Mikroökonomik B 7. Kooperative Spiele

Größe: px
Ab Seite anzeigen:

Download "Mikroökonomik B 7. Kooperative Spiele"

Transkript

1 Mikroökonomik B 7. Kooperative Spiele Paul Schweinzer 14. Juli 2009, Vorabversion. 1 / 32

2 Literaturangaben Osborne, M.J. & Rubinstein, A. (1994) A Course in Game Theory, MITP, Kapitel 13, 14, & 15. Das frei zugängliche Skriptum von Thomas Ferguson: tom/game Theory/coal.pdf. 2 / 32

3 Themen So die Zeit ausreicht, werden wir folgende Themen behandeln a Der Kern b Shapley Wert c Verhandlungssituation d Nash-Verhandlungslösung e Monotone Verhandlungslösung. Ein Spiel heißt kooperativ, wenn die Spieler durch abgestimmtes Vorgehen, dh durch die gemeinsame Wahl einer Strategie (in einer sog Koalition), einen Zusatzgewinn gegenüber jenen Situationen erzielen können in denen jeder nur für sich spielt. Wir stellen uns die Fragen (a) welche Koalitionen stabil sind und unter (b e) wie ein allfälliger Zusatzgewinn aufzuteilen wäre. 3 / 32

4 Der Kern Der Kern ist ein Lösungskonzept der kooperativen Spieltheorie. Er basiert auf der Idee, dass keine Teilmenge an Spielern eine für sie vorteilhafte Koalition bilden kann in der jedes Koalitionsmitglied besser gestellt wäre als dies ohne die Koalition der Fall ist. Wir beginnen mit einigen Definitionen. 4 / 32

5 SKF-TU Def: Ein Spiel in Koalitionsform mit transferierbarem Nutzen (SKF-TU) (N,v) besteht aus 1. einer endlichen Spielermenge N = {1,2,...,n}, 2. einer charakteristischen Funktion v die jeder nichtleeren Koalition S N einen Wert v(s) zuordnet v : S N R. 5 / 32

6 Beispiel SKF-TU Betrachten sie folgendes SKF-TU mit drei Spielern N = {1,2,3} interpretiert als P1: Verkäufer P2: potentieller Käufer P3: potentieller Käufer. P1 verkauft ein einzelnes Gut dessen Herstellung ihr e4 kostet. Die Käufer sind am Kauf höchstens eines Gutes interessiert und wertschätzen dieses mit P2: e9, P3: e11. 6 / 32

7 Beispiel SKF-TU: Charakterisitsche Funktion Wir definieren nun die charakteristische Funktion v wie folgt v({1,2}) =e9 -e4 =e5, v({1,3}) =e11 -e4 =e7, v({2,3}) =e0, v({1}) = v({2}) = v({3}) =e0, v({1,2,3}) =e7. 7 / 32

8 Marginale Beiträge Def: Der marginale Beitrag von Spieler i N ist MC i = v(n) v(n {i}). Wir schreiben den marginale Beitrag von Koalition S N als v(n) v(n S). In unserem Beispiel sind die marginalen Beiträge gegeben durch MC 1 = v({1,2,3}) v({2,3}) =e7 -e0 =e7, MC 2 = v({1,2,3}) v({1,3}) =e7 -e7 =e0, MC 3 = v({1,2,3}) v({1,2}) =e7 -e5 =e2. 8 / 32

9 Weitere Definitionen Def: Gegeben das SKF-TU (N,v), ordnet die Allokation (x 1,x 2,...,x n ) jedem Spieler eine reelle Zahl zu. Def: Im SKF-TU (N,v) heißt die Allokation (x 1,x 2,...,x n ) individuell rational, wenn x i v({i}) für alle i N. Def: Im SKF-TU (N,v) heißt die Allokation (x 1,x 2,...,x n ) n effizient, wenn x i = v(n). i Def: Eine individuell rationale und effiziente Allokation (x 1,x 2,...,x n ) des SKF-TU (N,v) erfüllt das marginale Beitragsprinzip, wenn x i MC i für alle i N. 9 / 32

10 Beispiel SKF-TU In unserem Beispiel ist der insgesamt erzeugte Wert gleich e7. Die marginalen Beiträge waren MC 1 = v({1,2,3}) v({2,3}) =e7 -e0 =e7, MC 2 = v({1,2,3}) v({1,3}) =e7 -e7 =e0, MC 3 = v({1,2,3}) v({1,2}) =e7 -e5 =e2. Das marginale Beitragsprinzip sagt uns nun, daß P2 keinen Wertanteil bekommen soll, da ihr marginaler Beitrag zu Koalition v({1,2,3}) gleich Null ist, P3 trägte2 bei und kann deshalb nicht mehr alse2 erhalten, P1 kann sich damit ein Minimum vone7 -e2 =e5 sichern, wir wissen allerdings nichts darüber, wie die e2 zwischen P1 und P3 aufgeteilt werden sollen. (Dies ist Verhandlungssache.) 10 / 32

11 Der Kern Basierend auf der Allokation (x 1,x 2,...,x n ), definieren wir nun für jede Teilmenge S N die Schreibweise x(s) = i S x i. Def: Eine Allokation (x 1,x 2,...,x n ) liegt im Kern des SKF-TU (N,v) wenn sie effizient ist und für jede Teilmenge S N gilt, daß x(s) v(s). Beachten sie: Kernallokationen sind also individuell rational, und Kernallokationen erfüllen das marginale Beitragsprinzip. 11 / 32

12 Der Kern Satz: Eine effiziente Allokation (x 1,x 2,...,x n ) liegt im Kern des SKF-TU (N,v) wenn und nur wenn für jede Teilmenge S N gilt, daß x(s) MC S. 12 / 32

13 Der Kernbeweis 1. Die Allokation (x 1,x 2,...,x n ) sei effizient und im Kern. Dann folgt x(n) = v(n) aus der Effizienz. Wir betrachten nun N S und benutzen die Kernbedingung x(n S) v(n S). Da x(n) = x(n S)+x(S), können wir die Terme zu x(s) v(n) v(n S) = MC S umformen. 2. Im umgekehrten Fall nehmen wir an, daß die Allokation (x 1,x 2,...,x n ) effizient ist und für jede Teilmenge S aus N gilt, daß x(s) MC S. Dann folgt wiederum x(n) = v(n) aus der Effizienz. Wir betrachten nun N S und benutzen die Bedingung x(n S) MC N S = v(n) v(s). Da x(n) = x(n S)+x(S) gilt, können wir diese zu x(s) v(s) umformen. 13 / 32

14 Der Kern einer kompetitiven Ökonomie Satz: (Aumann 1964, Kern-Äquivalenzsatz) Die Menge der Kernallokationen in einer (passend definierten) Edgeworth-Ökonomie ist identisch zur Menge der Walras schen Gleichgewichtsallokationen. 14 / 32

15 Shapley Wert Shapley (1953) definiert sein Lösungskonzept axiomatisch: A1 Pareto-Effizienz: Der Wert der großen Koalition wird an die Spieler verteilt. A2 Symmetrie: Spieler mit gleichen marginalen Beiträgen erhalten das gleiche. A3 Null-Spieler: Ein Spieler mit marginalem Beitrag null zu jeder Koalition erhält null. A4 Additivität: Wenn das Spiel in zwei unabhängige Spiele zerlegt werden kann, mit den charakteristischen Funktionen v 1 und v 2, dann soll die Auszahlung jedes Spielers im zusammengesetzten Spiel v 1 +v 2 der Summe der Auszahlungen in den aufgeteilten Spielen entsprechen. 15 / 32

16 Shapley Wert Satz: (Shapley 1953) Spieler i s Shapley Wert q i im SKF-TU (N,v) ist gegeben durch q i (N,v) = S N ( S 1)! (n S )! n! (v(s) v(s {i})). Der Shapley Wert q i ist die einzige Auszahlungsfunktion, welche die Axiome A1 A4 erfüllt. 16 / 32

17 Interpretation des Shapley Wertes q i (N,v) = S N ( S 1)! (n S )! n! } {{ } A (v(s) v(s {i})). }{{} B 1. (n S )!( S 1)! gibt die Anzahl der möglichen Permutationen, in denen Spieler i zu einer in beliebiger Reihenfolge entstandenen Koalition von Spielern aus S hinzukommt. 2. n! gibt die Anzahl aller möglichen Permutationen. Also entspricht A dem Anteil an Permutationen, in denen Spieler i nach den anderen Spielern aus S und vor den Spielern aus N S auftritt. 3. B gibt den marginalen Beitrag an, der durch i s Beitritt zu Koalition S entsteht. 17 / 32

18 Shapley Wert vs Kern Der Shapley Wert liegt nicht notwendigerweise im Kern. Dh. obwohl der Shapley Wert aus Fairness-Gründen normativ attraktiv sein mag, bietet er unter umständen keine stabile Handlungsanleitung! 18 / 32

19 Beispiel: Abstimmungsspiel A, B, C und D bekommen je 45, 25, 15 und 15 Stimmen. Mindestens 51 Stimmen werden benötigt um eine e100m Zahlung zu erlangen. Wie würden die e100m durch den Shapley Wert aufgeteilt werden? B, C und D sind symmetrisch: sie geben den gleichen marginalen Beitrag zu jeder Koalition sie tragen 100M zu {A}, {C,D}, {B,D} und {B,C} bei, während sie nichts zu allen anderen Koalitionen beitragen. Einsetzen in die Formel für q i (N,v) ergibt die Auszahlungen { 50, 50 3, 50 3, 50 } / 32

Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational sind.

Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational sind. Spieltheorie Sommersemester 2007 1 Der Kern Sei I = {1, 2,...,n} und Γ = (I, v). Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational

Mehr

8. Vorlesung Spieltheorie in der Nachrichtentechnik

8. Vorlesung Spieltheorie in der Nachrichtentechnik 8. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Kooperative Spieltheorie Kooperative Spiele haben die Möglichkeit verbindlicher

Mehr

Mikroökonomik B 5. Informationsökonomik

Mikroökonomik B 5. Informationsökonomik Mikroökonomik B 5. Informationsökonomik Paul Schweinzer 16. Juni 2009. 1 / 11 Literaturangaben Jehle, G. und P. Reny (2001), Kapitel 8.1 Varian, H. (2007), Kapitel 36 Bolton, P. & M. Dewatripont (2005),

Mehr

Algorithmische Spieltheorie (ADM III)

Algorithmische Spieltheorie (ADM III) Algorithmische Spieltheorie (ADM III) Britta Peis TU Berlin SoSe 2013 1 Allgemeines Vorlesungen: Mittwochs, 10:15 11:45, MA 212 Donnerstags, 12:15 13:45, MA 212 (teilweise auch Freitags, 10:15 11:45, MA

Mehr

3.4 von Neumannsche Theorie kooperativer Spiele

3.4 von Neumannsche Theorie kooperativer Spiele 3.4 von Neumannsche Theorie kooperativer Spiele Gliederung Die charakteristische Funktion eines Spieles Der Wert eines Spieles und Strategische Äquivalenz Der von Neumannsche Lösungsbegriff Definition

Mehr

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen Seminararbeit zur Spieltheorie Thema: Rationalisierbarkeit und Wissen Westfälische-Wilhelms-Universität Münster Mathematisches Institut Dozent: Prof. Dr. Löwe Verfasst von: Maximilian Mümken Sommersemester

Mehr

Anreize abzuweichen wenn Empfehlung Pub gegeben wird? Nicht-bindende Vereinbarung ist self-enforcing.

Anreize abzuweichen wenn Empfehlung Pub gegeben wird? Nicht-bindende Vereinbarung ist self-enforcing. Spieltheorie II. Kooperation in der nicht-kooperativen Spieltheorie Battle of the sexes Sp. 2: Pub Sp. 2: Party Sp.1: Pub 3,1 0,0 Sp.1: Party 0,0 1,3 Wahrscheinlichkeiten für NE in gemischten Strategien

Mehr

Kooperative Spiele und Lösungskonzept des Shapley- Wertes

Kooperative Spiele und Lösungskonzept des Shapley- Wertes Wirtschaftswissenschaftliche Fakultät Lehrstuhl für VWL, insbesondere Wirtschaftstheorie (Mikroökonomie) Prof. Dr. Friedel Bolle Kooperative Spiele und Lösungskonzept des Shapley- Wertes Kalender Koc Kalender

Mehr

Seminarvortrag: The Core - Der Kern eines Koalitionsspiels. Helena Wierach

Seminarvortrag: The Core - Der Kern eines Koalitionsspiels. Helena Wierach Seminarvortrag: The Core - Der Kern eines Koalitionsspiels Helena Wierach Inhaltsverzeichnis Einführung 3 2 Koalitionsspiele mit transferierbarem Nutzen 3 2. Denition....................................

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

D Spieltheorie und oligopolistische Märkte

D Spieltheorie und oligopolistische Märkte D Spieltheorie und oligopolistische Märkte Verhaltensannahmen in der Markttheorie, die bisher analysiert wurden Konkurrenz: viele sehr kleine Wirtschaftssubjekte, die für sich genommen keinen Einfluss

Mehr

Einführung in die Spieltheorie

Einführung in die Spieltheorie Manfred J. Holler Gerhard Illing Einführung in die Spieltheorie Vierte, vollständig überarbeitete und erweiterte Auflage Mit 92 Abbildungen Springer 1. Einführung 1 1.1 Spieltheorie und Ökonomie 1 1.2

Mehr

Einführung in die Spieltheorie

Einführung in die Spieltheorie Manfred J. Hollcr Gerhard Illing Einführung in die Spieltheorie Sechste, überarbeitete Auflage mit 93 Abbildungen 4y Springer Inhaltsverzeichnis 1. Einführung 1 1.1 1.2 1.3 Spieltheorie und Ökonomie Gefangenendilemma

Mehr

Einführung in die Spieltheorie

Einführung in die Spieltheorie Manfred J. Holler Gerhard Illing Einführung in die Spieltheorie Sechste, überarbeitete Auflage mit 93 Abbildungen 4y Springer Inhaltsverzeichnis 1. Einführung 1.1 Spieltheorie und Ökonomie 1.2 Gefangenendilemma

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Nicht-kooperative Spiele

Nicht-kooperative Spiele Kapitel 1 Nicht-kooperative Spiele 1.1 Zwei-Personen-Spiele Definition 1: Ein Zwei-Personen-Spiel Γ besteht aus einem Paar nichtleerer Mengen S T zwei reellwertigen Funktionen φ 1 φ 2 auf dem kartesischen

Mehr

Graduiertenseminar Spieltheorie

Graduiertenseminar Spieltheorie Syddansk Universitet 6. 8. Mai 2009 Informationen 1 Einführung, Motivation Koordinaten Phone: +45 6550 2152 E-mail: psu@sam.sdu.dk URL: http://www.sam.sdu.dk/staff/psu Auf meiner Homepage unter dem Link

Mehr

Einführung in die Spieltheorie

Einführung in die Spieltheorie Seminar über Algorithmen - Einführung in die Spieltheorie Nadja Scharf Institut für Informatik Einführung in die Spieltheorie nach Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game Theory, Kapitel

Mehr

Existenz eines Nash Gleichgewichts

Existenz eines Nash Gleichgewichts Existenz eines Nash Gleichgewichts Ei Existenztheorem: Wenn für ein Spiel = (N, S, u) gilt, dass (i) der Strategieraum S kompakt und konvex ist und (ii) die Auszahlungsfunktion u i (s) jedes Spielers stetig

Mehr

Mikroökonomik B Teil II: Spieltheorie

Mikroökonomik B Teil II: Spieltheorie Mikroökonomik B Teil II: Spieltheorie Dennis Gärtner Vorabversion Was ist Spieltheorie? Spieltheorie beschäftigt sich mit Multi-Personen-Entscheidungsproblemen: Präferenzen der Spieler über ihre Entscheidung

Mehr

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Fakultät Wirtschaftswissenschaften Professur für Volkswirtschaftslehre, insb. Managerial Economics VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Übung 1 Mark Kirstein mark.kirstein@tu-dresden.de Dresden,

Mehr

4 Verhandlungsspiele. 4.1 Einleitung. Literaturhinweise zu Kapitel 4:

4 Verhandlungsspiele. 4.1 Einleitung. Literaturhinweise zu Kapitel 4: Spieltheorie (Winter 2009/10) 4-1 Prof. Dr. Ana B. Ania 4 Verhandlungsspiele Literaturhinweise zu Kapitel 4: Osborne (2004), Kapitel 16 Gibbons (1992), Kapitel 2 Fudenberg und Tirole (1991), Kapitel 4

Mehr

1. Einführung. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15. LMU München

1. Einführung. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15. LMU München 1. Einführung Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 1. Einführung Spieltheorie, Wintersemester 2014/15 1 / 10 1.1 Literatur Mit einem der folgenden

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Aufgabe 1: Betrachtet werde das Matrixspiel mit der Auszahlungsmatrix a. 1. Für welche Werte von a gibt es ein Nash sches Gleichgewicht?

Aufgabe 1: Betrachtet werde das Matrixspiel mit der Auszahlungsmatrix a. 1. Für welche Werte von a gibt es ein Nash sches Gleichgewicht? Lösungen zu den Übungsaufgaben im Kapitel 7 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe : Betrachtet werde das Matrixspiel mit

Mehr

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant Abstrakte Analyse des Nash-Gleichgewichtes Seminar von Olga Schäfer Fachbereich Mathematik der Universität Siegen Siegen, 29. Juli 2009 Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4 Skript zur Vorlesung Mikroökonomik II (WS 09) Teil 4 PR 13: Spieltheorie Weiterentwicklung der ökonomischen Theorie untersucht Situationen strategischen Verhaltens John von Neumann und Oskar Morgenstern

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches

Mehr

Spieltheoretische Kooperationsverfahren Lösungskonzept des Kernels

Spieltheoretische Kooperationsverfahren Lösungskonzept des Kernels Spieltheoretische Kooperationsverfahren Lösungskonzept des s Andreas Pohlers Koalitionskonfiguration Rationalitäten Weitere Überschuss Einwandspotenzial Eigenschaften Transfer Schemas by Stearns Weitere

Mehr

Mikroökonomik B Teil II: Spieltheorie

Mikroökonomik B Teil II: Spieltheorie Mikroökonomik B Teil II: Spieltheorie Dennis L. Gärtner 19. Mai 2011 Motivation Ein Spiel Jeder von Ihnen schreibt eine ganze Zahl zwischen 0 und 100 auf. Ziel ist, 2/3 des Durchschnitts der angegebenen

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen Version 23.11. November 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel II. Die reellen Zahlen Die reellen Zahlen werden in diesem Kapitel axiomatisch eingeführt

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Grundstudium Mathematik Wahrscheinlichkeitsrechnung Bearbeitet von Dominique Foata, Aime Fuchs 1. Auflage 1999. Taschenbuch. xv, 383 S. Paperback ISBN 978 3 7643 6169 3 Format (B x L): 17 x 24,4 cm Gewicht:

Mehr

Teil III. Angebot und Nachfrage II Märkte und Wohlstand

Teil III. Angebot und Nachfrage II Märkte und Wohlstand Teil III Angebot und Nachfrage II Märkte und Wohlstand II. Angebot und Nachfrage I: Wie Märkte funktionieren Kapitel 7: Konsumenten, Produzenten und die Effizienz von Märkten Kapitel 7: Konsumenten, Produzenten

Mehr

8 Gruppen und Körper

8 Gruppen und Körper 8 Gruppen und Körper (8.) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres Element a?b aus G zuordnet, so dass die folgenden

Mehr

Implementation Sozialer Auswahlregeln Sommersemester Vorlesung,

Implementation Sozialer Auswahlregeln Sommersemester Vorlesung, Implementation Sozialer Auswahlregeln Sommersemester 2007 12. Vorlesung, 04.07.2007 PD Dr. Jörg Naeve Universität des Saarlandes Lehrstuhl für Nationalökonomie insbes. Wirtschaftstheorie mailto:j.naeve@mx.uni-saarland.de

Mehr

Aufgaben und Lösungen für die Zweite Klausur zur Spieltheorie im HWS 2011, Universität Mannheim, Prof. Dr. C. Hertling

Aufgaben und Lösungen für die Zweite Klausur zur Spieltheorie im HWS 2011, Universität Mannheim, Prof. Dr. C. Hertling Aufgaben und Lösungen für die Zweite Klausur zur Spieltheorie im HWS 2011, 06.02.2012 Universität Mannheim, Prof. Dr. C. Hertling Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90

Mehr

Spieltheorie in der Ökonomie

Spieltheorie in der Ökonomie in der Ökonomie Kevin Klein Technische Universität Wien 19. Dezemberl 2012 Inhaltsverzeichnis 1 Gliederung 2 Normalform Grundlagen Präferenzen,Nutzen Lösungskonzepte 3 Grundlagen Cornout Oligopol Bertrand

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr

2. Öffentliche Güter 2.1 Definition (i) Kein Ausschluss (ii) Keine Rivalität Beispiel 1: Fernsehapparat in (2er-)Wohngemeinschaft.

2. Öffentliche Güter 2.1 Definition (i) Kein Ausschluss (ii) Keine Rivalität Beispiel 1: Fernsehapparat in (2er-)Wohngemeinschaft. 2. Öffentliche Güter 2.1 Definition (i) Kein Ausschluss (ii) Keine Rivalität Beispiel 1: Fernsehapparat in (2er-)Wohngemeinschaft. Notation: w i = Budget von Akteur i, g i = Ausgaben für TV-Gerät, x i

Mehr

Komplexe Zahlen und Allgemeines zu Gruppen

Komplexe Zahlen und Allgemeines zu Gruppen Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 02: Funktionen, Multimengen, Kompositionen 1 / 18 Funktionen zwischen endlichen Mengen [n]

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Vortragsskript Einführung in die Algebra

Vortragsskript Einführung in die Algebra Vortragsskript Einführung in die Algebra TeamTUM - Das Wettbewerbsteam Mathematik Technische Universität München Fakultät für Mathematik Vortragender: Vu Phan Thanh Datum: 26.11.12 iii Inhaltsverzeichnis

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Making Group Decisions

Making Group Decisions Universität Bielefeld Technische Fakultät Veranstaltung: Agentensysteme (Sommersemester 2010) Veranstalter: Alexa Breuing, Julia Tolksdorf Referenten: Falko Klaaßen, Kevin Schön Making Group Decisions

Mehr

Kommunikation als Spiel zwischen rationalen Agenten

Kommunikation als Spiel zwischen rationalen Agenten Kommunikation als Spiel zwischen rationalen Agenten Stefan Partusch Hauptseminar Logik des geteilten Wissens, Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München 18.

Mehr

1. Einführung. 1.1 Literatur. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15

1. Einführung. 1.1 Literatur. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15 1. Einführung Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 1. Einführung Spieltheorie, Wintersemester 2014/15 1 / 10 1.1 Literatur Mit einem der folgenden

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1 Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Übersicht Teil Kapitel 5 Übersicht Teil Übersicht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26 Spieldynamik Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kap. 8 Simon Maurer Saarbrücken, den 13.12.2011 1 / 26 Ablauf 1 Imitationsdynamik 2 Monotone Auszahlung

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Kapitel 4: Gemischte Strategien

Kapitel 4: Gemischte Strategien Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 4.1: Motivation Motivation In vielen Spielen gibt es kein

Mehr

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Dr. Matthias Hanauske Institut für Wirtschaftsinformatik Goethe-Universität Frankfurt am Main Grüneburgplatz 60 Frankfurt

Mehr

KAPITEL 2. Einführung in die Spieltheorie. Mit Anlehnungen an Folien von Andreas Diekmann und Katrin Auspurg

KAPITEL 2. Einführung in die Spieltheorie. Mit Anlehnungen an Folien von Andreas Diekmann und Katrin Auspurg KAPITEL 2 Einführung in die Spieltheorie Mit Anlehnungen an Folien von Andreas Diekmann und Katrin Auspurg Varianten der Rational-Choice Theorie Rational-Choice Theorie: Handlungswahl unter Annahme der

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Spieltheorie - Wiederholte Spiele

Spieltheorie - Wiederholte Spiele Spieltheorie - Wiederholte Spiele Janina Heetjans 12.06.2012 1 Inhaltsverzeichnis 8 Wiederholte Spiele 3 8.1 Einführung und Motivation................................. 3 8.2 Unendlich oft wiederholte Spiele:

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

6. Vorlesung Spieltheorie in der Nachrichtentechnik

6. Vorlesung Spieltheorie in der Nachrichtentechnik 6. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Kooperative Spieltheorie Kooperative Spiele zeichnen sich dadurch aus, dass die

Mehr

Grundlagen und Nash Gleichgewichte in reinen Strategien

Grundlagen und Nash Gleichgewichte in reinen Strategien Grundlagen und Nash Gleichgewichte in reinen Strategien Yves Breitmoser, EUV Frankfurt (Oder) Zahlen und Vektoren IR ist die Menge der reellen Zahlen IR + = r IR r 0 IR n ist die Menge aller Vektoren von

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

Seminar Optimierung und optimale Steuerung

Seminar Optimierung und optimale Steuerung Seminar Optimierung und optimale Steuerung am 28.06.2008 Thema: Nicht-kooperative n-personen-spiele Martin Schymalla 27. Juni 2008 Gliederung 1 1 Cournot-Duopol 2 2 n-personen-spiele 3 3 Mengenwertige

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

1 Zahlenmengen und einige mathematische Symbole

1 Zahlenmengen und einige mathematische Symbole 1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................

Mehr

Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien)

Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien) Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien) Dominanzüberlegungen können beim Auffinden von Nash Gleichgewichten helfen Ein durch Dominanzüberlegungen ermitteltes Gleichgewicht ist

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

Making Group Decisions & Forming Coalitions

Making Group Decisions & Forming Coalitions Making Group Decisions & Forming Coalitions Falko Klaaßen Kevin Schön 22. Juni 2010 Übersicht 1. Making Group Decisions (Falko) 2. Forming Coalitions (Kevin) 3. Klausurfragen und Diskussion Einleitung

Mehr

6. Adverse Selektion und soziale Wohlfahrt

6. Adverse Selektion und soziale Wohlfahrt Beispiel 1 Market of Lemons - das Beispiel des Gebrauchtwagenmarktes: Der Begriff Lemons steht im Amerikanischen umgangssprachlich für Gebrauchtwagen mit schlechter Qualität. Hingegen bezeichnet Plums

Mehr

Kooperative Spieltheorie

Kooperative Spieltheorie Kooperative Spieltheorie Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Informatik 33095 Paderborn thim@mail.uni-paderborn.de Zusammenfassung Kooperative Spieltheorie

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Algorithmische Spieltheorie. Martin Gairing

Algorithmische Spieltheorie. Martin Gairing Algorithmische Spieltheorie Martin Gairing Folien zur Vorlesung vom 26.04.2004 Organisatorisches: Vorlesung Montags, 14:15-15:45 Uhr Übungen Montags, 16:00-17:00 Uhr Folien zur Vorlesung unter http://www.upb.de/cs/ag-monien/lehre/ss04/spieltheo/

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Definitionen und Aussagen zur Maßtheorie

Definitionen und Aussagen zur Maßtheorie Definitionen und Aussagen zur Maßtheorie Man möchte den Teilmengen eines Raumes ein Gewicht zuordnen. Wir werden sehen, daß dies in sinnvoller Weise häufig nicht für alle Teilmengen möglich ist, sondern

Mehr

Definition des Begriffs Funktion

Definition des Begriffs Funktion Definition des Begriffs Funktion In der Mathematik ist eine Funktion (lateinisch functio) oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der Definitionsmenge (Funktionsargument,

Mehr

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005 Kapitel 3 und Relationen 29. April 2005 Rückblick Tarski s Deduktionsbegriff, Verbandstheorie, Abstrakte Logik über Verbänden Wohldefinierte Eigenschaften P wohldefinierte Eigenschaft auf einer Menge M,

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Netzwerkverbindungsspiele

Netzwerkverbindungsspiele Netzwerkverbindungsspiele Algorithmische Spieltheorie Sommer 2017 Annamaria Kovacs Netzwerkverbindungsspiele 1 / 12 Local Connection Spiel Computer (oder autonome Systeme) sind die Spieler (Knoten). Sie

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

Folgen und Reihen. Kapitel Zahlenfolgen

Folgen und Reihen. Kapitel Zahlenfolgen Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,

Mehr

Einführung in die Spieltheorie und Nash-Gleichgewichte

Einführung in die Spieltheorie und Nash-Gleichgewichte Einführung in die Spieltheorie und Nash-Gleichgewichte Vortrag im Seminar WT und Ihre Anwendungen Institut für Mathematische Statistik Fachbereich Mathematik und Informatik Westfählische Wilhelms-Universtät

Mehr

Abschnitt 1.3. Funktionen

Abschnitt 1.3. Funktionen Abschnitt 1.3 Funktionen Arbeitsdefinition des Begriffs Funktion Bereits an Ende von Abschnitt 1.1 wurde definiert: Eine Funktion f ordnet Elementen x einer Menge D Elemente f (x) zu, die in der Menge

Mehr