Ât ˆBt brchnt wrdn: dt d Ât ˆBt d dt dt Ât ˆBt + Ât d dt ˆBt ÂÂt ˆBt + Ât ˆBt ˆB ÂÂt ˆBt + Ât ˆBt ˆB c Wir btrachtn   ˆB?? n 0  n ˆB 0 0 Â! Â! n 0 ˆB Ân n!  n 0 n 0 ˆB Â!  ˆB  n } {{ } ˆB n 5 Wir üssn nun zign, dass gilt wir bschränk uns auf n da dr Fall ˆB0 ˆB trivial ist ˆB n 0 n  ˆB  n Â, [Â,... [Â, ˆB]] n al  6 Wir achn dis it vollständigr Induktion: Induktionsanfang: Zig für n ˆB 0  ˆB  ˆB +  ˆB [Â, ˆB] 7 Induktionsbhauptung: Für in n R gilt 6. Induktionsschritt: Schliß von n n + n+ n + ˆB n+  ˆB  n+ 0 n + n n+ n  ˆB  n+ n +  ˆB  n+ 0 n  + ˆB  n n +  ˆB  n+ 0 0 n   ˆB  n n  ˆB  n  0  ˆB n ˆB n  [Â, ˆB n ] 0 Â, [Â,... [Â, ˆB]] n+ al  8 Dait gilt also  ˆB  Btracht dn Oprator B n + [Â, ˆB] +! [Â, [Â, ˆB]] ˆF t ˆX t Ŷ t 0

3 und lit disn nach t ab t ˆF t t ˆX t Ŷ t + ˆX t t Ŷ t ˆX ˆX t Ŷ t + ˆX t Ŷ Ŷ t ˆX ˆX t Ŷ t + ˆX t Ŷ ˆX t ˆX t Ŷ t ˆX + ˆX t Ŷ ˆX t ˆX t Ŷ t 9 ˆX t + Ŷ + [ ˆX, Ŷ ]t +! [ ˆX, [ ˆX, Ŷ ]] +... ˆF t 0 sih ÜB ˆX + Ŷ + [ ˆX, Ŷ ]t ˆF t Di auftrtnd Diffrntialglichung wird glöst durch Intgrationsbdingung ˆF 0 wird rfüllt ˆF t ˆX+Ŷ t+[ ˆX,Ŷ ] t Da wgn dr Vorausstzung [ ˆX, [ ˆX, Ŷ ]] [Ŷ, [ ˆX, Ŷ ]] 0 gilt [ ˆX + Ŷ, [ ˆX, Ŷ ]] 0 könnn dn Exponntn auftiln sih auch ÜB Nr. : ˆF t ˆX+Ŷ t+[ ˆX,Ŷ ] t ˆX+Ŷ t [ ˆX,Ŷ ] t 3 Zusanführn von Glichung 0 und 3 für t führt schlißlich zu odr ˆXŶ ˆX+Ŷ [ ˆX,Ŷ ]/ 4 ˆX+Ŷ ˆXŶ [ ˆX,Ŷ ]/ 5. Wllnpackt und Kontinuitätsglichung 0 Punkt ündlich a Punkt Gsucht sind di Wllnfunktionn und Disprsionsrlation Ep für in fris Tilchn in inr Dinsion. Wir lösn di zitabhängig Schrödingrglichung übr dn Produktansatz rhaltn wir di stationär Schrödingrglichung x ψx, t i ψx, t 6 t ψx, t ψx i E t 7 ψx Eψx. 8 x Di Eignfunktionn disr Glichung sind ψx A i px it dn Eignwrtn Ep p. Di Wllnfunktionn sind also bn Wlln ψx A i px Ept. 9 3

4 b Punkt Es soll gzigt wrdn, dass gilt: dx x+iα dx x, α R. 0 Dazu intgrirn wir in dr koplxn Ebn und schlißn di Kontur ntlang dr rln Achs sih Skizz. I z R z Da das Intgral übr di gsat Kontur vrschwindt ntspricht das Intgral übr di Achs {k + iα k, } grad d Intgral übr di rll Achs. dx x+iα dx x π. c Punk Zu Zitpunkt t 0 soll di Wllnfunktion ds frin Tilchns durch ψx, 0 gp i px p it gp π πσ 4σ /4 ggbn sin. Di Wllnfunktion ψx, 0 ist dait di Fourir-Transforirt inr Gauß-Funktion. Wi wir shn wrdn, ist dis widr in Gauß-Funktion. Es uss das Intgral ψx, 0 πσ /4 xp p π 4σ + ipx brchnt wrdn. Dazu achn wir in quadratisch Ergänzung und rhaltn p p 4σ ipx 4σ ipx σ x + σ x p σ iσx σ x + σ ψx, 0 πσ /4 x 3 xp p π σ iσx. 4 Das vrblibn Intgral wurd schon in Aufgab b glöst dait rgibt sich σ ψx, 0 πσ /4 Führt an a σ in ψx, 0 x σ 4σ x /4 σ π. 5 x πa /4 4a 6 siht an, dass s sich widr u in Gauß-Kurv handlt, wobi di Brit grad invrs-proportional zur Brit dr Ipulsvrtilung ist. d 3 Punkt Zurst ist zu zign, dass di Wllnfunktion ψx, t di zitabhängig Schrödingrglichung rfüllt. π gp i px i Ept it Ep p 7 4

5 Durch Einstzn in di Schrödingrglichung auf bidn Sitn läßt sich dirkt zign, dass ψx, t gp x π x i px Ept und i t ψx, t π gp p i gpi π t i px Ept px Ept gpep i px Ept π 8 gp p π i px Ept. 9 Di Schrödingrglichung für das fri Tilchn ist also rfüllt. Nun soll ψx, t brchnt wrdn. Dafür uss das Intgal ψx, t xp p πσ /4 π 4σ + ipx iept xp p πσ /4 π 4σ + ipx i p t glöst wrdn. Mit dr Dfinition α σ + i t rhaltn wir widr das Intgral aus Aufgabntil c und könnn s analog lösn. ψx, t xp p πσ /4 π 4α + ipx α x πσ /4 α x xp 30 π 4 t a + i a 4a t + i a wobi wir gnutzt 4α a + it habn. Dait rgibt sich für di Wahrschinlichkitsdicht ψ x, tψx, t xp π a + t 4 a 4 x. 3 a + t 4 a 4 Di Wahrschinlichkitsdicht hat also in ffktiv zitabhängig Brit β a + t 4 a. Das Wllnpackt zrfli{sst, di brit wächst, di Aplitud nit ab: 4 ψx, t ψ x, tψx, t xp x πβ β 3 Das di Wllnfunktion ir auf norirt ist rhält an sofort dx ψx, t dx xp x πβ β. Brkung: Das di Wllnfunktion zu alln Zitn auf norirt ist kann an auch ohn di Ipulsintgration auszuführn zign: dx ψx, tψ x, t dx π gpg p i px Ept i p x Ep t 33 gpg p it Ep Ep dx π i p p x 34 δp p gpg p p σ πσ πσ σ π 35 5

6 3 Punkt Mit dr Wllnfunktion ψx, t könnn wir nun di Erwartungswrt ausrchnn x dx ψ x, txψx, t x πβ dx xp β 0 36 x dx ψ x, tx ψx, t x πβ dx x xp β β 37 p dx ψ x, t i x ψx, t dx ψ x x, t ψx, t 0 38 i a t + i a p dx ψ x, t x ψx, t dx x ψ x, t x ψx, t 4a 39 Di Standardabwichung ds Orts ist dait ggbn durch Xt x x β a + t 4 a Si ist zitabhängig und inial für t 0. Di Standardabwichung ds Ipuls ist P t a 4 und konstant. Dait gilt Xt P t + t 4 a 4 Di inial Unschärf hat das Wllnpakt also nur zu Zitpunkt t 0! f Punkt Es ist durch Einstzn zu zign, dass di Wllnfunktion 7 di Kontinuitätsglichung rfüllt. Zurst brchnn wir di zitlich Ändrung dr Wahrschinlichkitsdicht ρx, t t π π g pgp i p p x i dann di Strodicht g pgp i p p x t i Ep Ep t 4 43 Ep Ep i Ep Ep t, 44 j i ψ x, t ψx, t x x ψx, t ψx, t 45 i π g pgp i px x i px x i px i p x i Ep Ep t 46 i π g pgp i p + p i p px i Ep Ep t 47 und drn Gradintn x j i π π g pgp i p p x i p g pgp p + p p p i p p x i Ep Ep t p Da gilt Ep p / ist di Kontinuitätsglichung rfüllt. 48 i Ep Ep t. 49 6

D-CHAB Grundlagen der Mathematik I (Analysis A) HS 2014 Theo Bühler. 1. Berechne die Ableitung der Funktion, wenn diese existiert.

D-CHAB Grundlagen der Mathematik I (Analysis A) HS 2014 Theo Bühler. 1. Berechne die Ableitung der Funktion, wenn diese existiert. D-CHAB Grundlagn dr Mathmatik I Analysis A HS 0 Tho Bühlr Lösung 3 Brchn di Ablitung dr Funktion, wnn dis istirt a ++ Wir vrwndn widrholt di Produkt-, Quotintn- und Kttnrgl für di Ablitung Vorlsung und

Mehr

7.8 Träge Masse der Bandelektronen

7.8 Träge Masse der Bandelektronen Physik dr kondnsirtn Matri WS 00/0 0..00 7.8 Träg Mass dr Bandlktronn Di Bschribung dr Elktronn rfolgt durch in Wllnpakt aus Übrlagrung von Blochwlln aus in klinn Brich von k-vktorn. Di Bwgung dr Tilchn

Mehr

Übungen zu Frage 79: Nr. 1: Im rechtwinkligen Dreieck ABC ist D der Mittelpunkt

Übungen zu Frage 79: Nr. 1: Im rechtwinkligen Dreieck ABC ist D der Mittelpunkt Übungn Trigonomtri Rchnn mit Paramtr Übungn zu rag 79: Nr 1: Im rchtwinklign rick ist dr Mittlpunkt dr Sit Zign Si ohn Vrwndung grundtr Wrt, dass dr lächninhalt ds 1 Vircks mit dr orml = wrdn kann (i Lösung

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Grubr, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Hssn Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für GTR und CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis 1 Ganzrational

Mehr

Übungen zu Mathematik für Ingenieure A4 Stochastische Prozesse

Übungen zu Mathematik für Ingenieure A4 Stochastische Prozesse Lhrstuhl für Angwandt Mathmatik dr Univrsität Erlangn-Nürnbrg Dr. F. Graf Erlangn, dn.7.9 Übungn zu Mathmatik für Ingniur A4 Stochastisch Prozss Aufgab : Di Zufallsvariabln X und N sin stochastisch unabhängig.

Mehr

Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT

Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT Zu Aufgab 0) Folgnd Mssdatn wurdn von inr sttign Glichvrtilung R([a,b]) rhobn: 3,5,4, 5, 4, 3, 3, 5 Gbn Si in Schätzung für di Grnzn a und b nach dr Momntnmthod an! sih Vorlsung. Zu Aufgab ) Es wurd übr

Mehr

Aufg.-Nr.: 2 Bereich: e-funktion Kursart: GK CAS

Aufg.-Nr.: 2 Bereich: e-funktion Kursart: GK CAS Aufg.-Nr.: Brich: -Funktion Kursart: GK CAS Forllnzucht In inr Forllnzuchtanstalt im Saurland wurd bi glichaltrign Forlln di durchschnittlich Läng rmittlt. Di Tabll zigt inn Til dr gwonnnn Datn: Altr (in

Mehr

www.math-aufgabn.com Abiturprüfung Mathmatik 7 Badn-Württmbrg (ohn CAS) Pflichttil - Aufgabn Aufgab : ( VP) Bildn Si di rst Ablitung dr Funktion f mit f () + ( sin ). Aufgab : ( VP) ln Brchnn Si das Intgral

Mehr

LOG 3 log 4 = log 43 = log 64 x a log 2 + log 3 = log 2 3 = log 6 : * 8 log 8 log 2 = log = log PreStudy 2018 Torsten Schreiber 56

LOG 3 log 4 = log 43 = log 64 x a log 2 + log 3 = log 2 3 = log 6 : * 8 log 8 log 2 = log = log PreStudy 2018 Torsten Schreiber 56 5 Widrholung Dis Fragn solltn Si ohn Skript bantwortn könnn: Was bdutt in ngativr Eponnt? Wi kann man dn Grad inr Wurzl noch darstlln? Wi wrdn Potnzn potnzirt? Was bwirkt in Null im Eponntn? Wann kann

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Badn-Württmbrg:

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 7 Badn-Württmbrg:

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schogr Hiko Hoffann SS Höh Mathatik II für di Fachrichtung Inforatik Lösungsvorschläg zu. Übungsblatt Aufgab 5 Bwisn Si Til von Satz

Mehr

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen H. Grubr, G. Kowalski, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Nordrhin-Wstfaln Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis

Mehr

Lösungen zu Übungsblatt 5 Fourier-Integral

Lösungen zu Übungsblatt 5 Fourier-Integral Zu Aufgab : Si f() für - < und f() sons. Zu a) Es gil: F( d d jω j j j [ ] D.h., di Spkralfunkion F ( zu inr sückwis konsann Funkion f() is in grad Funkion. Si is in gdämpf Schwingung, drn Asympon für

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Halbleiterdetektoren. Michael Schwander

Halbleiterdetektoren. Michael Schwander Was für Dtktorn gibt s! Halblitrdtktorn Michal Schwandr 09..005 Ionisationskammr Proportional Zählrohr Gigrmüllr Zählrohr unknkammr Szintillationszählr Kalorimtr Nblkammr Blasnkammr Halblitrdtktor (Črnkov-Zählr)

Mehr

Zusammenfassung Magnetohydrodynamik

Zusammenfassung Magnetohydrodynamik Zusanfassung Magntohydrodynaik Einführung in di Thori dr Hydrodynaik Sinar Elktrodynaik bi Prof. Wolschin Man ght von dr Eulr schn Darstllung aus. In disr wrdn all physikalischn Größn durch Skalar- bzw.

Mehr

Lösungsvorschlag Vorbereitung Nr.3 K

Lösungsvorschlag Vorbereitung Nr.3 K Mahmaik Lösungsvorschlag Vorbriung Nr. K..8 Pflichil (wa 0 min) Ohn Taschnrchnr und ohn Formlsammlung (Disr Til muss mi dn Lösungn abggbn sin, h dr GTR und di Formalsammlung vrwnd wrdn dürfn.) Aufgab :

Mehr

StudiumPlus- SS 2017 Torsten Schreiber

StudiumPlus- SS 2017 Torsten Schreiber StudiumPlus- SS 07 Torstn Schribr 56 Dis Fran solltn Si auch ohn Skript bantwortn könnn: Wlch bid Artn ins Intrals knnn Si? Was sind di wichtistn Rln dr Intration? Wi bstimmn Si di Flächn inr Funktion

Mehr

Lösungen zu Übungsblatt 5

Lösungen zu Übungsblatt 5 Lösungn u Übungsblatt 5 Zu Aufgab Stlln Si folgnd komplxn Zahln als Zigr im kartsischn Koordinatnsystm dar! Gbn Si Raltil, Imaginärtil und dn Btrag an! a + b 5 c Grafisch Darstllung als komplx Zigr: Raltil,

Mehr

Graphentheorie. Aufgabenblatt 3. Besprechung am 22. November 2018 in den Übungen

Graphentheorie. Aufgabenblatt 3. Besprechung am 22. November 2018 in den Übungen Fbri Inormti Wintrsmstr 018/19 Pro. Dr. Ptr Br Grpntori Augbnbtt 3 Bsprung m. Novmbr 018 in dn Übungn Augb 1 Anngswrtprobm) Lösn Si di ogndn Anngswrtprobm: ) n = n 1 + 3 n mit 0 = 0 und 1 = 1. b) b n =

Mehr

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011 Vorbritung Gomtrisch Optik Stfan Schirl Vrsuchsdatum: 22. Novmbr 20 Inhaltsvrzichnis Einführung 2. Wllnnatur ds Lichts................................. 2.2 Vrschidn Linsn..................................

Mehr

INSTITUT FÜR PLANETARE GEODÄSIE

INSTITUT FÜR PLANETARE GEODÄSIE INSTITUT FÜR PLANETARE GEODÄSIE Übung Thortisch Godäsi Brchnung dr Elmnt ins Straintnsors und dr Strainllips Aufgab Nr.: Godäsi 99 Als rsts wird in Hilfskoordinatnsystm fstglgt, in dm man dn Punkt A in

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-

Mehr

Für den Flächeninhalt des Dreiecks A BEG gilt: A BEG =

Für den Flächeninhalt des Dreiecks A BEG gilt: A BEG = 008 Pflichtrich Für dn Flächninhalt ds ricks EG gilt: EG = E G i Strckn E und G kann man rchnn, wnn man im rchtwinklign rick EG dn Winkl ε und di Strck EG knnt rchnung ds Winkls ε: n Winkl ε stimmt man

Mehr

Lösungsvorschläge Klausur Nr.3 K

Lösungsvorschläge Klausur Nr.3 K Lösungsvorschläg Klausur Nr. K..6 Pflichttil (twa 0 min) Ohn Taschnrchnr und ohn Formlsammlung (Disr Til muss mit dn Lösungn abggbn sin, h dr GTR und di Formalsammlung vrwndt wrdn dürfn.) Aufgab : [P]

Mehr

Pflichtteil 6 (ABG_BW)

Pflichtteil 6 (ABG_BW) Pflichttil 6 (ABG_BW) Aufgab 6 Bildn Si di rst Ablitung dr Funktion f mit ( + sin ( ) ) 3 Aufgab Gbn Si in Stammfunktion dr Funktion f mit + 4 cos( ) an Aufgab 3 Lösn Si di Glichung: + Aufgab 4 Ggbn ist

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungn zur Kursvorlsung Physik II (Elkrodynmik) Sommrsmsr 8 Übungsbl Nr. Aufgb 9: Ldungsvrilung ) Di Gsmldung inr krisförmign Obrfläch is ggbn durch: Q= A rda= rr dr d (i) (ii) Q= r r dr d = Q= r dr d

Mehr

Fachhochschule Hannover vorgezogene Wiederholungsklausur

Fachhochschule Hannover vorgezogene Wiederholungsklausur Fachhochschul Hannovr vorgzogn Widrholungsklausur.9.6 Fachbrich Maschinnbau Zit: 9 in Fach: Physik II i SS6 Hilfsittl: Forlsalung zur Vorlsung. In in U-Rohr it zwi offnn Endn wird auf dr inn Sit Wassr

Mehr

Klausur der Modulprüfung / Diplomvorprüfung

Klausur der Modulprüfung / Diplomvorprüfung Klausur dr Modulprüfung / Diplomvorprüfung für B.Sc. god Bitt bachtn Si di folgndn Hinwis: Barbitungszit: Minutn Erlaubt Hilfsmittl: Sitn DIN A4 ignhändig bschribn. Barbitungn mit Blistift, Grün- odr Rotstift

Mehr

Mathematik Name: Lösungsvorschlag Nr.6 K2 Punkte: /30 Note: Schnitt:

Mathematik Name: Lösungsvorschlag Nr.6 K2 Punkte: /30 Note: Schnitt: Pflichttil (twa 40 min) Ohn Taschnchn und ohn Fomlsammlung (Dis Til muss mit dn Lösungn abggbn sin, h d GTR und di Fomalsammlung vwndt wdn düfn.) Aufgab 1: [P] Bildn Si di st Ablitung d Funktion 1 f ()

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übungsbla Aufgabn mi Lösungn Aufgab : Zwi Drucklufbhälr mi unrschidlichn Volumina V und V sind durch in zunächs vrschlossn Rohrliung vrbundn. Vor Öffnn ds Sprrvnils zu 0 hrrschn in dn Bhälrn unrschidlich

Mehr

Schriftlich Reifeprüfung aus Mathematik

Schriftlich Reifeprüfung aus Mathematik BG Bad Ischl, 8.A Haupttrmin 8 Mag. Andras Lindnr Schriftlich Rifprüfung aus Mathmatik! 1) Trigonomtri Von inr Aussichtswart siht man inn Brggipfl, dr sich im S spiglt. Von disr Aussichtswart, di sich

Mehr

1. Klausur des LK Physik im 2. Kurshalbjahr K12 am

1. Klausur des LK Physik im 2. Kurshalbjahr K12 am 1. Klausur ds LK Physik im. Kurshaljahr K1 am.03.00 1. Ahängigkit dr Mass vn dr Gschwindigkit Elktrnn wrdn durch in pannung vn 50 kv schlunigt. a. Bstimmn i di Gschwindigkit dr Elktrnn. [Ergnis: 0,90 c

Mehr

Lösung der Aufgabe 1 :

Lösung der Aufgabe 1 : Lösung dr Aufgb : ) x x + y + y 3x + 4y + Fixpunktbdingung: x x, y y x x + y + y 3x + 4y + 0 4x+ y+ 0 3x+ 3y+ 0 6x - 3 3 4 b) x 6 0-6y - y 6 Fixpunkt ( 6 6 ) Fixgrdn: in dn bidn Gichungn für di Fixpunktbdingungn

Mehr

Die Pfadintegraldarstellung in der Quantenmechanik

Die Pfadintegraldarstellung in der Quantenmechanik Di Pfadintgraldarstllung in dr Quantnchani Martin-I. Trapp Boris Housa 1. März 006 Vortrag i Dzbr 004) 1 Inhaltsvrzichnis 1 Einlitung Dr Propagator dr Schrödingrglichung 4 Dfinition.1 Propagator ).........................

Mehr

Übungen zu Moderne Theoretischen Physik III SS Korrelatoren im 1D-Ising-Modell ( = 30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Korrelatoren im 1D-Ising-Modell ( = 30 Punkte, schriftlich) Karlsruhr Insttut für Tchnolog Insttut für Thor dr Kondnsrtn Matr Übungn zu Modrn Thortschn Physk III SS 206 Prof. Dr. A. Shnran Blatt PD Dr. B. Narozhny, Dr. P. Schad Lösungsvorschlag. Korrlatorn D-Isng-Modll

Mehr

1 5 dx dz. dx 5. Integriere Resubstituiere 1. dx dz

1 5 dx dz. dx 5. Integriere Resubstituiere 1. dx dz ins Tiltrms (Typ ) Bispil Gsucht ist di Stmmfunktion von ( ) Substituir Diffrnir Stll um () : g() g() Substituir Intgrir Rsubstituir () F() ( ) 0 Bispil 0 Gsucht ist di Stmmfunktion von ( ) 0 Substituir

Mehr

α α Schriftliche Maturitätsprüfung 2015 EES: m (Einpendeln) (Stoss) IES/EES: = für . 3 EES: (Auspendeln) folgt mgs 1

α α Schriftliche Maturitätsprüfung 2015 EES: m (Einpendeln) (Stoss) IES/EES: = für . 3 EES: (Auspendeln) folgt mgs 1 Schriftlich Maturitätsprüfung 5 Kantonsschul ussbühl Schwrpunktfach Physik und Anwndungn dr Mathatik ösungn Aufgab : (5 Punkt) EES: gh v v gh (Einpndln) IES/EES: ( ) v u für (Stoss) v Mit ist u v. 3 3

Mehr

Neutrinos. Ein Vortrag über die Eigenschaften von Neutrinos und Experimenten mit Neutrinos. Autor: Dieter Oellers. Betreuer: Prof.

Neutrinos. Ein Vortrag über die Eigenschaften von Neutrinos und Experimenten mit Neutrinos. Autor: Dieter Oellers. Betreuer: Prof. Nutrinos Ein Vortrag übr di Eignschaftn von Nutrinos und Exprimntn mit Nutrinos. Autor: Ditr Ollrs Btrur: Prof. Böhm 1.Einlitung Dr β-zrfall und di Nutrinohypoths n p p n Bis 1930: Nutrinos unbkannt 1930:

Mehr

2010 A I Angabe. 0 1 ln 1 x 0 ln 1 x 1. Untersuchen Sie das Verhalten der Funktionswerte f x an den Rändern der Definitionsmenge. 1 ln 1 x 4 1 x 1 1

2010 A I Angabe. 0 1 ln 1 x 0 ln 1 x 1. Untersuchen Sie das Verhalten der Funktionswerte f x an den Rändern der Definitionsmenge. 1 ln 1 x 4 1 x 1 1 BE 3 7....3 A I Angab ln Ggbn ist di rll Funtion : in ihrr größtmöglichn Dinitionsmng ID. ID ; gilt, und brchnn Si dn atn Wrt dr Nullstll dr Zign Si, dass Funtion. Im Zählr muss gltn: Im Nnnr muss gltn:

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse.

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. LÖSUNGEN dr Übungsaufgabn II zur Klausur Nr.3 (Eponntialfunktionn Aufgab

Mehr

Vorwort 9. 1 Ableitungen und ihre Anwendung. 2 Funktionen und ihre Eigenschaften. Inhaltsverzeichnis

Vorwort 9. 1 Ableitungen und ihre Anwendung. 2 Funktionen und ihre Eigenschaften. Inhaltsverzeichnis Inhaltsvrzichnis Vorwort 9 1 Ablitungn und ihr Anwndung Diffrnznquotint... 10 Diffrntialquotint... 11 Ablitungn und ihr Bdutung... 12 Ablitung mittls Diffrnznquotint und Diffrntialquotint... 13 Schlißn

Mehr

5 Grenzwertregel von Bernoulli

5 Grenzwertregel von Bernoulli Grnzwrtrgl von Brnoulli und d L Hospital Sit 5-5 Grnzwrtrgl von Brnoulli und d L Hospital Oft muss man dn Grnzwrt inr Funktion brchnn Ist di Funktion in Quotint zwir Funktionn, so kann di Grnzwrtbildung

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

Höhere Mathematik 3 Kapitel 10 Gewöhnliche Differentialgleichungen

Höhere Mathematik 3 Kapitel 10 Gewöhnliche Differentialgleichungen Höhr Mathmatik Kaitl 0 Gwöhnlich Diffrntialglichungn Prof. Dr.-Ing. Ditr Kraus Höhr Mathmatik Kaitl 0 Inhaltsvrzichnis 0 Gwöhnlich Diffrntialglichungn...0-0. Einführung...0-0. Diffrntialglichungn. Ordnung...0-9

Mehr

Lösungen der Aufgaben 9.3/5/6

Lösungen der Aufgaben 9.3/5/6 Lösungn dr Aufgabn 9.3/5/6 Dr Gütrmarkt inr offnn Volkswirtschaft wird durch folgnds Glichungssystm bschribn: = a + b (Y T ), () (i, q) = c + q, (2) q = d Y i, (3) G = G, (4) X = x 0 + x Y x 2 σ, (5) Z

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Istitut für Techologie Übuge zur Moere Theoretische Physik I SS 14 Istitut für Theoretische Festkörperphysik Prof. Dr. Ger Schö Lösuge zu Blatt 5 Dr. Areas Poeicke, Areas Heimes Besprechug 8.5.14

Mehr

Anpassung einer Funktion an Messwerte

Anpassung einer Funktion an Messwerte Anpssung inr Funktion n Msswrt Di Mthod dr klinstn Fhlrqudrt Crl Fridrich Guß (777-855 Brnd Hitznn Msswrt inr Größ wurdn bstit! 8 6 4 8 6 4 3 4 5 6 7 Zit [in] Msswrt t t t 3 3 t 4 4 t n n Funktion zur

Mehr

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1:

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1: Bruskollg Marinschul Lippstadt Schul dr Skundarstu II mit gymnasialr Obrstu - staatlich anrkannt - Übungsaugabn zu Eponntialunktionn Schuljahr /7 Kurs: Mathmatik AHR. Kurslhrr: Gödd / Langnbach Bruskollg

Mehr

Mathematik 2 für Ingenieure

Mathematik 2 für Ingenieure Übungsaufgabn zur Vorlsung Mathmatik für Ingniur Diffrntialglihungn Prof. Dr.-Ing. Norbrt Höptnr (nah inr Vorlag von Prof. Dr.-Ing. Torstn Bnknr) Fahhohshul Pforzhim FB-Ingniurwissnshaftn, Elktrothnik/Informationsthnik

Mehr

Quantenmechanik I. Musterlösung 4.

Quantenmechanik I. Musterlösung 4. Quatmchaik I. Mustrlösug 4. Hrbst 011 Prof. Rato Rr Übug 1. Rch mit Kommutator. Dr Kommutator [A, B] AB BA zwir Oprator ist liar i A, B ud atisymmtrisch: [A, B] [B, A]. a Zig di Produktrgl ud di Jacobi-Idtität,

Mehr

Diskrete Fouriertransformation. Informationsgewinnung. ω 1. ω 2. Signale können als Überlagerung (Summe) periodischer Funktionen mit

Diskrete Fouriertransformation. Informationsgewinnung. ω 1. ω 2. Signale können als Überlagerung (Summe) periodischer Funktionen mit Sinal könnn als Übrlarn Smm priodischr nktionn mit rqnzn ω nd mit Amplitdn darstllt wrdn. Cosins nktionn Sins nktionn cos π π + o sin ω ω ω ω ω ω Dis Koffizintn bn an, mit wlchr Häfikit di ntsprchndn nktionn

Mehr

REIECKE ALS BAUSTEINE

REIECKE ALS BAUSTEINE LU 09 DREIEKE LS REIEKE LS USTEINE Ich kann... ok. 1 in Drickn Sitn, Eckn und Höhn bschritn Rchtwinklig, spitz- und stumpwinklig Drick sowi glichschnklig, glichsitig und unglichsitig Drick bnnnn. Grundanordrungn

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungn Physik VI Krn und Tilchn) Sommrsmstr 1 Übungsblatt Nr. 1 Barbitung bis 8.7.1 Aufgab 1: Parität und Drhimpuls Das K + -Mson hat Spin und zrfällt hauptsächlich durch di Raktion K + µ + ν µ. Skizzirn

Mehr

Analysis III Winter 2016/17 Prof. Dr. George Marinescu/Dr. Frank Lapp / M.Sc. Hendrik Herrmann Serie 10 mit Musterlösungen

Analysis III Winter 2016/17 Prof. Dr. George Marinescu/Dr. Frank Lapp / M.Sc. Hendrik Herrmann Serie 10 mit Musterlösungen Analyi III Wintr 6/7 Prof. Dr. Gorg Marincu/Dr. Frank Lapp / M.Sc. Hndrik Hrrmann Sri mit Mutrlöungn Aufgab Zign Si, da da Intgral in α d 4 Punkt für α und α wdr al unigntlich Rimann-Intgral noch al Lbgu

Mehr

Normalverteilung als Näherung der Binomialverteilung

Normalverteilung als Näherung der Binomialverteilung V Normalvrtilung als Nährung dr Binomialvrtilung Ggbn ist in nach B(n,p) vrtilt Zufallsgröß mit großm n. Sthn di Wahrschinlichkitn für das btrffnd n nicht in dr Tabll (z.b. wil n zu groß ist), dann ist

Mehr

Komplexe Zahlen. werden kann. Die Lösung der Gleichung a x = 1 bezeichnen wir mit a 1. Die Cramersche Regel liefert a 1 = 1 ( )

Komplexe Zahlen. werden kann. Die Lösung der Gleichung a x = 1 bezeichnen wir mit a 1. Die Cramersche Regel liefert a 1 = 1 ( ) Kompl Zahln Körpr dr kompln Zahln Im n lässt sich im Allgminn kin Multiplikation drart dfinirn, dass im n di Körprignschaftn rfüllt sind. Körpr: s gibt zwi Abbildungn, bzüglich drr in Mng in ablsch Grupp

Mehr

Analysis Funktionen mit Parametern (Funktionenscharen)

Analysis Funktionen mit Parametern (Funktionenscharen) Analysis (Funkionnscharn) Alandr Schwarz Juli 8 Aufgab : Bsimm di Nullslln dr ggbnn Funkionnschar. a) b) 4 4 Aufgab : Bild di rs Abliungsfunkion. a) ) 4 4 b) 4 d) ( ) Aufgab : Bsimm di Ermpunk in Abhängigki

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2016 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1

mathphys-online Abiturprüfung Berufliche Oberschule 2016 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1 Abiturprüfung Bruflich Obrschul 6 Mathmatik Tchnik - A I - Lösung Tilaufgab x Ggbn ist di Funktion f mit f( x) arctan mit dr Dfinitionsmng D x f ] ; ]. Tilaufgab. (6 BE) Bstimmn Si das Mononotonivrhaltn

Mehr

Grundlegende Eigenschaften der Atomkerne: β-zerfall (Ende) Neutrinonachweis

Grundlegende Eigenschaften der Atomkerne: β-zerfall (Ende) Neutrinonachweis Krnphysik I Grundlgnd ignschatn dr Atomkrn: β-rall nd Nutrinonachwis Motivation Für di Bschribung dr lmntsynths in astrophysikalischn Umgbungn sind insbsondr gut Knntniss übr di β-ralls- ignschatn von

Mehr

Grundlagen der Raketentechnik

Grundlagen der Raketentechnik Grundlagn dr Raktnthnik Wrnr W. Wiss Wltrauastronoi SS7 Raktnforl y d (t) V x...raktngshwind. rl zu x/y..tribgasgshwind. rl. zu Rakt β...tribgas Durhsatz - d/dt [ ] [( d)( + d) d( ) ] Gsatipuls t i d Ipuls

Mehr

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS GS.6.6 - m6_t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathmatik Tchnik A I - Lösung mit CAS Tilaufgab. Ggbn ist di Funktion f mit f( ) arctan mit dr Dfinitionsmng D f ] ; ]. Tilaufgab. (6 BE) Bstimmn Si jwils

Mehr

4. Berechnung von Transistorverstärkerschaltungen

4. Berechnung von Transistorverstärkerschaltungen Prof. Dr.-ng. W.-P. Bchwald 4. Brchnng on Transistorrstärkrschaltngn 4. Arbitspnktinstllng Grndorasstzng für dn Entwrf inr Transistorrstärkrstf ist di alisirng ins Arbitspnkts, m dn hrm im Knnlininfld

Mehr

Triangulierung eines planaren Graphen

Triangulierung eines planaren Graphen Trianglirng ins planarn Graphn Thomas Pajor 1. Fbrar 2007 Das Trianglirn ins Graphn ist in Grndopration, di on iln Algorithmn, di af planarn Graphn oprirn, bnötigt wird. Dr hir orgstllt Algorithms trianglirt

Mehr

Theoretische Physik mit Maple WS 2012/2013. Kurt Bräuer, Theoretische Physik Uni Tübingen. Musterlösung ÜB06 - Schrödinger-Gleichung

Theoretische Physik mit Maple WS 2012/2013. Kurt Bräuer, Theoretische Physik Uni Tübingen. Musterlösung ÜB06 - Schrödinger-Gleichung Thortisch Physik it Mapl WS 01/013 urt Bräur, Thortisch Physik Uni Tüingn Mustrlösung ÜB06 - Schrödingr-Glichung rstart; with plots : Pard = 1, = 1, = 1; = 1, = 1, = 1 (1) 1) Wllnglichung dr klassischn,

Mehr

Theoretische Physik IV (Statistische Physik) Prof. Dr. Albrecht Klemm Christoph Nega, Fabian Fischbach

Theoretische Physik IV (Statistische Physik) Prof. Dr. Albrecht Klemm Christoph Nega, Fabian Fischbach Physikalischs Institut Übungsblatt Univrsität Bonn 9.2.27 Thortisch Physik WS 7/8 Thortisch Physik IV Statistisch Physik) Prof. Dr. Albrcht Klmm Christoph Nga, Fabian Fischbach Abgab: Di. odr Mi. 9./..28

Mehr

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen.

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen. Übung zu Mikro III (SS 05) Tri Vi Dang Handout zu Übung Vorbmrkung: Hinwis auf Fhlr sind willkommn. Kin Gwähr für di vollständig Richtigkit dr usführungn. Thma : Thori ds llgminn Glichgwichts Das Framwork

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden.

Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden. Mathmatik MB Übungsblatt ***LÖSUNGEN*** Thmn: Diffrntialrchnung Grundlgnd Funktionn Umfang: Hilfsmittl: Aufgabn Sind kin notwndig Ein Formlsammlung und in nicht programmirbarr Taschnrchnr könnn abr vrwndt

Mehr

Schwingungen g und Wellen III Erzwungene und überlagerte Schwingungen

Schwingungen g und Wellen III Erzwungene und überlagerte Schwingungen Physik A VL (9.. Schwingungn g und Wlln III Erzwungn und übrlagrt Schwingungn Nachtrag VL (Foli Erzwungn Schwingungn g Übrlagrt Schwingungn Nachtrag VL (Foli Gdämpft Schwingungn schwach Dämpfung Bt Btrachtung

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

Kapitel. Übungsaufgaben zu Kapitel 4: Wechselkursregimes. Übung zu Makroökonomik II

Kapitel. Übungsaufgaben zu Kapitel 4: Wechselkursregimes. Übung zu Makroökonomik II Kapitl 4 Übungsaufgabn zu Kapitl 4: Untrschidlich d c Wchslkursrgims Übung zu Makroökonomik II ich Wchslk schidl : Untr apitl 4 Ka Übungsaufgab g 4-4- Untrstlln Si, dass in Volkswirtschaft anfangs in Glichgwicht

Mehr

TE - Thermische Emission Blockpraktikum Herbst 2005

TE - Thermische Emission Blockpraktikum Herbst 2005 TE - Thrmisch Emission Blockpraktikum Hrbst 2005 Alxandr Sizingr, Tobias Müllr Assistnt Waldrmar Kaisr Tübingn, dn 12. Oktobr 2005 1 Vorwort In dism Vrsuch untrsuchtn wir di thrmisch Emmision von Elktronn

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Mathematik 12 Technik - Aufgabe I - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Mathematik 12 Technik - Aufgabe I - Lösung Abschlussprüfung Bruflich Obrschul 0 Mathmatik Tchnik - Aufgab I - Lösung Tilaufgab.0 x Ggbn ist di rll Funktion f( x) ln x in dr maximaln Dfinitionsmng D f. 4 Tilaufgab. (6 BE) Zign Si, dass gilt: D f

Mehr

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen.

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen. Vorbmrkungn Wachstum und Zrall (Jochn Pllatz 2013) Das Thma Eponntialunktionn ist in ignständigs Gbit in dr Mathmatik und wird in dr Schul in vrschidnn Stun untrrichtt. Einach Eponntialunktionn (Kapitl

Mehr

1. Berechnen Sie die folgenden unbestimmten Integrale durch geeignete Substitution: ln x. x sinh x dx f) cos 2 (4x + 7) arctan x2. 3 x = t, 3 dx = dt

1. Berechnen Sie die folgenden unbestimmten Integrale durch geeignete Substitution: ln x. x sinh x dx f) cos 2 (4x + 7) arctan x2. 3 x = t, 3 dx = dt Höhr Mahmaik für chnisch Sudingäng Vorbriungsaufgabn für di Übungn Ingralrchnung für in Vrändrlich, infach Diffrnialglichungn. Brchnn Si di folgndn unbsimmn Ingral durch gign Subsiuion: ln cos d b sin

Mehr

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c.

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c. Di FAIR-Mrkmal dr kbg! Bürgr-Enrgi für Schwalm-Edr! Unsr Stromtarif transparnt, günstig, fair! Di kbg ist in in dr Rgion sit 1920 vrwurzlt Gnossnschaft mit übr 1.400 Mitglidrn und in ihrm Wirkn fri von

Mehr

Prämienberechnungsprinzipien

Prämienberechnungsprinzipien 1 Präinbrchnungsprinzipin Ilja indlin 5. ai 9 3.1 Einlitung Ein Präi ist in ahlung, di in Vrsichrungsnhr tätigt, u Vollvrsichrungs- odr Tilvrsichrungsschutz ggn in Risiko zu rhaltn. Di Btrachtung dr Präinkalkulation

Mehr

Grundlagen Elektrotechnik I

Grundlagen Elektrotechnik I Grundlgn Elktrotchnik I borvrsuch I-30 (vorläufig Nullvrsion ) C- und C-Glidr Dipl-Ing lf Schmi, Dr Andrs Sifrt = I C C Idn, Ergänzungn, Kritik usdrücklich rwünscht Bitt n uns prsönlich odr vi E-Mil n:

Mehr

Aufgabe 1: Transformationen 25 Pkt. 1, k 0, a = α ejω 1

Aufgabe 1: Transformationen 25 Pkt. 1, k 0, a = α ejω 1 Aufgab 1: Transformationn Aufgab 1: Transformationn Ggbn si das kausal, diskrt Signal { vk) = a k 0, k < 0 cos Ω 0 k)ɛk), ɛk) = 1, k 0, a = α jω 1, α, Ω 0, Ω 1 R. 1.1 Bstimmn Si di z-transformirt V z)

Mehr

Graphentheorie. Folie 1

Graphentheorie. Folie 1 Prof. Thomas Richtr 11. Mai 2017 Institut für Analysis und Numrik Otto-von-Gurick-Univrsität Magdburg thomas.richtr@ovgu.d Matrial zur Vorlsung Algorithmisch Mathmatik II am 11.05.2017 Graphnthori 1 Grundlagn

Mehr

β = 1 2 ω ist? Begründung!

β = 1 2 ω ist? Begründung! Fachhochschul Hannovr M 7.6.6 Fachbrich Maschinnbau Zit: 9 in Fach: Physik II i SS6 Hilfsittl: Forlsalung zur Vorlsung. Di Dicht von Flüssigkitn kann it dr Mohrsch Waag bstit wrdn. Dr uftribskörpr () taucht

Mehr

Theoretische Physik mit Maple WS 2011/2012. Kurt Bräuer, Theoretische Physik Uni Tübingen. Musterlösung ÜB06 - Schrödinger-Gleichung

Theoretische Physik mit Maple WS 2011/2012. Kurt Bräuer, Theoretische Physik Uni Tübingen. Musterlösung ÜB06 - Schrödinger-Gleichung Thortisch Physik it Mapl WS 011/01 urt Bräur, Thortisch Physik Uni Tüingn Mustrlösung ÜB06 - Schrödingr-Glichung Paratr rstart; with plots : Pard = 1, = 1, = 1; = 1, = 1, = 1 (1.1) a) Schrödingr-Glichung

Mehr

U I R = = = X C. Wechseltromnetzwerke. Grundlagen und erforderliche Begriffe. 1. Wechselstromersatzschaltbilder: RCu. RKs X L

U I R = = = X C. Wechseltromnetzwerke. Grundlagen und erforderliche Begriffe. 1. Wechselstromersatzschaltbilder: RCu. RKs X L Wchsltromntzwrk Grundlagn und rordrlich Bgri 0.. Glichungn X π 3 4 π X hmschr Widrstand [Ω] Kapazität [F] nduktivität [H] komplxr Schinwidrstand [Ω] kapazitivr Blindwidrstand X [Ω] induktivr Blindwidrstand

Mehr

Grundlegende Wechselwirkung von Teilchen mit Materie

Grundlegende Wechselwirkung von Teilchen mit Materie Grundlgnd Wchslwirkung von Tilchn mit Matri Übrblick: 1. Einlitung. Wchslwirkung von Photonn mit Matri a) Photoffkt b) Compton Effkt (inlastisch Photonnstruung) c) Paarbildung 3. Wchslwirkung gladnr Tilchn

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik nalysis Listungskurs Zntral schriftlich biturprüfungn im Fach Mathmatik ufgab Prispolitik Ein Industriuntrnhmn, das nur in Produkt hrstllt, ntnimmt sinr tribsbuchhaltung (ostn- und Listungsrchnung) folgnd

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

Aufgaben zur Interferenz

Aufgaben zur Interferenz Aufan zur Intrfrnz. Auf in optich Gittr it dr Gittrkontant 4,00 * 0-6 fällt Licht dr Wllnlän 694 n nkrcht in. Da Intrfrnzild wird auf in 2,00 ntfrntn nn Schir oachtt, dr paralll zu Gittr tht. a) Brchnn

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS 0.06.07 - m7_t-_lsg_cas_gs.pdf Abiturprüfung 07 - Mthmtik Tchnik A II - Lösung mit CAS Tilufgb Ggbn ist di Funktion f mit f ( ) mit IR + und dr mimln Dfini- ( ln( ) tionsmng D f IR. Tilufgb. (8 BE)

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 13. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmogr Hiko Hoffmnn WS 3/4 Höhr Mthmtik I für di Fchrichtung Informtik Lösungsvorschläg zum 3. Übungsbltt Aufgb 49 ) Untrsuchn Si,

Mehr

Quick-Guide für das Aktienregister

Quick-Guide für das Aktienregister Quick-Guid für das Aktinrgistr pord by i ag, spritnbach sitzrland.i.ch/aktinrgistr Quick-Guid Sit 2 von 7 So stign Si in Nach dm Si auf dr Hompag von.aktinrgistr.li auf das Flash-Intro gklickt habn, rschint

Mehr

Crash-Course Physik Vorlesung 1

Crash-Course Physik Vorlesung 1 Crsh-Cours Physik Vorlsung 1 Trigonomtri: Lösungn 21. Sptmbr 2016 1. Notir für di folgndn vir rhtwinklign Drik di An- und Ggnktht ds jwils ingtrgnn Winkls: b α d f β Anktht von α ist b, Ggnktht ist. Anktht

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr