D. Vierte Übungseinheit

Größe: px
Ab Seite anzeigen:

Download "D. Vierte Übungseinheit"

Transkript

1 D. Vierte Übungseinheit Inhalt der vierten Übungseinheit: Matrix-Vektor-Multiplikation Bergabstrich löst Gleichungssysteme Eindeutig, nicht eindeutig und gar nicht lösbare Systeme Eliminationsverfahren Fehlerempfindlichkeit, Matrixnormen, Konditionszahl Determinante, Komplexität D.1. Matrix-Vektor-Multiplikation Arbeiten Sie die folgende Aufgabe durch, wenn Ihnen Matrix- und Vektormultiplikation und Transponieren noch nicht völlig vertraut sind! Aufgabe 33: Erzeugen Sie die folgenden Matrizen und Vektoren: (MATLAB-Scriptfile) A = , b = Berechnen Sie den Vektor s als Spaltenvektor aller Zeilensummen von A auf drei Arten: direkt ausgeschrieben, durch Angabe aller Indizes in der Form s =[ A(1,1)+A(1,2)+A(1,3)+A(1,4)+A(1,5) ; usw. (copy and paste hilft für die restlichen Zeilen) Durch Multiplikation mit einem Eins-Vektor: s=a*ones(5,1) Die Funktion sum(a) berechnet die Spalten-summen. Wie lassen sich damit Zeilensummen berechnen? Mit welchem Vektor müssen Sie A multiplizieren, um einen Zeilenvektor aller Spaltensummen zu erhalten? Lassen Sie MATLAB die Produkte A b, s T A, A T A und A A T berechnen. Sie sollen eine Linearkombination der Spalten von A berechnen. Das heißt, erste Spalte von A mal x 1 plus zweite Spalte von A mal x 2 plus. letzte Spalte von A mal x n Gegeben ist [x 1 ;... ; x 5 ] = [1; 4; 6; 4; 1]. Wie gehen Sie vor? Sie sollen eine Linearkombination der Zeilen von A berechnen. Die Koeffizienten sind (als Zeilenvektor) [y 1,..., y 4 ] = [3, 6, 4, 1]. Die letzten beiden Punkte illustrieren eine wichtige Interpretation der Matrix-Vektor-Multiplikation: 129

2 Matrix A mal Spaltenvektor ergibt Linearkombination der Spalten von A Zeilenvektor mal Matrix A ergibt Linearkombination der Zeilen von A D.2. Gleichungssysteme: MATLABs schräge Schreibung MATLAB verwendet völlig normal den Schrägstrich als Divisionsoperator: x = 3/4 liefert wenig überraschend x = Eher unüblich ist der andersrum gekippte Bergabstrich \ oder Backslash: >> x=3\4 x = Auch \ dividiert, aber in der Form x = Nenner\Zähler. Es liegt ja auch wirklich, wenn Sie sich \ als abwärts geneigten Bruchstrich vorstellen, der linke Term unter und der rechte über dem Bruchstrich. Absolut originell ist jedoch MATLABs Interpretation des Bergabstrichs bei Gleichungssystemen. Das Wichtigste in Kürze: x = A\b löst (oder löst ) das Gleichungssystem Ax = b Nicht jedes von MATLAB so berechnete Ergebnis ist die Lösung eines Gleichungssystems im eigentlichen Sinn deswegen die Anführungszeichen bei löst. Niemand will sich im Detail merken, was genau MATLAB bei den verschiedenen Sonderfällen tut. Die folgende Aufzählung soll nur illustrieren, es gibt mehr Ding im Himmel und auf Erden, als Eure Schulweisheit sich träumt. Der Befehl x = A\b liefert für ein Gleichungssystem Ax = b bei nicht singulärer n n- Matrix die eindeutige Lösung; bei singulärer n n- Matrix eine Warnmeldung und, falls es Lösungen gibt, eine Lösung mit möglichst vielen Null-Komponenten. Falls es keine Lösung gibt, liefert MATLAB meistens unsinnige Zahlenwerte. bei einer n m- Matrix mit n < m (unterbestimmtes Gleichungssystem), falls es Lösungen gibt, eine Lösung mit möglichst vielen Null-Komponenten. bei einer n m- Matrix mit n > m (überbestimmtes Gleichungssystem), die am wenigsten falsche Lösung. Das ist jener Vektor x, für den Ax b die kleinste 2-Norm hat. Man spricht von der Kleinste-Quadrate-Lösung. Sonderfälle sind n m- Matrizen mit n m und Rang < min(m,n). Matlab warnt: Warning: Rank deficient und liefert eine Kleinste-Quadrate-Lösung. Bei gleicher Matrix A und mehreren rechten Seiten b, c, d,... lassen sich die Gleichungssysteme Ax = b, Ay = c, Az = d,... gemeinsam lösen. Stellen Sie alle rechten Seiten als Spaltenvektoren in einer Matrix B zusammen: B = [b,c,d]. MATLABs \ liefert eine Matrix X, deren Spalten die Lösungsvektoren enthält: X = [x, y, z]. 130

3 X = A\B löst (oder löst ) die Gleichungssysteme A X = B Schrägstriche zwischen Matrizen, Matrix-Inversion Die Kurzfassung: Verwenden Sie den Bergaufstrich / zwischen Skalaren als Divisionsoperator und den Bergabstrich \ zwischen Matrizen und Vektoren zum Lösen linearer Gleichungssysteme. Wenn Sie mehr über MATLABs Umgang mit / und \ wissen wollen, lesen Sie weiter... Sie könnten x = 3/4 auch in der Form x = schreiben, oder x = Niemand tut das bei skalaren Termen. Bei Matrizen ist die Schreibweise mit Inversen jedoch Standard, zum Beispiel A B 1 oder A 1 B. MATLAB erlaubt dafür die Bruchstrich-Schreibung: A B 1 = A/B und A 1 B = A\B Stellen Sie sich /B als B 1 vor, weil B unter dem Bruchstrich liegt, und entsprechend A\ als A 1. Die Schrägstriche stehen absichtlich links von B und rechts von A Matrixmultiplikation ist nicht kommutativ! Je nachdem, von welcher Seite Sie mit einer Inversen multiplizieren wollen, verwenden Sie / oder \. MATLAB berechnet nicht wirklich die inversen Matrizen und multipliziert damit. Das explizite Ausrechnen einer Inversen ist rechenaufwändig und mit Rundungsfehlern behaftet. In Wirklichkeit löst MATLAB mit der schrägen Bruchstrichschreibweise lineare Gleichungssysteme. Das ist nur bei nichtsingulären quadratischen Matrizen algebraisch äquivalent zur Multiplikation mit der Inversen. Für das numerische Rechnen besteht ein gewaltiger Unterschied im Hinblick auf Rechenaufwand und -genauigkeit, ob Sie eine Inverse berechnen und damit multiplizieren, oder so umformen, dass Sie Gleichungssysteme lösen. X = A\B berechnet A 1 B als Lösung des Gleichungssystems A X = B X = A/B berechnet A B 1 als Lösung des Gleichungssystems X B = A Umformung Multiplikation mit Inverser Gleichungssystem X = A 1 B A X = A B 1 B A X = A A 1 B A X = B X B = A B 1 B X B = A Achtung beim Umformen, man muss auf der richtigen Seite multiplizieren, damit die Inversen verschwinden: links multipliziert man A von links, rechts mit B von rechts. (Matrixmultiplikation ist nicht kommutativ!) 131

4 Aufgaben Aufgabe 34: Diese Aufgabe zeigt Ihnen, dass die Erklärung A\b berechnet A 1 b nicht allgemein richtig sein kann. Definieren Sie folgende Matrizen und Vektoren: A = [ 1 2 ] Wie interpretiert MATLAB die Ausdrücke x=a\b, x=a \c, x=a/c, x=a /b [ 2 b = 2] 1 c = 2 0 Schreiben Sie dazu die Ausdrücke als Gleichungssysteme, auch in Nicht-Matrix-Version, also einzelne Gleichungen mit Koeffizienten und Unbekannten x,y,z. Welche Systeme sind eindeutig lösbar/ nicht eindeutig lösbar / unlösbar? Was berechnet MATLAB? Beispiel-Antwort: x=a\b steht für das Gleichungssystem Ax = b. Hier sind das zwei Gleichungen in drei Unbekannten: x +2y +3z = 2 4x +5y +6z = 2 Unterbestimmtes System, nicht eindeutig lösbar, Matlab findet eine mögliche Lösung: x = 1, y = 0, z = 1. Aufgabe 35: Gleichungssysteme, Lösungsmannigfaltigkeiten Welche der folgenden Gleichungssysteme Ax = b sind eindeutig, mehrdeutig oder gar nicht lösbar? Geben Sie, wenn möglich, die (oder eine) Lösung an. Bei mehrdeutigen Lösungen: wie viele freie Parameter hat die Lösungsschar? Notwendige Befehle det(a), rref([a,b]), A\b, pinv(a) b Schalten Sie auf format rat für schönere Zahlen A = , b = A = , b = A = , b =

5 A = , b = D.3. Eliminationsverfahren Aufgabe 36: Gauß-Elimination Das Skriptum listet auf Seite 33 Java-Code für Gauß-Elimination und davor Code zur Rücksubstitution. Orientieren Sie sich an diesen Programmen und schreiben Sie eine Funktion x = mygauss(a,b) zur Lösung eines Gleichungssystems Ax = b. Erzeugen Sie mit rand() Testmatrizen und rechte Seiten in verschiedenen Größen (z.b. 3 3, 10 10, ). Vergleichen Sie die Lösungen Ihres Programmes mit Matlabs Bergabstrich-Operator. Welche Nachteile oder Fehlerquellen gibt es in dieser einfachen Implementierung des Eliminationsverfahrens? Wodurch unterscheiden sich richtige Gleichungslöse-Programme von unserer Spielzeug-Implementierung? Aufgabe 37: Fehlerempfindlichkeit Lösen Sie mit Matlabs Bergabstrich das Gleichungssystem Ax = b (es ist das Gleichungssystem Nr. 4 aus Aufgabe 35), A = , b = Addieren Sie nun zur Matrix künstliche Fehler-Matrizen der Form δa = 0.01 rand(4) und vergleichen Sie die Lösung mit jener des ungestörten Systems. Berechnen Sie die relativen Fehler der Matrixdaten 10 δa / A und der Lösung δx / x. Testen Sie einige Fälle, auch mit kleineren oder größeren Störtermen, und schätzen Sie daraus das maximale Verhältnis von rel. Fehler der Lösungs zu rel. Fehler in den Daten ab. Ändern Sie nun die Matrix des Gleichungssystems zu 1 1/2 1/3 1/4 A = 1/2 1/3 1/4 1/5 1/3 1/4 1/5 1/6 1/4 1/5 1/6 1/7 und wiederholen Sie Ihre Untersuchungen. Was bedeutet in diesem Zusammenhang der Wert cond(a)? 10 Sie brauchen Matrixnormen dazu! Informieren Sie sich in Skript und Vorlesungsfolien! 133

6 D.4. Entwicklung der Determinante, Komplexität Aufgabe 38: Determinante Gegeben sind A = [ ] 1 2, B = , C = , D = Berechnen Sie von diesen Matrizen die Determinante auf verschiedene Arten: 1. Mit der Matlab-Funktion det( ) 2. durch LR-Zerlegung, Matlab-Funktion lu( ), aus dem Produkt der Diagonalelemente von R. Der Befehl diag(r) extrahiert übrigens die Hauptdiagonale einer Matrix als einen Vektor Auch das primitive Eliminationsprogramm aus Aufgabe 36 liefert die Determinante als Produkt der Diagonalelemente (sogar vorzeichenrichtig, weil es keine Pivot-Suche durchführt). Testen Sie! Wiederholen Sie auch die bekannten Standardverfahren (Regel von Sarrus, Entwicklung nach Unterdeterminanten) und rechnen Sie für A, B, C von Hand nach. Achtung: die Regel von Sarrus (Gitterzaunregel) gilt nur für 2 2- und 3 3- Matrizen. Wer 4 4-Determinanten auf diese Weise berechnen will, rechnet falsch. FALSCH! FALSCH!! Aufgabe 39: Ein Rechenverfahren, das zwar korrekt rechnet, aber ewig dafür braucht, hat nur theoretischen Wert. Die Berechnung der Determinante durch Entwicklung nach Unterdeterminanten ist ein Beispiel dafür. Die folgende Funktion implementiert das Standardverfahren zur Berechnung der Determinante durch Entwicklung nach Unterdeterminanten. 11 Vorsicht, es kann sein, dass Matlabs lu() während der Rechnung Zeilen der Matrix vertauscht (Pivotierung). Mit jedem Zeilentausch wechselt das Vorzeichen der Determinante. Hat also lu() eine ungerade Anzahl von Zeilen vertauscht, hat das Produkt der Diagonalelemente das falsche Vorzeichen. Im Rahmen dieser Aufgabe sind Vorzeichen Glückssache. 134

7 function d = mydet (A) n = length (A) ; i f n==1 d = A( 1, 1 ) ; else d = 0 ; end s i g = 1 ; for end i =1:n d = d + s i g A( 1, i ) mydet (A( 2 : n, [ 1 : i 1, i +1:n ] ) ) ; s i g = s i g ; Überlegen Sie sich die Funktionsweise dieses Programms und testen Sie anhand der Matrizen der vorigen Aufgabe. Versuchen Sie auch etwas größere Matrizen. Einfache Testmatrizen liefert z. B. die Funktion magic(n). Bis zu welchem n lässt sich die Determinante 1. in weniger als zehn Sekunden, 2. in weniger als einer Minute 3. in weniger als zehn Minuten berechnen? Das hängt natürlich von der Leistungsfähigkeit Ihres Rechners ab. Schätzen Sie aufgrund Ihrer Zeitmessungen und der Tabelle im Skriptum, Kapitel 4.7.1, wie lange die Berechnung für n = 15 und n = 20 dauern würde. D.5. Überbestimmte lineare Gleichungssysteme Aufgabe 40: Gegeben sind drei Gleichungen in zwei Unbekannten, 2x + y = 19 4x + 4y = 13 4x y = 17 Finden Sie eine Näherungslösung nach der Methode der kleinsten Quadrate. Das Skriptum rechnet in Kapitel 5.3 diese Aufgabe auf dreierlei Arten durch: Methode der Normalengleichungen durch QR-Zerlegung von A mit Singulärwertzerlegung (das Skriptum verwendet andere Zahlenwerte) Berechnen Sie in MATLAB und geben Sie aus: jeweils Matrix, rechte Seite und Lösung (bzw. Näherungslösung) 1. der Normalengleichungen; 2. des transformierten Systems Rx = Q T b; 3. des Systems Sy = U T b nach Singulärwert-Zerlegung; 4. des Systems V T x = y (zweites System bei Singulärwert-Zerlegung); 135

8 Überlegen Sie: Warum ist die (Näherungs-)Lösung der jeweiligen Systeme einfach oder sogar besonders einfach? Aufgabe 41: Direkte Minimierung des Residuums mit MATLAB Schreiben Sie eine Funktions-Datei function r = residuum(x), die als Input einen Vektor x R 2 annimmt und die 2-Norm des Residuums für das Gleichungssystem der Aufgabe 40 zurückgibt. Diese Funktion ist ein Beispiel einer reellwertigen Funktion in zwei Variablen. MATLABs Befehl fminsearch findet das Minimum einer solchen Funktion. Er wird ganz ähnlich wie fzero verwendet: [0;0] ist ein Startvektor, von dem aus fminsearch zu suchen f m i n s e a r c h [ 0 ; 0 ] ) beginnt Berechnen Sie auf diese Art auch einen Vektor, der die 1 Norm, und einen, der die -Norm minimiert. Die Lösungsvektoren der Minimierungsprobleme sind optimale Näherungslösungen des überbestimmten Systems, jeweils im Sinn der 1- oder der -Norm. Bei der Minimierung in der 2-Norm führt jede beliebige Wahl eines Startvektors zur gleichen Lösung; es gibt nur ein Minimum. In der 1-Norm gibt es je nach Startwert mehrere Lösungen. In der -Norm findet MATLAB für manche Starwerte nicht das korrekte Minimum. Testen Sie jeweils mit [0;0] und [6;9] als Startwerte. Aufgabe 42: Darstellung des Residuums durch Isolinien Stellen Sie die Funktion r : R 2 R, function r = residuum(x), aus der Aufgabe 41 als Isolinien- Diagramm dar, in der Art der Abbildung auf Seite 47 des Skriptums. Die Z-Werte für die Isolinien Ihrer residuum-funktion lassen sich aber nicht so einfach wie bei den Musterbeispielen der vorigen Einheit aus den meshgrid X und Y erzeugen, weil die residuum-funktion Matrizen X und Y als Input nicht akzeptiert. Sie brauchen eine Doppelschleife in der Art Z = zeros(size(x)); for i=1:size(x,1) for j= 1:size(X,2) Z(i,j) = residuum([x(i,j); Y(i,j)]); end end Erzeugen Sie auch Isolinien-Diagramme für das Residuum in der 1- und der -Norm und finden Sie durch Hineinzoomen die Minima und zugehörige Vektoren. Sie entsprechen optimalen Näherunglösungen des überbestimmten Systems in diesen Normen. 136

D Vierte Übungseinheit

D Vierte Übungseinheit D Vierte Übungseinheit Inhalt der vierten Übungseinheit: Matrix-Vektor-Multiplikation Bergabstrich löst Gleichungssysteme Eindeutig, nicht eindeutig und gar nicht lösbare Systeme Fehlerempfindlichkeit

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

2x + y = 19 4x + 4y = 13 4x y = 17

2x + y = 19 4x + 4y = 13 4x y = 17 170 00 Übungen zu Numerische Methoden I Sechste Übungseinheit 1., 1. und 16. Mai 2012 Inhalt der sechsten Übungseinheit: Überbestimmte lineare Systeme Isolinien-Diagramme Lineare Datenmodelle Überbestimmte

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

Die Folien der vierten Vorlesung sind, weil großteils noch nicht behandelt,hier nochmal enthalten:

Die Folien der vierten Vorlesung sind, weil großteils noch nicht behandelt,hier nochmal enthalten: Fünfte Vorlesung, 18. März 2010, Inhalt Gleichungssysteme Die Folien der vierten Vorlesung sind, weil großteils noch nicht behandelt,hier nochmal enthalten: Matrizenrechnung Lineare Gleichungssysteme:

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Matrix-Zerlegungen, überbestimmte Systeme, iterative Löser

Matrix-Zerlegungen, überbestimmte Systeme, iterative Löser Matrix-Zerlegungen, überbestimmte Systeme, iterative Löser 5. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. März 2018 Matrix-Zerlegungen, überbestimmte

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Lineare Gleichungssysteme II

Lineare Gleichungssysteme II Lineare Gleichungssysteme II 5. Vorlesung 70 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 2. April 206 Lineare Gleichungssysteme II Lösbarkeit, Fehlerempfindlichkeit

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Matrixzerlegungen. Überbestimmte Systeme

Matrixzerlegungen. Überbestimmte Systeme Matrixzerlegungen. Überbestimmte Systeme 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. März 2014 Gliederung 1 Matrixzerlegungen Links-Rechts-Zerlegung

Mehr

4 Vierte Übungseinheit

4 Vierte Übungseinheit 4 Vierte Übungseinheit Inhalt der vierten Übungseinheit: Eindeutig, nicht eindeutig und gar nicht lösbare Systeme Fehlerempfindlichkeit, Matrixnormen, Konditionszahl Determinante, Komplexität Modelle an

Mehr

Lineares Gleichungssystem - Vertiefung

Lineares Gleichungssystem - Vertiefung Lineares Gleichungssystem - Vertiefung Die Lösung Linearer Gleichungssysteme ist das "Gauß'sche Eliminationsverfahren" gut geeignet - schon erklärt unter Z02. Alternativ kann mit einem Matrixformalismus

Mehr

Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme

Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 3.1 Eine Unbekannte 3.2 Zwei oder drei Unbekannte 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 1 Vorbemerkung zu Kapitel 1 Gleichungen (Unbekannte) (Variablen, Parameter)

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 11 1. Juni 2010 Rechenregeln für Determinanten Satz 62. (Determinanten von Dreiecksmatrizen) Es sei A eine obere oder untere n n-dreiecksmatrix.

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Überbestimmte Gleichungssysteme, Regression

Überbestimmte Gleichungssysteme, Regression Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 + x 2 =

Mehr

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix 5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Überbestimmte Systeme

Überbestimmte Systeme 5 Überbestimmte Systeme Ein lineares Gleichungssystem Ax = b mit mehr Gleichungen als Unbekannten heißt überbestimmt. In so einem Fall ist A eine n m-matrix mit n > m, also rechteckig, mit mehr Zeilen

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a 7 Lineare lgebra 7.1 Matrizen a a a k a a a a a a a a a a a a a 11 12 1 1n 21 22 2k 2n i1 i2 in m1 m2 mk mn i-te Zeile m Zeilen n Spalten k-te Spalte a : Matrixelement i 1,2,...,m k 1,2,...,n i: Zeilenindex

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 44 8. Lineare Algebra: 2. Determinanten Ein einführendes

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 212 Determinanten Hans Walser: Modul 212, Determinanten ii Modul 212 für die Lehrveranstaltung Mathematik 2 für Naturwissenschaften Sommer 2003 Probeausgabe

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. In dieser Aufgabe wollen wir die Parameter einer gewissen Modellfunktion aus ein paar gemessenen Werten bestimmen. Das Modell

Mehr

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation . Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 11. Aufgabe ETH Zürich D-MATH. Dr. V. Gradinaru D. Devaud. Herbstsemester 2015

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 11. Aufgabe ETH Zürich D-MATH. Dr. V. Gradinaru D. Devaud. Herbstsemester 2015 Dr. V. Gradinaru D. Devaud Herbstsemester 015 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 11 Aufgabe 11.1 11.1a) Sei die QR-Zerlegung der m n Matrix A (m > n) gegeben

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

A wird in diesem Fall invertierbar oder regulär genannt. Beispiel

A wird in diesem Fall invertierbar oder regulär genannt. Beispiel Inverse Matrizen Definition Sei A eine quadratische Matrix vom yp (n,n) Existiert zu A eine Matrix X gleichen yps mit AX = XA = E (E: (n,n) Einheitsmatrix), so nennt man X die zu A inverse Matrix, oder

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 5

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 5 D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 5 1. a) 1 0 0 1 3 5 LR = 0 1 0 2 6 7 0 0 1 3 10 10 1 0 0 1 3 5 = 2 1 0 0 0 3 3 0 1 0 1 5 1 0 0 1 3 5 1 0 0 = 3 1 0 0 1 5,

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Gemischte Aufgaben zur Klausurvorbereitung

Gemischte Aufgaben zur Klausurvorbereitung Gunter Ochs Wintersemester / Gemischte Aufgaben zur Klausurvorbereitung Lösungshinweise (ohne Galantie auf Fehreleiheit. Gegeben sei eine Tabelle, die bestimmten Buchstaben Zahlen von bis zuordnet. Buchstabe

Mehr

Übungen zur Linearen Algebra, Kap. 1 bis Kap. 3

Übungen zur Linearen Algebra, Kap. 1 bis Kap. 3 Übungen zur Linearen Algebra, Kap. bis Kap. 3. Gegeben seien die beiden Matrizen Berechnen Sie Lösungen zu Übung 6 3 4, B = ( 3 5 4 A B, B A, (A B, (B A Dies ist fast eine reine Rechenaufgabe. Wir wollen

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

Überbestimmte Systeme, Datenmodelle, Polynomiale Regression

Überbestimmte Systeme, Datenmodelle, Polynomiale Regression Überbestimmte Systeme, Datenmodelle, Polynomiale Regression 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 26. April 2018 Überbestimmte Systeme,

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

Exkurs: Eigenwertproblem

Exkurs: Eigenwertproblem 1 von 7 29.11.2008 16:09 Exkurs: Eigenwertproblem Bei der Faktorenanalyse tritt das Eigenwertproblem auf. Man spricht von einem Eigenwertproblem wenn das Produkt zwischen einer Matrix und einem Vektor

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Überbestimmte Systeme, Approximation

Überbestimmte Systeme, Approximation Überbestimmte Systeme, Approximation 7. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. April 2014 Gliederung 1 Überbestimmte Systeme Wiederholung:

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr