Lösung der Aufgabe 1 :

Größe: px
Ab Seite anzeigen:

Download "Lösung der Aufgabe 1 :"

Transkript

1 Lösung dr Aufgb : ) x x + y + y 3x + 4y + Fixpunktbdingung: x x, y y x x + y + y 3x + 4y + 0 4x+ y+ 0 3x+ 3y+ 0 6x b) x 6 0-6y - y 6 Fixpunkt ( 6 6 ) Fixgrdn: in dn bidn Gichungn für di Fixpunktbdingungn müsst di gich Grd drgstt wrdn; dis ist nicht dr F. x' x+ y+ 4 3 y' 3x+ 4y+ 4x -y 4x α - : x x' 3x -y -4y - y x' + y' 3 4 y ' 4 c) y m x + q x und y us dr mkhrbbidung instzn: 3 x' + y' m ( x' y') + q 4 4 m 3 m 4 ( + ) y' ( + ) x' + ( q+ ) m y m 4 x' + ( q+ ) + m + m 3+ 4m d) Koffizintnvrgich: m m m m m m m q + und: m q q + q + mq ( + m ) q q 9 m Lösungn m und drus q - 3 m und drus q 6 3 Mn rhät zwi Fixgrdn y x - und y x ) Einstzn von x und y us dr mkhrbbidung in 0 x 6 (y+ ) 0 : ( x' y') 6 ( x' + y' + ) 0 Mit Hif ds TI voyg 00 rhät mn di Lösung 6 x y 0 odr x' y'.hyprb mit, b 6, symmtrisch zu bidn 0 4 Achsn, mit dn Asymptotn y ± 6 x, Brnnpunkt F ( ) und F ( ).

2 Lösung dr Aufgb : ) ichtungsfd dr Diffrntigichung y y 6 sin(x) x y ,9-8,6-8, 0 0 -,9-3,6-3, -,6,9-8,6,3-0 -,9-3,6 6,3-3 -6,9-8,6, ,9-3,6 6,3-3,,4,3 b) y + y 0 dy y dx Sprtion dr Vribn: n y x + C dy y dx Intgrtion dy dx y y x+c K x c) Vrition dr Konstntn: y K(x) x y K (x) x + K(x) (-) x ingstzt in di inhomogn Diffrntigichung K (x) x + K(x) (-) x + K(x) x - 6 sin(x) K (x) 6 x sin(x) x K(x) 6 sin( x) dx in( ) x ( Prti Intgrtion: x s x dx cos(x)) ( x cos( x) dx) f(x) x, f (x) g (x)sin(x), g(x) -cos(x) x co s(x) +( x sin(x) x sin( x) dx) x sin( x ) x x dx cos( x ) in( x ) x + s sin( x) dx x

3 ( ) 6 x x sin( x) dx cos( x) sin( x) +C As o K(x) x (cos(x) sin(x)) + C und schiss ich y K(x) x cos(x) - sin(x) + C x d) Für y(0) 0 rgibt sich 0 cos(0) - sin(0) + C 0 + C C - Mit dr Anfngsbdingung y(0) 0 rhät mn di Lösung y cos(x) - sin(x) x Lösung dr Aufgb 3 : ( i z) ( + i z) ) f(z) w und f( z) w zi z+ i i z Fixpunktbdingung: z ( zi) zi z - i z iz z + i z 0 Fixpunkt z z i [ Porform (cos i sin ) ] i [ Porform (cos i sin 00...) ] b) w(z-i) - iz (w + i) z + i z + wi w i mit z w+ i w i + zi zi w und z vrtuschn: w f ( z) mkhrbbi dung mit w z+ i z i D \ { i }, W \ { i } c) Achs dr w-ebn: w λ; w λ, so ht di r Achs di Gichung w - w 0 odr w w. Stzt mn di mkhrfunktion in dis Gichung in, so rhät mn ( iz) ( + iz) z i z+ i ( iz) ( z + i) ( + iz) ( z i) z+ i izz i z z i+ izz i z 0 izz i z z Einhitskris in dr z-ebn Di Punkt ds Einhitskriss in dr z-ebn wrdn durch di ggbn Abbidung uf di r Achs dr w-ebn bgbidt.

4 d) Grd g: z λi und z λi, so z + z z und z ingstzt : + wi + wi ( w+ i) ( w i) w+ i w i ( + wi)( w i) + ( wi)( w+ i) ( w+ i)( w i ) w 4i+ wwi+ w+ w+ 4i wwi+ w ww+ 4iw 4iw 8 4w + 4w ww + 4iw 4iw 8 ½ ww+ ( i) w+ ( + i) w+ 4 0 Mit w u + iv fogt u + v + (-i)(u+iv) + (+i)(u-iv) u + v + u + iv - iu + v + u - iv + iu + v u + v + 4u + 4v (u+) + (v+) 4 Kris mit Mittpunkt M(- -) und dius. z-ebn w-ebn Atrntiv zur Lösung dr Aufgb 3d) mit dr Prmtrgichung dr Grdn: Grd: z - + λi z instzn in di Abbidungsgichung w ( i ( + λi) (( λ + ) + i) ( i ( λ )) ( λ i λ ++ i i λ ) i λ ( + λ i) i ( + i ( λ)) ( i ( λ)) + ( λ) λ λ+ 4 λ Mit w u + i v fogt: u und v λ λ+ λ λ+ Löst mn bid Gichungn nch λ uf, so rgibt sich: λ, u u ± 4u bzw. λ, v v ± 4v u v + Gichstzn dr bidn Ergbniss und Aufösn nch v ifrt v ± u 4u +, Qudrirn (v + ) u 4u +u + 4u + 4 (u + ) + (v + ) 4

5 Lösung dr Aufgb 4: ) Kontinuitätsgichung: v A π ( D / ) D v v. ( D / ) D s A v A v v v A π Brnoui-Gichung für h konst.: p + ρ v p + ρ v ( v ) 0kP 8P 9.kP p p + ρ v b) Dr Druck sinkt um knpp 0%. Dis knn zu inr Abösung dr Abgrung führn (Thrombosgfhr). c) Aktivität zu Bginn: 0 A g g Aktivität nch. Stundn: λ t n A( t) A0 mit λ T/ n (.h /h ) A (.h) A Dmit rgibt sich in Butvoumn V d) N Mg + +ν m Litr.39Litr Lösung dr Aufgb : ) Impdnz Z dr Wchsstromschtung: Z mit ω π f ω C + Z C + Î Û mit 30Ω und Z 3Ω rgibt sich Z 60. 9Ω C Z C b) tn Δϕ Δϕ 60. Di Spnnung hinkt dm Strom um 60. nch. Û L Û c) Für inn Hochpss grift mn di Spnnung m ohmschn Widrstnd b. Für di Ausgngsspnnung git dnn in Abhängigkit von dr Eingngsspnnung : I Z + + ω C ω C Für shr gross Frqunzn wird, für shr kin Frqunzn wird 0

6 (Hochpss). d) ( t) + C Q Q ˆ sin(ω t) + I + Q& C C Q& Q ˆ + sin( ω t) C Q ) homogn Gichung: Q & + 0 C gmin Lösung (Bwis durch Einstzn odr Hritung wi in b): Q t C ( t) Q * (Intgrtionskonstnt: Q*) Q inh t sin( t) + B cos( ω t) f) Anstz: () A ω (ntspricht Lösung in c) Lösung dr Aufgb 6: ) Drhmomntngichgwicht: M inks M rchts m g sin(90 ) FSi sin( α) mit dm Wink α zwischn Brück und Si Für α git: α + (90 ) 80 α 4 +. m g cos FSi sin(4 + ) m g cos F Si 9.06kN sin(4 + ) m b) Drhmomnt dr Wz: M F 3 r. 0 Nm D Wz Si r c) Aussr dm Drhmomntngichgwicht muss uch in Kräftgichgwicht hrrschn, r r r und dmit FD ( FG + FS ). M d) W inkbschunigung: α Träghitsmomnt bi Achs durch Schwrpunkt: Stb, S m Träghitsmomnt bi Achs durch Drhpunkt D (Stz von Stinr): 3 Stb, D m + m.6 0 kg m Dmit rgibt sich di Winkgschwindigkit:

7 m g cos M α Stb 6.0 inks, D Stb, D s

mathphys-online Abiturprüfung Berufliche Oberschule 2017 Mathematik 13 Technik - A II - Lösung Teilaufgabe 1 1 mit a IR + und der maximalen Defini-

mathphys-online Abiturprüfung Berufliche Oberschule 2017 Mathematik 13 Technik - A II - Lösung Teilaufgabe 1 1 mit a IR + und der maximalen Defini- mthphys-onlin Abiturprüfung Bruflich Obrschul 07 Mthmtik Tchnik - A II - Lösung Tilufgb Ggbn ist di Funktion f mit f ( mit IR + und dr mimln Dfini- ( ln( tionsmng D f IR. Tilufgb. (9 BE) Zign Si, dss gilt:

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS 0.06.07 - m7_t-_lsg_cas_gs.pdf Abiturprüfung 07 - Mthmtik Tchnik A II - Lösung mit CAS Tilufgb Ggbn ist di Funktion f mit f ( ) mit IR + und dr mimln Dfini- ( ln( ) tionsmng D f IR. Tilufgb. (8 BE)

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

1 5 dx dz. dx 5. Integriere Resubstituiere 1. dx dz

1 5 dx dz. dx 5. Integriere Resubstituiere 1. dx dz ins Tiltrms (Typ ) Bispil Gsucht ist di Stmmfunktion von ( ) Substituir Diffrnir Stll um () : g() g() Substituir Intgrir Rsubstituir () F() ( ) 0 Bispil 0 Gsucht ist di Stmmfunktion von ( ) 0 Substituir

Mehr

Zeitverhalten eines Hochpass-Messgliedes

Zeitverhalten eines Hochpass-Messgliedes n zur Znrlübung dr Vorlsung Grundlgn dr Msshnik von Prof. Dollingr, niv. dr Bundswhr Münhn, L2 - OHNE GEWÄH - Zivrhln ins Hohpss-Mssglids Ggbn is di Shlung us Abb. mi ) Ermiln Si di Diffrnilglihung für

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Musterlösungen zur 5. Übung

Musterlösungen zur 5. Übung . Aufg, ritt von Edurd Tsingr Mustrlösungn zur 5. Üung Wlchs dr folgndn Sstm ist zitinvrint odr nicht? Erinnrung ws in zitinvrints Sstm ist:. ] -. -n -n -n- 3. % n] n n 4. n % --> ds Sstm ist zitinvrint

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 13. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmogr Hiko Hoffmnn WS 3/4 Höhr Mthmtik I für di Fchrichtung Informtik Lösungsvorschläg zum 3. Übungsbltt Aufgb 49 ) Untrsuchn Si,

Mehr

Fachrichtung Energieelektroniker - Betriebstechnik

Fachrichtung Energieelektroniker - Betriebstechnik Fchrichtung Enrgilktronikr - Btribstchnik 0...0-8 Schülr Dtum:. Titl dr L.E. : Oprtionsrstärkr und stbilisirt Ntzgrät. Fch / Klss : Fchrchnn,. Ausbildungsjhr. Thmn dr ntrrichtsbschnitt :. Dimnsionirung

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungn zur Kursvorlsung Physik II (Elkrodynmik) Sommrsmsr 8 Übungsbl Nr. Aufgb 9: Ldungsvrilung ) Di Gsmldung inr krisförmign Obrfläch is ggbn durch: Q= A rda= rr dr d (i) (ii) Q= r r dr d = Q= r dr d

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Grundlagen Elektrotechnik I

Grundlagen Elektrotechnik I Grundlgn Elktrotchnik I borvrsuch I-30 (vorläufig Nullvrsion ) C- und C-Glidr Dipl-Ing lf Schmi, Dr Andrs Sifrt = I C C Idn, Ergänzungn, Kritik usdrücklich rwünscht Bitt n uns prsönlich odr vi E-Mil n:

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übungsbla Aufgabn mi Lösungn Aufgab : Zwi Drucklufbhälr mi unrschidlichn Volumina V und V sind durch in zunächs vrschlossn Rohrliung vrbundn. Vor Öffnn ds Sprrvnils zu 0 hrrschn in dn Bhälrn unrschidlich

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Badn-Württmbrg:

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt Krlsruhe Institut für Technologie (KIT) Institut für Anlysis Priv.-Doz. Dr. P. C. Kunstmnn Dr. S. Wuglter WS 13/14 Aufgbe 1 Höhere Mthemtik I für die Fchrichtung Elektrotechnik und Informtionstechnik Lösungsvorschläge

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 7 Badn-Württmbrg:

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Frequenzverhalten eines Hochpass Messgliedes

Frequenzverhalten eines Hochpass Messgliedes n zur Zntrlübun dr Vorlsun rundln dr Msstchnik von Prof. Dollinr, niv. dr Bundswhr Münchn, LRT OHNE EWÄHR Frqunzvrhltn ins Hochpss Msslids Abbildun : Schltbild ins Hochpss Msslids ) Frqunzn i. Brchnn Si

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

Neugierig auf diesen Text???

Neugierig auf diesen Text??? Anlysis Eponntilfunktionn Nugirig uf disn Tt??? Intgrtion von Eponntilfunktionn Mit Sustitution und prtillr Intgrtion Dti Nr. 5 Stnd.7. Fridrich W. Buckl INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mth-cd.d

Mehr

Graphentheorie. Aufgabenblatt 3. Besprechung am 22. November 2018 in den Übungen

Graphentheorie. Aufgabenblatt 3. Besprechung am 22. November 2018 in den Übungen Fbri Inormti Wintrsmstr 018/19 Pro. Dr. Ptr Br Grpntori Augbnbtt 3 Bsprung m. Novmbr 018 in dn Übungn Augb 1 Anngswrtprobm) Lösn Si di ogndn Anngswrtprobm: ) n = n 1 + 3 n mit 0 = 0 und 1 = 1. b) b n =

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

Arbeitszeit 60 Minuten Seite 1 von 6. FH München, FB 03 Bordnetze SS 02. Name:... Vorname:... St. Grp...

Arbeitszeit 60 Minuten Seite 1 von 6. FH München, FB 03 Bordnetze SS 02. Name:... Vorname:... St. Grp... Arbitszit 60 Minutn Sit von 6 FH Münchn, F 03 ordntz SS 0 Nm:... Vornm:... St. Grp.... Aufgbnstllr: Prof. Dr. Wrmuth, Arbitszit: 60 min, Hilfsmittl: Tschnrchnr Aufg. Aufg. Aufg. 3 Aufg. 4 Aufg. 5 Aufg.

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

Hochschule Hannover Klausur Physik II

Hochschule Hannover Klausur Physik II Hochchu Hnnovr Kuur Phyik II.6.8 Fkutät II Mchinnbu Zit: 9 in Fch Phyik II i SS8 Hifitt: Forung zur Vorung ------------------------------------------------------------------------------------------------------------------------.

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Grubr, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Hssn Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für GTR und CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis 1 Ganzrational

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

9 Der Residuensatz mit Anwendungen

9 Der Residuensatz mit Anwendungen 36 9 Der Residuenstz mit Anwendungen 9. Definition: f : O C besitze für ε > in U ε ) O die Lurentreihe fz) = c n z ) n. Dnn heißt n= Res f := c S.?? = z = ε 2 ) fz)dz ds Residuum von f in. Andere Schreibweisen:

Mehr

Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.)

Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.) Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi. (Rottions-)Scln Scl gkümmts Fläcntgwk mit blibig Blstung Rottionsscl Midinkuv (Ezugnd) ist von Dwinkl um fst Acs unbängig Vousstzungn: sinngmäß di glicn wi bi

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

Crash-Course Physik Vorlesung 1

Crash-Course Physik Vorlesung 1 Crsh-Cours Physik Vorlsung 1 Trigonomtri: Lösungn 21. Sptmbr 2016 1. Notir für di folgndn vir rhtwinklign Drik di An- und Ggnktht ds jwils ingtrgnn Winkls: b α d f β Anktht von α ist b, Ggnktht ist. Anktht

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

1 Satz von Maxwell und Betti

1 Satz von Maxwell und Betti Univ. Prof. Dr. rer nt. Wofgng H. Müer Technische Universität Berin Fkutät V Lehrstuh für Kontinuumsmechnik und Mteritheorie - LKM, Sekr. MS 2 Einsteinufer 5, 1587 Berin Sätze von Mxwe und Betti / Cstigino

Mehr

Labor Messtechnik Versuch 5 Operationsverstärker

Labor Messtechnik Versuch 5 Operationsverstärker HS oblnz FB Ingnirwsn F Mschinnb Prof. Dr. röbr Lbor Msstchnik rsch 5 Oprtionsvrstärkr Sit von 5 rsch 5: Oprtionsvrstärkr. rschsfb.. Umfng ds rschs Im rsch wrdn folgnd Thmnkris bhndlt: - Nichtinvrtirndr

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

2010 A I Angabe. 0 1 ln 1 x 0 ln 1 x 1. Untersuchen Sie das Verhalten der Funktionswerte f x an den Rändern der Definitionsmenge. 1 ln 1 x 4 1 x 1 1

2010 A I Angabe. 0 1 ln 1 x 0 ln 1 x 1. Untersuchen Sie das Verhalten der Funktionswerte f x an den Rändern der Definitionsmenge. 1 ln 1 x 4 1 x 1 1 BE 3 7....3 A I Angab ln Ggbn ist di rll Funtion : in ihrr größtmöglichn Dinitionsmng ID. ID ; gilt, und brchnn Si dn atn Wrt dr Nullstll dr Zign Si, dass Funtion. Im Zählr muss gltn: Im Nnnr muss gltn:

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

www.math-aufgabn.com Abiturprüfung Mathmatik 7 Badn-Württmbrg (ohn CAS) Pflichttil - Aufgabn Aufgab : ( VP) Bildn Si di rst Ablitung dr Funktion f mit f () + ( sin ). Aufgab : ( VP) ln Brchnn Si das Intgral

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Schwingungen g und Wellen III Erzwungene und überlagerte Schwingungen

Schwingungen g und Wellen III Erzwungene und überlagerte Schwingungen Physik A VL (9.. Schwingungn g und Wlln III Erzwungn und übrlagrt Schwingungn Nachtrag VL (Foli Erzwungn Schwingungn g Übrlagrt Schwingungn Nachtrag VL (Foli Gdämpft Schwingungn schwach Dämpfung Bt Btrachtung

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeprtment E13 WS 211/12 Üungen zu Physik 1 für Mschinenwesen Prof. Dr. Peter Müller-Buschum, Dr. Ev M. Herzig, Dr. Volker Körstgens, Dvid Mgerl, Mrkus Schindler, Moritz v. Sivers Vorlesung 24.11.211,

Mehr

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse.

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. LÖSUNGEN dr Übungsaufgabn II zur Klausur Nr.3 (Eponntialfunktionn Aufgab

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

Empfänger. c = 2, m/s h = 6, Ws e = 1, As

Empfänger. c = 2, m/s h = 6, Ws e = 1, As mpfängr mpfängr otodiod Grnzwnäng urch di in da Sprrgbit inr otodiod indringnd ktromagntich Strahung gigntr Wnäng wrdn durch dn ichtktrichn ffkt di Trägr poitir Ladung (Löchr) und ngatir Ladung (ktronn)

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2016 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1

mathphys-online Abiturprüfung Berufliche Oberschule 2016 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1 Abiturprüfung Bruflich Obrschul 6 Mathmatik Tchnik - A I - Lösung Tilaufgab x Ggbn ist di Funktion f mit f( x) arctan mit dr Dfinitionsmng D x f ] ; ]. Tilaufgab. (6 BE) Bstimmn Si das Mononotonivrhaltn

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Lösungen zu Übungsblatt 5

Lösungen zu Übungsblatt 5 Lösungn u Übungsblatt 5 Zu Aufgab Stlln Si folgnd komplxn Zahln als Zigr im kartsischn Koordinatnsystm dar! Gbn Si Raltil, Imaginärtil und dn Btrag an! a + b 5 c Grafisch Darstllung als komplx Zigr: Raltil,

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

α α Schriftliche Maturitätsprüfung 2015 EES: m (Einpendeln) (Stoss) IES/EES: = für . 3 EES: (Auspendeln) folgt mgs 1

α α Schriftliche Maturitätsprüfung 2015 EES: m (Einpendeln) (Stoss) IES/EES: = für . 3 EES: (Auspendeln) folgt mgs 1 Schriftlich Maturitätsprüfung 5 Kantonsschul ussbühl Schwrpunktfach Physik und Anwndungn dr Mathatik ösungn Aufgab : (5 Punkt) EES: gh v v gh (Einpndln) IES/EES: ( ) v u für (Stoss) v Mit ist u v. 3 3

Mehr

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen www.mthe-ufgben.com Lösungen zum Pflichtteil (ohne GTR und Formelsmmlung) Gebrochenrtionle Funktionen Aufgbe : ) wgr. Asymptote: y, b) wgr. Asymptote: y 0 senkr. Asymptote: x - mit VZW senkr. Asymptote:

Mehr

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen H. Grubr, G. Kowalski, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Nordrhin-Wstfaln Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Lösungsvorschlag Vorbereitung Nr.3 K

Lösungsvorschlag Vorbereitung Nr.3 K Mahmaik Lösungsvorschlag Vorbriung Nr. K..8 Pflichil (wa 0 min) Ohn Taschnrchnr und ohn Formlsammlung (Disr Til muss mi dn Lösungn abggbn sin, h dr GTR und di Formalsammlung vrwnd wrdn dürfn.) Aufgab :

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. r. H. Spohn r. M. Prähofer Zentrlübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik 14. Stetigkeit der Umkehrfunktion Mthemtik für Physiker 3 (Anlysis ) http://www-m5.m.tum.de/allgemeines/ma903

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

Anpassung einer Funktion an Messwerte

Anpassung einer Funktion an Messwerte Anpssung inr Funktion n Msswrt Di Mthod dr klinstn Fhlrqudrt Crl Fridrich Guß (777-855 Brnd Hitznn Msswrt inr Größ wurdn bstit! 8 6 4 8 6 4 3 4 5 6 7 Zit [in] Msswrt t t t 3 3 t 4 4 t n n Funktion zur

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Unbestimmtes Integral, Mittelwertsätze

Unbestimmtes Integral, Mittelwertsätze Unbestimmtes Integrl, Mittelwertsätze Ist f R-integrierbr, dnn knn f(x)dx einfch bestimmt werden, wenn eine Stmmfunktion F (x) von f existiert und beknnt ist. Wir wissen, dss dnn uch F (x) = F (x) + C

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Beugung m Dopplesplt Es ist nicht möglich, Detils eines Ojektes ufzulösen, die (wesentlich) kleiner sind ls die Wellenlänge

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T =f(,) ( kommt nicht vo) wid

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6.Übung Schaltungstechnik SS2009

6.Übung Schaltungstechnik SS2009 6.Übung Schaltungstchnik SS29. Aufgab: mkhrvrstärkr Lrnzil Dimnsionirung ds mkhrvrstärkrs anhand ds Btragsfrqunzgangs. Brücksichtigung nicht-idalr OPV-Eignschaftn. Aufgabnstllung 2 d Ggbn si dr obn dargstllt

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Fachhochschule Hannover vorgezogene Wiederholungsklausur im WS

Fachhochschule Hannover vorgezogene Wiederholungsklausur im WS Fchhochschul Hnnovr vorzon Widrholunsklusur i WS9 5.9.9 Fchrich Mschinnu Zit: 9 in Fch: Physik II i SS9 Hilfsittl: Forlslun zur Vorlsun. Ein Dichtssrät für Flüssikitn (räotr) stht us in Schwikörpr it in

Mehr

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7 Pof.. Nobt pp Wintsst 9/ 7. Novb 9 nil Khlöß Übung zu Volsung PC II Quntnchisch Mollsyst, Ato un Molkülspktoskopi B.Sc. Bltt 7. i uphys Si ist in Si i Spktu s ton Wssstoffs. Si bginnt bi 6 n un nt bi,

Mehr