An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

Größe: px
Ab Seite anzeigen:

Download "An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?"

Transkript

1 An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Beugung m Dopplesplt Es ist nicht möglich, Detils eines Ojektes ufzulösen, die (wesentlich) kleiner sind ls die Wellenlänge der verwendeten Strhlung. s,6λ Beugungsgitter λ θ R λ mn L λ Röntgeneugung: Die Brgg-Gleichung: dsinφ mλ

2 34 Eindimensionle Wellenusreitung 34. Wellen uf Keln Ein elektrisches System estehend us einer elieig verlufenden Hin Leitung und einer Rückleitung esitzt keine definierten Eigenschften. Diese werden er erreicht ei der Doppelstegleitung (Lecherleitung). Bei dieser werden zwei Litzen durch einen Kunststoffträger in einem definierten Astnd gehlten. Ds Signl in solcher Leitung reitet sich ls elektromgnetische Welle us. Diese knn reflektiert werden und zu vielfältigen Interferenzerscheinungen führen. Bessere Eigenschften esitzen Koxilkel. Sie stellen in der Messtechnik den Stndrd dr. Bei einer Koxilleitung efindet sich ein Kupferleiter im Innern des weitenleiters(außenleiter). Durch eine Isoltion werden eide voneinnder getrennt, und dem Kel mechnische Stilität gegeen. Ds elektrische Feld, ds sich eim Anlegen einer Spnnung ufut, und ds mgnetische Feld, ds sich eim Stromfluss ufut entstehen nur zwischen Außen- und Innenleiter. Außerhl des Kels treten die Felder nicht uf. R,L,C und G sind die Widerstnds-, Induktivitäts-, Kpzitäts- und Isoltionsleitwerteläge der Leitung (pro Länge). Wrum pro Länge? L R ρ A

3 Die Üertrgung von Signlen uf Keln ist ein eindimensionles Prolem. Physik II: Ut () U e iωt () e i ω It I t Wirkwiderstnd Induktor Kondenstor R G R iωl iωc iωc 34. Wellenwiderstnd und Aschlusswiderstnd Wir nehmen n, dss zwischen den Leitern n der Stelle x die Spnnung Ut () U e iωt nliegt und dss der Strom () e i ω It I t ist. An der Stelle x+ x esteht dnn die Spnnung + und es fließt der Strom +

4 Nch den Kirchhoffschen Gesetzen gilt: ( + ) R' + iωl' x ( + ) G' + iωc' x d d ( R' + iωl' ) ( G' + iωc' ) dx dx oder: d ( R' + iωl' )( G' + iωc' ) γ dx Diese linere diff. Gleichung ht eine llgemeine Lösung: mit ( ) ( ) ( ' ')( ' ') γ R + iωl G + iωc α + iβ e + e γx + γx Die Lösung eschreit Üerlgerung einer von links nch rechts und einer von rechts nch links lufenden mit α gedämpften Welle. Für R (die Leitung ht keinen Widerstnd),G (die Isolierung ht kein Leck) ist α. Die Wellen sind dnn ungedämpft und β ω LC ' ' k ist die Wellenzhl. Die Phsengeschwindigkeit ist von der Frequenz unhängig. v ω / k / LC ' ' Eine verlustlose Leitung ist dispersionsfrei. e e + e e α x i β x + α x + i β x Im Weitern vernchlässigen wir den Widerstnd der Leitung und Leitfähigkeit der Isolierung.

5 d ikx + ikx Für eine verlustlose Leitung e + e iωl ' dx Anderseits: d ikx + ikx ikx + ikx ike + ike ( ike + ike dx ) iωl' ikx ikx dher: + e / e / L' iωl' iωl' L' mit C ' ik iω LC ' ' C ' wird ls Wellenwiderstnd ezeichnet. Aer: ikx ikx / d + e + e ikx + ikx e / e / ist reell und frequenz-unhängig. Wenn e ikx, dnn I U / und die Leistung: P U / In der Messtechnik nutzt mn meistens Keln mit 5 Ohm. Ds elektrische Feld im Kel: EdA Q / εε da π r x Q E πεε r x Ds elektrische Feld ußer dem Kel ist Null: EdA + Q Q / εε ( ) Berechnung von C und L (Physik II) Q +Q

6 Ds Potenzil zwischen den Leitern: U Andererseits: U Q C dmit ht ein Stück eines Koxilkels der Länge x die Kpzität: Edr C Q ln πεε x πε ε x ln / ( ) C ' πε ε ln / ( ) Die Induktivität wird durch die mgnetische Energie des Mgnetfelds im Rum zwischen den Leitern gerechnet: Die Energie: Andererseits: B I H µ πr πr π I x U µ H dv µ π r x dr µ I ln LI L ' I U x dmit: Mn knn jetzt den Wellenwiderstnd erechnen: L ' µ ln π L' C' π µ εε ln Bei einem Koxilkel knn durch Vrition von ε und / leicht vriiert werden. c v LC ' ' εε µ ε Die Phsengeschwindigkeit der durch ds Kel geführten Welle ist die gleiche, wie ei der Ausreitung einer eenen Welle in dem gleichen Medium.

7 Bei x (Ausgng): und + ( )/ Anderseits ist n dem Aschlusswiderstnd : ( ) / + + ( ) Dher esteht die Beziehung Fügen wir ds Reflexionsverhältnis r r + Die Reflexion verschwindet ei Aschluss des Kels mit dem Wellenwiderstnd:. Reflexionsverhältnis ist im Allgemeinen komplex: Die Spnnungsmplitude uf der Leitung ht den Wert: r i re φ ikx + ikx ( ) ( ) e + re U + r + r cos kx φ Mit den Extremwerten: ( + r ) und ( r ) mx min

8 Den Quotienten s + r mx min r ezeichnet mn ls Stehwellenverhältnis. Aus der Messung von s lässt sich r estimmen, während mn φ us der Lge der Extrem estimmen knn. Bsp. Für die Lge des. Minimums vor dem Kelende kxmin φ π 34.3 Impednztrnsformtion ikl ikl + ikl ikl Am Eingng des Kels gilt: ( l) ( ) ( l) ( e re ) e + re Dmit ergit sich für den (scheinren) Eingngswiderstnd ( ) ( ) l e re + ikl ikl U l e + re e + ikl ikl Ein korrekt geschlossenes Kel ( ) ht den gleichen Eingngswiderstnd wie ein unendlich lnges Kel: e. + i tn ( kl ) Aus der Messung von e ei eknnten Im Allgemein e Keleigenschften knn mn den + i tn ( kl ) Aschlusswiderstnd estimmen Wenn, d.h. r e

9 ( kl ) i tn i tn kl e ( ) e i i tn kl kl ( ) tn ( ) Am offenen und m kurzgeschlossenen Kel endlicher Länge ist der Eingngswiderstnd rein imginär. Die Leistung geht nicht rein!!! Für eine λ/ Leitung (klπ) unhängig von : e Für eine λ/4 Leitung (klπ/) : e 34.5 Impednznpssung Prolem: reflexionsfreie Anpssung einer Leitung mit dem Wellenwiderstnd n eine Leitung mit dem Wellenwiderstnd. Lösung: ein Trnsformtor us einer λ/4 Leitung mit dem i Wellenwiderstnd: e i ei i / i dmit ist ds Kelstück reflexionsfrei geschlossen

6 Eindimensionale Wellenausbreitung

6 Eindimensionale Wellenausbreitung U: Latex-docs/Angewandte Physik/2004/VorlesungWS04-05, 7. Januar 2005 98 6 Eindimensionale Wellenausbreitung 6.1 Wellen auf Kabeln Ein elektrisches System bestehend aus einer beliebig verlaufenden Hin

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

r = b r = c r = a PSfrag replacements Betrachtet wird der stationäre Fall.

r = b r = c r = a PSfrag replacements Betrachtet wird der stationäre Fall. Aufge 1 (16 Punkte) Gegeen ist ein verlustehfteter Kondenstor mit kugelsymmetrischem Aufu. Die Mterileigenschften und die ngelegte Spnnung sind der folgenden Querschnittszeichnung zu entnehmen: r = r =

Mehr

5.5.1 Wellenkette ******

5.5.1 Wellenkette ****** 5.5. ****** Motivtion Identische Hnteln sind n einem vertiklen Torsionsbnd befestigt. Durch Auslenkung einer Hntel wird eine lngsm verlufende Welle erregt, so dss sich die Welleneigenschften sehr gut beobchten

Mehr

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y Felder und Wellen WS 6/7 Musterlösung zur 3. Übung 3. Aufgbe Hinlufende Welle: E e = E e e jωt k e r) e y ke = k cosφ e e z +sinφ e e x ) Reflektierte Welle: E r = E r e jωt k r r) e y kr = k cosφ r e

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeprtment E13 WS 211/12 Üungen zu Physik 1 für Mschinenwesen Prof. Dr. Peter Müller-Buschum, Dr. Ev M. Herzig, Dr. Volker Körstgens, Dvid Mgerl, Mrkus Schindler, Moritz v. Sivers Vorlesung 24.11.211,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 03 mit Lösungsvorschlägen

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 03 mit Lösungsvorschlägen Dr.-ng. Wilfried Dnkmeier Elektro- und nformtionstechnik WS 22/23 Mthemtik Aufge Mthemtik - Üungsltt 3 mit Lösungsvorschlägen Berechnen Sie ds Doppelintegrl (enötigt zur Berechnung von Verformung und Mterilspnnungen

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Auswertung zum Praktikum Grundlagen der Meßtechnik Versuch Nr.: 4 Kapazitätsmessung in der Wechselstrombrücke

Auswertung zum Praktikum Grundlagen der Meßtechnik Versuch Nr.: 4 Kapazitätsmessung in der Wechselstrombrücke Auswertung zum Prktikum Grundgen der Meßtechnik Versuch Nr.: 4 Kpzitätsmessung in der Wechsestromrücke Theoretische Grundgen Die Kpzitätsmessung n einem Kondenstor knn sehr kompiziert sein. Dies iegt nicht

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt 1 4 Hperel 4.1 Die Hperel ls Kegelschnitt Wird ein Kreiskegel mit dem hlen Öffnungswinkel α von einer Eene σ geschnitten, die mit der Kegelchse einen Wink β < α einschliesst, so entsteht ls Schnittkurve

Mehr

Der Kern dieser Sache ist also der Versuch der perfekten Leistungsanpassung (mit Ri = Ra) im kompletten System!

Der Kern dieser Sache ist also der Versuch der perfekten Leistungsanpassung (mit Ri = Ra) im kompletten System! S-Prmeter ( Streu- oder Scttering-Prmeter) -- eine kurze Einführung Bei hohen Frequenzen lssen sich Ströme und Spnnungen nicht mehr so einfch messen, ußerdem klppt uch die Sche mit Leerluf- oder Kurzschluss-Messung

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

a = x 0 < x 1 <... < x n = b

a = x 0 < x 1 <... < x n = b 7 Integrtion 7.1 Integrtion von Treppenfunktionen Im folgenden ezeichnen wir mit I = [, ] ein eschränktes und geschlossenes Intervll. Für Punkte = x 0 < x 1

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

9.5. Uneigentliche Integrale

9.5. Uneigentliche Integrale 9.5. Uneigentliche Integrle Bestimmte und unestimmte Integrle hängen zwr eng zusmmen, er die Existenz des einen grntiert nicht immer die des nderen: Eine integrierre Funktion muß keine Stmmfunktion esitzen,

Mehr

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2 Diskrete Energien 1. 8 entdeckten Mrc Fries und Andrew Steele uf einem Meteoriten sogennnte Crbon Whiskers, lnggestreckte Nnostrukturen us Kohlenstoff, von denen ngenommen wird, dss sie im Rum um junge

Mehr

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik Prktikum Klssische Physik I Versuchsvorereitung: P-3, 40, 4: Geometrische Optik Christin Buntin Gruppe Mo- Krlsruhe, 09. Novemer 2009 Inhltsverzeichnis Brennweiten-Bestimmungen 2. Einfche Bestimmung der

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils

Mehr

Aufgabensammlung I 2 P 1

Aufgabensammlung I 2 P 1 A3 Aufgbensmmlung Üb. 3.1: Die gerden Leiter einer 3-Leiternordnung liegen in den Ecken eines gleichseitigen Dreiecks mit den Seitenlängen = 30 cm. Ermitteln Sie den Betrg der mgnetischen Feldstärke im

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 18.04.2018 Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Aufgabe 1. Aufgabe 2. Aufgabe 3. Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst

Aufgabe 1. Aufgabe 2. Aufgabe 3. Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 000 1 Aufgabe 1 Die magnetische Induktion außerhalb einer begrenzten Stromverteilung resultiert mit dem magnetischen Dipolmoment m und dem

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Übungsaufgaben Vektoranalysis

Übungsaufgaben Vektoranalysis Kllenrode, www.sotere.uos.de Übungsufgben Vektornlysis. Bestimmen ie die Quellen des Feldes A B. Lösung: Rechenregeln (Produktregel) verwenden, du die Abkürungen C A und D B : ( A B) ( C D) D ( C) C (

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

41 Normierte Räume über dem Körper der komplexen Zahlen

41 Normierte Räume über dem Körper der komplexen Zahlen 41 Normierte Räume über dem Körper der komplexen Zhlen 411 Rechenregeln für komplexe pseudonormierte Räume 412 Stetigkeits-, Differenzierbrkeits- und Integrierbrkeitskriterien für Abbildungen in einen

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtishes Institut Prof. Dr. F. Vllentin ufge ( + 7 = 0 Punkte) Einführung in die Mthemtik des Opertions Reserh Sommersemester 0 en zur Klusur (7. Juli 0). Es seien M = {,..., n },

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten orlesung können Sie sich noch erinnern? Es gibt keine mgnetischen Monopole. Der Gußsche Stz für Mgnetfelder: Φ B = BdA = 0 Elektronen besitzen einen Spindrehimpuls

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

F ds= F ds. Theorem 1: "Stefanie Bayer" Wegintegrale und Kurvenintegrale

F ds= F ds. Theorem 1: Stefanie Bayer Wegintegrale und Kurvenintegrale Wegintegrle und Kurvenintegrle Theorem : Sei F ein uf dem Weg = [, ] stetiges Vektorfeld und sei = [, ] Reprmeteristion von. Wenn richtungs-whrend ist, dnn gilt und wenn richtungs-wechselnd ist, dnn gilt

Mehr

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.) Datum: 13.4.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung 1 Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Simulation von Störungen mit zeitlichen Schranken

Simulation von Störungen mit zeitlichen Schranken Simultion von Störungen mit zeitlichen Schrnken Die geräuchlichen sttistischen Verteilungen können elieig große Werte hervorringen, ws ei der Simultion von Störungen oft nicht erwünscht ist. Verwendet

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Dirac sche Deltafunktion: ( =11 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Dirac sche Deltafunktion: ( =11 Punkte) Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Übungen zur Klssischen Theoretischen Physik III (Theorie C Elektrodynmik) WS -3 Prof. Dr. Alexnder Mirlin Bltt : Lösungen

Mehr

Kegelschnitte. Geschichte der Kegelschnitte

Kegelschnitte. Geschichte der Kegelschnitte Kegelschnitte Kegelschnitte ds sind geometrische Figuren, die sich ergeen, wenn mn einen Kegel und eine Eene einnder schneiden lässt. Wir unterscheiden 3 Tpen von Kegelschnitten: Prel, Ellipse und Hperel.

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 10

Grundlagen der Physik 3 Lösung zu Übungsblatt 10 Grundlgen der Physik 3 Lösung zu Übungsbltt Dniel Weiss 5. Dezember Inhltsverzeichnis Aufgbe - Dynmik im Kstenpotentil Aufgbe - Minimlenergie des hrmonischen Oszilltors 3 Aufgbe 3 - Näherung relistischer

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π] Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Mathematische Formeln

Mathematische Formeln Mathematische Formeln Vektorfeld E(r ), skalares Feld f(r ) Kartesische Koordinaten x, y, Ortsvektor r =(x, y, ) =xe x + ye y + e = re r Linienelement: ds = dx e x + dy e y + d e Volumenelement dv = dx

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 05.04.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt., 97%)

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer 4. Potentiltopf Gruppe Neumnn: Sebstin Guttenbrunner Drio Knebl Mri Kortschk Corneli Reinhrter Peter Schntl Gerld Schwrzbuer Ein rechteckiger, eindimensionler Potentiltopf ist ein einfches Modell, ds ls

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Aufgabe 1, Musterlösung

Aufgabe 1, Musterlösung Musterlösungen Klusur Mechnik I vom 6. März 8 Seite von ufge, Musterlösung ür ds drgestellte System estimme mn die uflgerrektionen. Geg.:, M, q, Ges.: uflgerrektionen q., G!. ) * / G. + Lösungsvorschlg

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

2 Der Stromkreis. 2.1 Bewegte Ladungen. Elektronenüberschuß. Elektronenmangel

2 Der Stromkreis. 2.1 Bewegte Ladungen. Elektronenüberschuß. Elektronenmangel Seite 16 2 Der Stromkreis 2.1 Bewegte Ldungen Bei nicht homogener Verteilung positiver und negtiver Ldung: ufu eines elektrischen Feldes E - Krft F q Euf jede Ldung q - ntrieskrft (elektromotorische Krft,

Mehr

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3 ELEKTROMAGNETISCHE WELLEN

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3 ELEKTROMAGNETISCHE WELLEN Phsik PH3/4 (Schwingungen Wellen Optik) 7_ElmgWellen_Einfuehrung_.doc - 1/11 3 ELEKTROMGNETISCHE WELLEN Einige Formeln us der Vektornlsis siehe du Skript von Schs/Herberg: Vektoropertoren: http://w3-o.hm.edu/

Mehr

(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld

(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld . a) E = grad ϕ = e r ϕ/ r = ϕ e r/ e r b) ρ = div D = D ( y 2y2 y 2 y ) = 2D y 2 y 3 y 2 y 3 c) J = rot H = H e z ( / )) = d) F = q v B = q v B 5 (3, 4,) e) U = = rb Ed l = r a [ ] E y2 2 r (,,) E y=

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

9 Der Residuensatz mit Anwendungen

9 Der Residuensatz mit Anwendungen 36 9 Der Residuenstz mit Anwendungen 9. Definition: f : O C besitze für ε > in U ε ) O die Lurentreihe fz) = c n z ) n. Dnn heißt n= Res f := c S.?? = z = ε 2 ) fz)dz ds Residuum von f in. Andere Schreibweisen:

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 27 Aufgabe Im freien Raum wird das elektrische Feld E E x a ) 2 ey gemessen. Wie groß ist die elektrische Ladung in einem würfelförmigen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenurg/Ostfrieslnd/Wilhelmshven Fch. Technik, At. Elektrotechnik u. Informtik Prof. Dr. J. Wiee www.et-inf.fho-emden.de/~wiee Mthemtik, Teil B Inhlt:.) Grundegriffe der Mengenlehre.) Mtrizen, Determinnten

Mehr

Die Greensche Funktion der zeitabhängigen Difffusionsgleichung in freien Raum

Die Greensche Funktion der zeitabhängigen Difffusionsgleichung in freien Raum Kpitel Die Greensche Funktion der zeitbhängigen Difffusionsgleichung in freien Rum In diesem und dem nächsten Kpitel werden Greensche Funktionen für zeitbhängige Differentilgleichungen und die zugehörigen

Mehr

Aufgabensammlung: Vertiefung der Schulmathematik 1.1 Handelt es sich bei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung.

Aufgabensammlung: Vertiefung der Schulmathematik 1.1 Handelt es sich bei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung. Fkultät für Mthemtik Cmpus Essen Wielnd Wilzek.8.-.9.06 Aufgensmmlung: Vertiefung der Schulmthemtik. Hndelt es sich ei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung. ) Person

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Vektorrechnung Produkte

Vektorrechnung Produkte Vektorrechnung Produkte Die Luft fliesst von ussen gegen ds Zentrum des Tiefdruckgeiets üer Islnd Wegen der Erdrottion eginnt die Luft zu rotieren Die ewegte Luft nimmt Wolken uf ihrem Weg mit zeigt uns

Mehr

Ausschreibungstext. Geometrie in der Analysis. Prof. Dr. Peter Gallin Universität Zürich

Ausschreibungstext. Geometrie in der Analysis. Prof. Dr. Peter Gallin Universität Zürich Geometrie in der Anlysis Prof. Dr. Peter Gllin Universität Zürich 23. Schweizerischer Tg üer Mthemtik und Unterricht 12. Septemer 2012 I: 1:30 15.15 Uhr II: 15:5 16:30 Uhr Peter Gllin ehem. Gymnsillehrer

Mehr

Akustische Manipulation mikroskopischer Tropfen und Partikel

Akustische Manipulation mikroskopischer Tropfen und Partikel Akustische Manipulation mikroskopischer Tropfen und Partikel Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. eingereicht an der Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Universität

Mehr

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

B005: Baumechanik II

B005: Baumechanik II Sommersemester 05 Fkultät für uingenieurwesen und Umwelttechnik Dozent: nsgr Neuenhofer 005: umechnik II 3. März 05 Husübung -ösung ufgbe () Wie hoch könnten wir theoretisch eine Sthlstütze (konstnter

Mehr

2. Grundgleichungen der linearen FEM

2. Grundgleichungen der linearen FEM . Grundgleichungen der lineren FEM Fchbereich Prof. Dr.-Ing. Mschinenbu Abteilung Mschinenbu. Ekurs Mtrizenrechnung Zum weiteren Verständnis der FEM sind einige Grundkenntnisse in der Mtrizenlgebr erforderlich!

Mehr

Übungen zu Experimentalphysik 2 für MSE

Übungen zu Experimentalphysik 2 für MSE Physik-Department LS für Funktionelle Materialien SS 28 Übungen zu Experimentalphysik 2 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Sebastian Grott, Julian Heger, Dr. Neelima Paul,

Mehr