Quantengraphen. Sebastian Haeseler Technische Universität Chemnitz. Abstrakte Versionen klassischer. Ungleichungen und Anwendungen auf

Größe: px
Ab Seite anzeigen:

Download "Quantengraphen. Sebastian Haeseler Technische Universität Chemnitz. Abstrakte Versionen klassischer. Ungleichungen und Anwendungen auf"

Transkript

1 Technische Universität Chemnitz

2 Gliederung

3 Gliederung

4 Gliederung

5 Gliederung

6 Gliederung

7 Ein metrischer Graph X Γ besteht aus einer abzählbaren Menge V = {v i }, die Knoten einer abzählbaren Menge E = {e i }, die Kanten einer Abbildung l : E (0, ], die jeder Kante ihre Länge zuordnet einer Abbildung i : E V, die jeder Kante den Anfangspunkt zuordnet einer Abbildung j : E \ {e l(e) = } V, die jeder Kante (endlicher Länge) den Endpunkt zuordnet

8 Ein metrischer Graph X Γ besteht aus einer abzählbaren Menge V = {v i }, die Knoten einer abzählbaren Menge E = {e i }, die Kanten einer Abbildung l : E (0, ], die jeder Kante ihre Länge zuordnet einer Abbildung i : E V, die jeder Kante den Anfangspunkt zuordnet einer Abbildung j : E \ {e l(e) = } V, die jeder Kante (endlicher Länge) den Endpunkt zuordnet Um von einem metrischen Graphen sprechen zu können, fehlt nur noch eine Metrik.

9 Metrische Graphen Dazu benötigen wir die folgende Einschränkung an die Knotengrade: v V : d v := {e E v {i(e), j(e)}} <.

10 Metrische Graphen Dazu benötigen wir die folgende Einschränkung an die Knotengrade: v V : d v := {e E v {i(e), j(e)}} <. Eine Metrik kann damit als geodätischer Abstand definiert werden: d : X Γ X Γ [0, ), d(x, y) := inf p P L(p)

11 Metrische Graphen Dazu benötigen wir die folgende Einschränkung an die Knotengrade: v V : d v := {e E v {i(e), j(e)}} <. Eine Metrik kann damit als geodätischer Abstand definiert werden: d : X Γ X Γ [0, ), d(x, y) := inf p P L(p) Damit ist klar was unter der Stetigkeit von Funktionen auf X Γ zu verstehen ist.

12 Metrische Graphen Dazu benötigen wir die folgende Einschränkung an die Knotengrade: v V : d v := {e E v {i(e), j(e)}} <. Eine Metrik kann damit als geodätischer Abstand definiert werden: d : X Γ X Γ [0, ), d(x, y) := inf p P L(p) Damit ist klar was unter der Stetigkeit von Funktionen auf X Γ zu verstehen ist. Um eine Funktion auf X Γ integrieren zu können, integriert man diese kantenweise woraus sich sofort ergibt, dass L p (X Γ ) = e E L p (0, l(e)).

13 Ein Quantengraph ist ein metrischer Graph auf dem die folgende Form definiert ist: wobei D = D(E) = W 1,2 0 (X Γ ) := W 1,2 (X Γ ) C 0 (X Γ ), E : D D, E(u, v) := e E(u e v e) W 1,2 (X Γ ) := {u C(X Γ ) u 2 E := u E(u) < }.

14 Ein Quantengraph ist ein metrischer Graph auf dem die folgende Form definiert ist: wobei D = D(E) = W 1,2 0 (X Γ ) := W 1,2 (X Γ ) C 0 (X Γ ), E : D D, E(u, v) := e E(u e v e) W 1,2 (X Γ ) := {u C(X Γ ) u 2 E := u E(u) < }. Dies ist eine stark-lokale, reguläre Dirichletform mit dem Energiemaß dγ(u, v) = e E u e(π e (x)) v e(π e (x)) dm e (x).

15 Mit der Voraussetzung d v < kann damit die Gültigkeit folgender Ungleichung gezeigt werden.

16 Mit der Voraussetzung d v < kann damit die Gültigkeit folgender Ungleichung gezeigt werden. Satz Für alle u W 1,2 0 (X Γ ) gilt u c u E wobei c > 0 nur vom Durchmesser des Graphen anhängt. diam(x Γ ) := sup{d(x, y) x, y X Γ }

17 Beschränkte Geometrie Für die folgenden Resultate sind noch zwei Einschränkungen an den von nöten.

18 Beschränkte Geometrie Für die folgenden Resultate sind noch zwei Einschränkungen an den von nöten. Die Knotengrade sind gleichmäßig nach oben beschränkt, d.h. d Γ N v V : d v d Γ.

19 Beschränkte Geometrie Für die folgenden Resultate sind noch zwei Einschränkungen an den von nöten. Die Knotengrade sind gleichmäßig nach oben beschränkt, d.h. d Γ N v V : d v d Γ. Die Längen der Kanten sind gleichmäßig nach unten beschränkt, d.h. inf l(e) l Γ > 0. e E

20 Volume-Doubling Satz Das Tripel (X Γ, d, m) ist ein Raum homogenen Types, d.h. m hat die Volume-Doubling Eigenschaft 0 < m(b(x, 2r)) c 0 m(b(x, r)) < mit c d Γ 2 für alle x X Γ und 0 < r l Γ 4. Insbesondere gilt m(b(x, r)) 2m(B(x, s)) ( ) r ν s für 0 < s < r l Γ 2 und ν = log c 0 log 2.

21 Satz Für r l Γ 2, x 0 X Γ und u W 1,2 loc (X Γ) gilt ˆ ˆ u(x) u B 2 dm(x) c 1 r 2 B(x 0,r) B(x 0,r) dγ(u(x)) mit c 1 16dΓ 2, wobei mit u B := ffl u(x) dm(x) := 1 m(b) u(x) dm(x) der Mittelwert B B der Funktion u auf B = B(x 0, r) bezeichnet wird.

22 Aufgabenstellung Uns interessieren nun Eigenschaften von Minimierern u von E in offenen Teilmengen X 0 X Γ, d.h. Funktionen u W 1,2 loc (X 0) so dass für alle φ W 1,2 (X 0 ) mit supp φ X 0 ˆ ˆ dγ(u) dγ(u + φ) X 0 X 0 gilt. Dies ist dazu äquivalent, dass u eine schwache Lösung im Sinne der folgenden Definition ist:

23 Aufgabenstellung Definition Sei X 0 X Γ offen und u W 1,2 loc (X 0), u 0. Bezeichnen u als schwache Sub-, bzw. Superlösung falls für alle v W 1,2 0 (X 0 ), v 0 gilt, dass E(u, v) 0 bzw. E(u, v) 0 gilt. Als schwache Lösung wird u bezeichnet, falls u zugleich schwache Sub- und Superlösung ist.

24 Satz Sei u 0 ein schwache Lösung in B(x, 2r), wobei x X Γ und 0 < 2r < l Γ 4. Dann gilt sup u C inf u, B(x,r) B(x,r) wobei C nur vom Parameter d Γ abhängt.

25 Satz Sei u 0 ein schwache Lösung in B(x, 2r), wobei x X Γ und 0 < 2r < l Γ 4. Dann gilt sup u C inf u, B(x,r) B(x,r) wobei C nur vom Parameter d Γ abhängt. Insbesondere gilt, falls u schwache Lösung in X X Γ offen ist, dass für jede relativ kompakte und zusammenhängende Teilmenge X 0 X die sup u C inf u X 0 X 0 gilt, wobei diese Konstante C zusätzlich auch von X 0 abhängt.

26 Bemerkungen zum Beweis Der Beweis beruht auf der Gültigkeit der beiden Moserschen Abschätzungen

27 Bemerkungen zum Beweis Der Beweis beruht auf der Gültigkeit der beiden Moserschen Abschätzungen sup u C B(x,r) ( B(x, 5 4 r) u(x) p dm(x) ) 1 p gilt für schwache Sublösungen u, p > 1 und C hängt nur von d Γ und p ab;

28 Bemerkungen zum Beweis Der Beweis beruht auf der Gültigkeit der beiden Moserschen Abschätzungen sup u C B(x,r) ( B(x, 5 4 r) u(x) p dm(x) ) 1 p gilt für schwache Sublösungen u, p > 1 und C hängt nur von d Γ und p ab; ( B(x, 5 4 r) u(x) p dm(x) ) 1 p C inf u B(x,r) gilt für schwache Superlösungen u, p < nur von d Γ und p ab; ν ν 2 und C hängt

29 Bemerkungen zum Beweis Deren Beweis wiederum basiert auf der Moserschen Iterationstechnik, deren Herz folgende Iterationsungleichung darstellt Bs u 2ν ν 2 p dm ν 2 ν c γbr u p dm, mit 0 < s < r, die für schwache Sublösungen u 0 und p > 1, und für schwache Superlösungen u 0 und p < 1 gilt.

30 Ein kleiner Frage: Wann gilt die auf beliebig großen Kugeln?

31 Ein kleiner Frage: Wann gilt die auf beliebig großen Kugeln? Dies hätte folgende Liouville-Eigenschaft als Konsequenz

32 Ein kleiner Frage: Wann gilt die auf beliebig großen Kugeln? Dies hätte folgende Liouville-Eigenschaft als Konsequenz Satz Jede beschränkte schwache Lösung auf dem gesamten Graphen X Γ ist konstant.

33 Ein kleiner Frage: Wann gilt die auf beliebig großen Kugeln? Dies hätte folgende Liouville-Eigenschaft als Konsequenz Satz Jede beschränkte schwache Lösung auf dem gesamten Graphen X Γ ist konstant. Dazu müssten Volume-Doubling Eigenschaft und die ebenfalls auf beliebig großen Kugeln erfüllt sein. Allerdings sind die Voraussetzungen der gleichmäßigen oberen Schranke der Knotengrade und eine untere Schranke der Kantenlängen nicht ausreichend.

34 Vielen Dank für Ihre Aufmerksamkeit

Quantengraphen. Sebastian Haeseler Technische Universität Chemnitz. Abstrakte Versionen klassischer. Ungleichungen und Anwendungen auf

Quantengraphen. Sebastian Haeseler Technische Universität Chemnitz. Abstrakte Versionen klassischer. Ungleichungen und Anwendungen auf en und Technische Universität Chemnitz en und 02.10.2009 Gliederung en und Gliederung en und Gliederung en und Gliederung en und Definition Ein metrischer Graph X Γ besteht aus en und Definition Ein metrischer

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

4. Fortsetzung auf R N.

4. Fortsetzung auf R N. 4. Fortsetzung auf R N. Frage: Wann kann man Funktionen u W (Ω) zu ũ W (RN ) fortsetzen? Hier wird i.a. eine Fortsetzung durch 0 in R N \ Ω nicht zum Erfolg führen, da man die schwachen Ableitungen über

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8 Prof. Roland Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 8 Aufgabe 1: Sei (X, d) ein kompakter metrischer Raum. Die Hausdorff-Metrik

Mehr

Aufgabensammlung Grundbegriffe der Topologie

Aufgabensammlung Grundbegriffe der Topologie Aufgabensammlung Grundbegriffe der Topologie Günther Hörmann, Roland Steinbauer Die vorliegende Aufgabensammlung dient als Grundlage für die Übungen zu Grundbegriffe der Topologie, das die gleichnamige

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr

Metrische Räume. Kapitel Begriff des metrischen Raumes

Metrische Räume. Kapitel Begriff des metrischen Raumes Kapitel 8 Metrische Räume 8.1 Begriff des metrischen Raumes Bemerkung 8.1 Motivation. In diesem Abschnitt wird der Begriff des Abstandes zwischen reellen Zahlen verallgemeinert. Das ist notwendig, um Analysis

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger Hausdorff-Maß und Hausdorff-Dimension Jens Krüger Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen aus der Maßtheorie 3 3 Die Konstruktion des Hausdorff-Maßes 4 4 Eigenschaften des Hausdorff-Maßes und Hausdorff-Dimension

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Das Lebesgue-Maß im R p

Das Lebesgue-Maß im R p Das Lebesgue-Maß im R p Wir werden nun im R p ein metrisches äußeres Maß definieren, welches schließlich zum Lebesgue-Maß führen wird. Als erstes definieren wir das Volumen von Intervallen des R p. Seien

Mehr

Metrische äußere Maße, Borel-Maße

Metrische äußere Maße, Borel-Maße Metrische äußere Maße, Borel-Maße Zum einen haben wir mit dem Fortsetzungssatz gesehen, dass man mit einem äußeren Maß (auf P(X) ) stets eine σ-algebra und ein Maß auf dieser bekommt. Liegt nun ein metrischer

Mehr

Übungen zu Grundbegriffe der Topologie

Übungen zu Grundbegriffe der Topologie Übungen zu Grundbegriffe der Topologie A. Čap Wintersemester 2018 (1) Wiederholen Sie die Definition des Durchschnittes i I A i einer beliebigen Familie {A i : i I} von Mengen und zeigen Sie, dass für

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Topologie - Übungsblatt 1

Topologie - Übungsblatt 1 1 Topologie - Übungsblatt 1 1. Sei τ die cofinite Topologie auf einer Menge X. Man zeige: i) Ist X abzählbar, dann ist (X, τ) ein A 2 -Raum. ii) Ist X überabzählbar, dann ist (X, τ) kein A 1 -Raum. 2.

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals Kapitel 6 Das Riemann-Integral In diesem Abschnitt wollen wir einen Integralbegriff einführen. Dieser Integralbegriff geht auf Riemann 1 zurück und beruht auf einer naheliegenden Anschauung. Es wird sich

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2018 Lineare Algebra und analytische Geometrie II Vorlesung 52 Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

1 0, x C X (A). = 1 χ A(x).

1 0, x C X (A). = 1 χ A(x). Aufgabe 1 a) Wir müssen nur zeigen, dass χ A B (x) = χ A (x) χ B (x) für alle x X gilt. (Dass χ A χ B Abbildung von X in {0, 1} ist, ist klar.) Sei also x X beliebig. Fall 1: x A B. Dies bedeutet x A und

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Kompakte Mengen und Räume

Kompakte Mengen und Räume 1 Analysis I für Physiker WS 2005/06 Kompakte Mengen und Räume Seien (M, d) ein metrischer Raum und K M. Definition (i) K heißt kompakt, falls {x k } K = TF {x kj } {x k } : x kj x K. (ii) K heißt relativ

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Symmetrische Ableitungen von Massen

Symmetrische Ableitungen von Massen Symmetrische Ableitungen von Massen Hyuksung Kwon 5. Juni 203 Inhaltsverzeichnis Einführung 2 Hardy-Littlewood Maximaloperator 2 3 Symmetrische Ableitung vom positiven Maß 7 Einführung Definition. (Borelmaß

Mehr

n A n = A ist nun folgendermaßen:

n A n = A ist nun folgendermaßen: Aufgabe 3. Sei (X, d) ein beschränkter metrischer Raum, d.h. es gibt ein c > 0 mit d(x, y) c für alle x, y X. Bezeichne T (X) die Menge aller abgeschlossenen nichtleeren Teilmengen von X. Für A, B T (X)

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III

Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik 18.11.2009 Universität Regensburg Analysis III Verbesserung der Zusatzaufgabe von Übungsblatt 4 Zusatzaufgabe Wir definieren die Cantormenge

Mehr

Carsten, Schubert Laplace-Operatoren auf Quantengraphen

Carsten, Schubert Laplace-Operatoren auf Quantengraphen Fakultät für Mathematik Professur für Analysis Diplomarbeit Laplace-Operatoren auf Quantengraphen Carsten Schubert Chemnitz, den 13. November 006 Betreuer: Prof. Peter Stollmann PD Daniel Lenz Carsten,

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 9 18. Dezember 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 9 18. Dezember 2013 1 / 17 9. Einführung in der innere Geometrie

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Topologische Grundbegriffe in metrischen und topologischen

Topologische Grundbegriffe in metrischen und topologischen KAPITEL 1 Topologische Grundbegriffe in metrischen und topologischen Räumen Die topologischen Grundbegriffe offene Mengen, abgeschlossene Mengen, Inneres einer Menge und Abschließung einer Menge, Stetigkeit

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Partielle Differentialgleichungen Kapitel 7

Partielle Differentialgleichungen Kapitel 7 Partielle Differentialgleichungen Kapitel 7 Intermezzo zu Distributionen Die Physik hat der Mathematik die Dirac-δ-Funktion gebracht. Diese δ-funktion soll folgende Eigenschaften haben: n δ (x ϕ (x dx

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ), D-MATH Topologie FS 15 Theo Bühler Musterlösung 11 1. a) Da (C n, d n ) kompakt ist, nimmt die stetige Funktion d n : C n C n [0, ), (x, y) d(x, y) ihr Maximum diam C n an. Ersetzen wir d n durch d n =

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Blockseminar Ergodentheorie und Dynamische Systeme

Blockseminar Ergodentheorie und Dynamische Systeme Blockseminar Ergodentheorie und Dynamische Systeme Partielle Hyperbolizität und 8.09.-12.09.08 1 Partielle Hyperbolizität 2 von Anosov-Diffeomorphismen Klassifikation dynamischer Systeme Wie verhält sich

Mehr

Seminar Optimierung und optimale Steuerung

Seminar Optimierung und optimale Steuerung Seminar Optimierung und optimale Steuerung am 28.06.2008 Thema: Nicht-kooperative n-personen-spiele Martin Schymalla 27. Juni 2008 Gliederung 1 1 Cournot-Duopol 2 2 n-personen-spiele 3 3 Mengenwertige

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 11. Oktober 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 11. Oktober 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 11. Oktober 2013 3 Fortsetzung von Prämassen zu Massen Der Begriff des Prämasses ist nicht ausreichend, um eine geschmeidige Integrationstheorie

Mehr

2.3 Eigenschaften linearer Operatoren

2.3 Eigenschaften linearer Operatoren 2.3. LINEARE OPERATOREN 47 2.3 Eigenschaften linearer Operatoren Es seien V, W normierte Räume. Die Elemente von L(V ; W ) werden oft als lineare Operatoren bezeichnet. Wir hatten gesehen, dass die Stetigkeit

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r Funktionentheorie, Woche 8 Harmonische Funktionen 8. Folgen der Holomorphie Im letzten Kapitel sahen wir, dass der Realteil einer holomorphen Funktion harmonisch ist, und dass es zu jeder harmonischen

Mehr

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung 5 Konfidenzschätzung 5. Einige Grundbegriffe zur Konfidenzschätzung Diesem Kapitel liegt das parametrische Modell {X, B X, P } mit P {P Θ} zugrunde. {Θ, B Θ } sei ein Meßraum über Θ und µ ein σ-finites

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Regulär variierende Funktionen

Regulär variierende Funktionen KAPITEL 4 Regulär variierende Funktionen Unser nächstes Ziel ist es, die Max-Anziehungsbereiche der Extremwertverteilungen zu beschreiben. Dies wird im nächsten Kapitel geschehen. Wir haben bereits gesehen,

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

FREITAG ABEND. Definition (Homotopie und Isotopie): Seien X, Y topologische Räume.

FREITAG ABEND. Definition (Homotopie und Isotopie): Seien X, Y topologische Räume. FREITAG ABEND Definition (Homotopie und Isotopie): Seien X, Y topologische Räume. a) Zwei stetige Abbildungen f, g : X Y heißen homotop (f g), wenn es eine stetige Abbildung A : X [0, 1] Y gibt mit A(,

Mehr

Markierte Punktprozesse und zufällige Tesselationen

Markierte Punktprozesse und zufällige Tesselationen und zufällige Tesselationen Seminar stochastische Geometrie und ihre Anwendungen 7. Dezember 2009 und zufällige Tesselationen Gliederung 1 2 3 und zufällige Tesselationen Gliederung 1 2 3 und zufällige

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 3: Metrische und polnische Räume

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 3: Metrische und polnische Räume Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 3: Metrische und polnische Räume Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober/November 2017

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

12 Reihen mit beliebigen abzählbaren Indexmengen

12 Reihen mit beliebigen abzählbaren Indexmengen 12 Reihen mit beliebigen abzählbaren Indexmengen 12.2 Großer Umordnungssatz 12.3 Umordnungssatz für Doppelreihen 12.4 Produktreihe In 3 waren endliche Summen j J a j mit Hilfe einer Bijektion ϕ zwischen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. König Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Z7.1. Komposition stetiger Funktionen Mathematik für Physiker (Analysis 1) MA90 Wintersem. 017/18 Lösungsblatt

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Konvergenz. Definition. Sei (X, τ) ein topologischer Raum, (x n ) eine Folge in X und x X.

Konvergenz. Definition. Sei (X, τ) ein topologischer Raum, (x n ) eine Folge in X und x X. Konvergenz I. Folgen Definition. Sei (X, τ) ein topologischer Raum, (x n ) eine Folge in X und x X. (i) (x n ) konvergiert gegen x, wenn in jeder Umgebung von x fast alle Folgenglieder liegen, (ii) x ist

Mehr

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume Extremalpunkte und der Satz von Krein-Milman Seminar zu ausgewählten Kapiteln der Banachraumtheorie Vortrag von Michael Hoffmann 1 Lokalkonvexe topologische Vektorräume Im folgenden betrachten wir stets

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Voronoi und Johnson-Mehl Mosaike Seite 2 Voronoi- und Johnson-Mehl-Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Inhaltsverzeichnis Einführung Mosaike

Mehr