Überbestimmte Systeme, Datenmodelle, Polynomiale Regression
|
|
|
- Albert Bachmeier
- vor 7 Jahren
- Abrufe
Transkript
1 Überbestimmte Systeme, Datenmodelle, Polynomiale Regression 6. Vorlesung Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 26. April 2018
2 Überbestimmte Systeme, Datenmodelle, Polynomiale Regression 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung und Lösungsweg Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad Clemens Brand und Erika Hausenblas 26. April / 35
3 Noch nicht behandelt: Iterative Gleichungslöser auf den Folien der 5. Vorlesung Das ist sich letztes Mal zeitmäßig nicht ausgegangen; Wir verschieben dieses Themengebiet nach hinten, weil wir zuerst Überbestimmte Systeme, Datenmodelle und Regression abschließen wollen.
4 Überbestimmte Systeme Siehe Vorlesung vorige Woche! Weitere Folien folgen hier. Clemens Brand und Erika Hausenblas 26. April / 35
5 Geometrische Interpretation von Ax = b Zwei Möglichkeiten Im Raum der x-vektoren Jede Zeile der Matrix ist ein Normalvektor in einer Geradengleichung für x R 2,... Ebenengleichung für x R 3,... Lösung x ist Schnittpunkt aller Geraden (Ebenen, Hyperebenen... ) Im Raum der b-vektoren Jede Spalte der Matrix A ist ein Vektor. Das Produkt Ax ist eine Linearkombination der Spaltenvektoren. Lösung x gibt genau die Koeffizienten an, mit denen sich b als Linearkombination der Spaltenvektoren von A erreichen lässt.
6 Illustration: Farbmischung Farbtöne entsprechen RGB-Vektoren Additive Farbmischung Linerakombination von Farbvektoren Wie gut lässt sich der Farbton SlateGray (RGB ) aus Turquoise (RGB ) und DeepPink (RGB ) zusammenmischen? x x 2 = , , 294 = , , 294 =
7 Rechenweg über Normalengleichungen Die Standard-Lehrbuch-Lösung Gleichungssystem A x = b [ ] x1 x = Multipliziere Matrix und rechte Seite mit der transponierten Matrix A T A = A T b = [ [ ] [ ] = ] 112 [ ] = A und A T sind hier nur der Deutlichkeit halber farblich hinterlegt; die Farben haben sonst keine tiefere Bedeutung
8 Rechenweg über Normalengleichungen (Forts.) System der Normalengleichungen [ ] (A T A) x = A T b [ ] x1 x 2 = [ ] Matrix A T A ist symmetrisch Größenordnung der Zahlenwerte in A T A ist Quadrat der Zahlenwerte in der Originalmatrix Konditionszahl der Normalengleichungen ist Quadrat der Original-Konditionszahl. Das vergrößert Rundungsfehler! (Das ist bei kleinen Beispielen, so wie hier, kein Thema erst bei wirklichen, großen Systemen)
9 Rechenweg mit QR-Zerlegung, anschaulich Original-System in Spaltenvektor-Schreibung x x 2 = System in gedrehten Koordinaten Die Matrix Q T aus der QR-Zerlegung dreht alle Vektoren in ein einfacheres Koordinatensystem. Die Matrix R enthält die gedrehten Spalten von A x x 2 = Die Geometrie (Längen, Winkel) der Spaltenvektoren ist dieselbe, nur der Blickwinkel ist anders!
10 Singulärwert-Zerlegung, anschaulich System in gedrehten Koordinaten Die Matrix U T aus der Singulärwert-Zerlegung A = U S V T dreht die Spalten in ein neues Koordinatensystem x x 2 = Lösungsvektor auch noch gedreht Die Matrix V T aus der Singulärwert-Zerlegung A = U S V T dreht den Lösungsvektor: y = V T x. Die Gleichungen für y werden ganz einfach y y 2 =
11 Überbestimmte Systeme, Zusammenfassung Normalengleichungen: Löse das System (A T A) x = A T b QR-Zerlegung: Löse das System R x = Q T b Singulärwert-Zerlegung: Löse die Systeme S y = U T b x = V y Pseudoinverse (kommt noch) x = A + b
12 Überbestimmte nichtlineare Systeme Beispiel: Standortbestimmung durch Trilateration Die Abstände von drei festen Punkten A, B, C zu einem unbekannten Punkt X sind (etwas ungenau) bekannt. Gesucht ist eine möglichst gute Positionsbestimmung. (x1 1) 2 + (x 2 1) 2 = 6 (x1 8) 2 + (x 2 4) 2 = 3.6 (x1 5) 2 + (x 2 8) 2 = d a =6 C d c =4.2 X d b =3.6 B 2 Den drei Gleichungen entsprechen drei Kreise im R 2. Sie haben keinen gemeinsamen Schnittpunkt. 1 A
13 Überbestimmte nichtlineare Systeme Lösung durch Linearisierung und Iteration f(x) = 0, x R n, f(x) R m, m > n Ausgehend von Startvektor x (0) bestimmt man eine Korrektur x. Die Rechenvorschrift des Newton-Verfahrens für f(x) = 0 ergibt ein überbestimmtes lineares System mit der Jacobimatrix D f D f x = f(x) Verbesserte Lösung x (1) = x (0) + x. Für die Konvergenz der Iteration kann Unterrelaxation (Dämpfung) notwendig sein: x (n+1) = x (n) + ω x mit Unterrelaxationsfaktor 0 < ω 1.
14 Rechenbeispiel von vorhin (x1 1) 2 + (x 2 1) 2 6 f(x) = (x1 8) 2 + (x 2 4) 2 3.6, D f = (x1 5) 2 + (x 2 8) [ 5 Mit Startvektor x = erhält man 4] x 2 1 x 1 1 (x 1 1) 2 +(x 2 1) 2 (x 1 1) 2 +(x 2 1) 2 x 1 8 (x x ) 2 +(x 2 4) 2 (x 1 8) 2 +(x 2 4) 2 x 1 5 (x x ) 2 +(x 2 8) 2 (x 1 5) 2 +(x 2 8) 2 f ([ ]) 1 5 = 3/5, D 4 f = 1/ , lin. Syst ] 1 [ x1 = 3/5 x 2 1/5 Ergibt x 1 = 1/25, x 2 = 7/25 verbesserte Position [5.04; 4.28].
15 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.
16 Pseudoinverse tritt auch bei überbestimmten Systemen auf Für überbestimmte Systeme Ax = b lässt sich die kleinste-quadrate-lösung aus den Normalengleichungen bestimmen A T Ax = A T b (A T A) 1 x = (A T A) 1 A T b Substituiere (A T A) 1 A T A + x = A + b (abgesehen von numerischen Problemen und dem Sonderfall, dass A nicht vollen Spaltenrang hat) Die Matrix A + wirkt also ähnlich wie eine Inverse bei der Lösung eines gewöhnlichen Gleichungssystems mit nichtsingulärer quadratischer Matrix. Clemens Brand und Erika Hausenblas 26. April / 35
17 Pseudoinverse Die Definition A + = (A T A) 1 A T ist nicht immer gültig Problem Die Definition A + = (A T A) 1 A T ist nicht möglich, wenn (A T A) singulär ist. Trotzdem lässt sich eine Matrix A + angeben, die eine optimale Lösung des überbestimmten Systems findet. Existenz und Eigenschaften der Pseudoinversen Zu jeder reellen m n-matrix A gibt es eine eindeutig bestimmte reelle n m-matrix A +, die Moore-Penrose Inverse, mit den Eigenschaften A A + A = A (A A + ) T = A A + A + A A + = A + (A + A) T = A + A Falls A + = (A T A) 1 A T existiert, erfüllt diese Matrix alle vier Bedingungen. Clemens Brand und Erika Hausenblas 26. April / 35
18 Inverse und Pseudoinverse von Diagonalmatrizen Für quadratische Diagonalmatrizen ist die Definition recht einfach... Inverse einer Diagonalmatrix (falls alle s i 0) 1 s s s 2 0 S =.... S 1 0 = s s 1 n 0 0 s n Pseudoinverse einer Diagonalmatrix r { S + 0 r =.... mit r i = s i r n falls { si 0 s i = 0 Clemens Brand und Erika Hausenblas 26. April / 35
19 Pseudoinverse von rechteckigen Diagonalmatrizen Ist S R m R n, dann ist S + R n R m Definition der r i und s i bleibt gleich wie vorhin, es gibt nur zusätzliche Nullzeilen oder -spalten. s s S = 0 0 s n r S + 0 r = r n 0 0 Clemens Brand und Erika Hausenblas 26. April / 35
20 Pseudoinverse allgemein Verwende Singulärwertzerlegung A = U S V T Bei der Multiplikation y = A x = U S V T x spürt der Vektor x zuerst V T dann S zuletzt U Um diese drei Multiplikationen rückgängig zu machn, muss man bei der letzten beginnen: U rückgängig machen: mit U T multiplizieren S rückgängig machen: hier braucht man S + V T rückgängig machen: mit V multiplizieren Pseudoinverse A = U S V T A + = V S + U T Clemens Brand und Erika Hausenblas 26. April / 35
21 Polynomiale Regression: Aufgabenstellung Gesucht ist ein Polynom, das die Datenpunkte möglichst gut approximiert Gegeben m + 1 Wertepaare (x i, y i ), i = 0,..., m Gesucht p(x), ein Polynom n-ten Grades, n < m, so dass die Summe der Fehlerquadrate m (p(x i ) y i ) 2 minimal wird. i=0 Clemens Brand und Erika Hausenblas 26. April / 35
22 Anpassen eines Polynoms an Datenpunkte Spezifische Wärmekapazität von kohlenstoffarmem Stahl in J/kg K für 20 C T 700, C T c p y = *x *x + 4.6e+002 y = 1.6e 006*x *x *x + 4.4e Datenpunkte quadratisches Pol. kubisches Pol Die Abbildung illustriert polynomiale Regression (quadratisch und kubisch) an die gegebenen Datenpunkte.
23 Polynomiale Regression ist eigentlich ein Spezialfall von linearen Modellen. (Ansatzfunktionen sind nichtlinear, aber die gesuchten Koeffizienten treten nur linear auf!) für die Normalengleichungs-Matrix gibt es eine einfache Formel für Polynome hohen Grades (ab n 15 20) ist der naive Ansatz a 0 + a 1 x + a 2 x 2 + x n völlig ungeeignet. Abhilfe: Orthogonalpolynome. Clemens Brand und Erika Hausenblas 26. April / 35
24 Direkter Lösungsweg Ansatz des Polynoms mit unbestimmten Koeffizienten p(x) = a 0 + a 1 x + a 2 x a n 1 x n 1 + a n x n. Einsetzen der gegebenen Wertepaare führt auf ein System von m linearen Gleichungen in den n + 1 unbekannten Koeffizienten a 0, a 1,..., a n. Die Matrix A hat eine spezielle Form (Vandermonde-Matrix): 1 x 0 x0 2 x x n 0 1 x 1 x A = 1 2 x x n x m xm 2 xm 3... xm n Standard-Lösung am Rechner durch QR-Zerlegung Bei kleinen Problemen und Rechnung mit Papier und Stift: klassisch nach der Methode der Normalengleichungen. Clemens Brand und Erika Hausenblas 26. April / 35
25 Formel für die Normalengleichungen Bei polynomialer Regression haben die Normalengleichungen spezielle Form; man kann die Koeffizienten direkt angeben. s 0 s 1... s n a 0 t 0 s 1 s 2... s n+1... a 1. = t 1. s n s n+1... s 2n a n t n mit s k = m i=0 x k i, t k = m i=0 x k i y i Praktisch nur bei linearer oder vielleicht noch quadratischer Regression sinnvoll. Moderner Lösungsweg: Vandermonde-Matrix aufstellen, QR-Lösung Clemens Brand und Erika Hausenblas 26. April / 35
26 Was dabei schiefgehen kann Remember Murphy s Law: If anything can go wrong, it will Normalengleichungen für größere n schlecht konditioniert Abhilfe: Daten skalieren. Anderere Lösungswege (QR-Zerlegung, Singulärwertzerlegung), andere Ansatzfunktionen (Orthogonalpolynome) Methode der kleinsten Quadrate wird durch Ausreißer stark irritiert Abhilfe: Robuste Methoden, Minimierung der Summe der absoluten Fehler (Minimierung in der 1-Norm statt in der 2-Norm) Clemens Brand und Erika Hausenblas 26. April / 35
27 Statistische Zusammenhänge Die Methode der kleinsten Quadrate liefert maximum likelihood-schätzung der Parameter wenn die Daten mit unabhängigen, zufälligen, normalverteilten Fehlern mit gleicher Standardabweichung behaftet sind. Ist C = (A T A) 1 die inverse Matrix des Systems der Normalengleichungen, und ist die Varianz der Daten gleich σ 2, so ist σ 2 C die Kovarianzmatrix der Parameter. Clemens Brand und Erika Hausenblas 26. April / 35
28 Lineare Regression Gerade anpassen Einfacher Spezialfall der polynomialen Regression Clemens Brand und Erika Hausenblas 26. April / 35
29 Total Least Squares mit SVD Standardverfahren minimiert Summe der Abstandsquadrate in y-richtung, TLS minimiert Quadratsumme der Normalabstände Bestimme Schwerpunkt [ x, ȳ] der Daten. x = 1 n x i, i=1,n ȳ = 1 n i=1,n y i 0.4 Verschiebe die Daten 0.2 x i = x i x, y i = y i ȳ Bilde Singulärwertzerlegung x 1 y 1 U S V T =.. x n y n TLS-Gerade geht durch den Schwerpunkt in Richtung des ersten Spaltenvektors von V.
30 Approximation durch polynomiale Regression Datenpunkte sind gegeben. Ein Approximationspolynom vierten Grades modelliert den Verlauf der Daten ganz passabel. Es hängt vom Modell ab, ob es Sinn macht, mehr Parameter (höheren Grad) zu verwenden. Ein Polynom 15. Grades (16 freie Parameter) könnte die Daten exakt modellieren, aber...
31 Datenanpassung mit zu hohem Polynomgrad Kein Fehler an den Datenpunkten, aber dazwischen oszilliert das Polynom heftig. Typisch für Polynome hohen Grades. Sie oszillieren besonders zu den Rändern hin, wenn man Sie durch vorgegebene Datenpunkte zwingt.
32 Woher die Daten kommen Ob eine Approximation ausreichend gut ist, hängt unter anderem auch davon ab, was die Daten beschreiben sollen... In diesem Fall sind es Punkte in einer kurvenreichen Computergraphik:
Überbestimmte Systeme, Approximation
Überbestimmte Systeme, Approximation 7. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. April 2014 Gliederung 1 Überbestimmte Systeme Wiederholung:
Überbestimmte Gleichungssysteme, Regression
Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte
Datenmodelle, Regression
Achte Vorlesung, 15. Mai 2008, Inhalt Datenmodelle, Regression Anpassen einer Ausgleichsebene Polynomiale Regression rationale Approximation, Minimax-Näherung MATLAB: polyfit, basic fitting tool Regression
Matrixzerlegungen. Überbestimmte Systeme
Matrixzerlegungen. Überbestimmte Systeme 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. März 2014 Gliederung 1 Matrixzerlegungen Links-Rechts-Zerlegung
Approximation, Interpolation, numerische Integration
Approximation, Interpolation, numerische Integration 7. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 12. Mai 2016 Approximation, Interpolation, numerische
Regression, Interpolation, numerische. Integration
,, numerische 9. Vorlesung 170004 Methoden I Clemens Brand 20. Mai 2010 Gliederung : Aufgabenstellung Gesucht ist ein Polynom, das die Datenpunkte möglichst gut approximiert Gegeben m+1 Wertepaare (x i,
Überbestimmte Gleichungssysteme
Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare
Matrix-Zerlegungen, überbestimmte Systeme, iterative Löser
Matrix-Zerlegungen, überbestimmte Systeme, iterative Löser 5. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. März 2018 Matrix-Zerlegungen, überbestimmte
Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung
Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten
Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)
Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren
Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung
Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,
d a Den drei Gleichungen entsprechen drei Kreise imr 2. Sie haben keinen gemeinsamen Schnittpunkt
G Siebte Übungseinheit Inhalt der siebten Übungseinheit: Überbestimmte nichtlineare Systeme MATLAB-Werkzeuge zum Anpassen von Funktionen an Daten Alternativen zur Minimierung der Fehlerquadrate: Robuste
Lineare Algebra. 10. Übungsstunde. Steven Battilana.
Lineare Algebra. Übungsstunde Steven Battilana [email protected] November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,
1 Singulärwertzerlegung und Pseudoinverse
Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese
Ausgleichsproblem. Definition (1.0.3)
Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
Fixpunkt-Iterationen
Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip
Lineare Gleichungssysteme
Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten
Überbestimmte Systeme
5 Überbestimmte Systeme Ein lineares Gleichungssystem Ax = b mit mehr Gleichungen als Unbekannten heißt überbestimmt. In so einem Fall ist A eine n m-matrix mit n > m, also rechteckig, mit mehr Zeilen
a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:
Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag
Lineare Gleichungssysteme
Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,
Fixpunkt-Iterationen
Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. März 2016 Nichtlineare Gleichungen, Fixpunkt-Iterationen 1 Wiederholung Aufgabentypen
Interpolation, numerische Integration
Interpolation, numerische Integration 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. Mai 2014 Gliederung 1 Interpolation polynomial Spline 2 Numerische
Lineares Gleichungssystem - Vertiefung
Lineares Gleichungssystem - Vertiefung Die Lösung Linearer Gleichungssysteme ist das "Gauß'sche Eliminationsverfahren" gut geeignet - schon erklärt unter Z02. Alternativ kann mit einem Matrixformalismus
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).
2. Spezielle anwendungsrelevante Funktionen
2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017
Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
ÜBUNGSAUFGABEN ZUR NUMERIK 1
ÜBUNGSAUFGABEN ZUR NUMERIK 1 MARTIN EHLER, WS 2015/16 Teil 1. Matlab,... Aufgabe 1. Arbeiten Sie die Matlab Einführung von Waltraud Huyer durch, die unter dem Link http://www.mat.univie.ac.at/ huyer/matlab.pdf
Pseudoinverse Matrizen
Miniaturen zur Einführung in die Mathematik Vertiefungen, Ergänzungen und zusätzliche interessante Aspekte für Hörsaalanleitungen oder schlicht als Lektüreangebot 09 Pseudoinverse Matrizen Moore-Penrose-Inverse
Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen
Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Serie 8: Online-Test
D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen
Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren
Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
Singulärwertzerlegung
LMU München Centrum für Informations- und Sprachverarbeitung WS 10-11: 13.12.2010 HS Matrixmethoden im Textmining Dozent: Prof.Dr. Klaus U. Schulz Referat von: Erzsébet Galgóczy Singulärwertzerlegung 1
Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen
Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können
VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.
NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet
Serie 8: Fakultativer Online-Test
Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung
Inhalt der fünften Übungseinheit: Modelle an Daten anpassen Lineare Datenmodelle Nichtlineare Datenmodelle
E Fünfte Übungseinheit Inhalt der fünften Übungseinheit: Modelle an Daten anpassen Lineare Datenmodelle Nichtlineare Datenmodelle Der erste Abschnitt ist eine Schritt-für-Schritt-Anleitung, die Sie selbständig
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
Interpolation und Approximation von Funktionen
Kapitel 6 Interpolation und Approximation von Funktionen Bei ökonomischen Anwendungen tritt oft das Problem auf, dass eine analytisch nicht verwendbare (oder auch unbekannte) Funktion f durch eine numerisch
Basiswissen Matrizen
Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)
Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016
Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.
VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.
IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei
47 Singulärwertzerlegung
47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar
Übungsblatt
Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen
Begleitmaterial zur Vorlesung Numerik II
Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik
6. Vorlesung. Rechnen mit Matrizen.
6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt
Spezielle Matrixformen
Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß
Diagonalisierbarkeit symmetrischer Matrizen
¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren
Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y
Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei
Kapitel 15 Lineare Gleichungssysteme
Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem
Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015
Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler
Statistik II für Betriebswirte Vorlesung 12
Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die
Interpolation, numerische Integration, Eigenwerte
Neunte Vorlesung, 29. Mai 2008, Inhalt Interpolation, numerische Integration, Eigenwerte Polynomiale Interpolation (Lagrange, Newton, Neville) Splines und weitere Interpolationsverfahren numerische Integration
BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2
Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete
Lineare Gleichungssysteme
KAPITEL 2 Lineare Gleichungssysteme. Beispiele Wir betrachten zunächst vier Gleichungssysteme und bestimmen ihre Lösungsmenge. Dabei geht es uns noch nicht darum, ein Lösungsverfahren für lineare Gleichungssysteme
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya
Matrizen: Grundbegriffe -E Ma Lubov Vassilevskaya Lineares Gleichungssystem Abb. : Der Schnittpunkt P der beiden Geraden ist die graphische Lösung des linearen Gleichungssystem g : y = x, g 2 : y = 3 x,
Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie
Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen
Anwendungen der Differentialrechnung
KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
Lineare Gleichungssysteme: direkte Verfahren
Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom
Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch
Orthogonale Matrix. Definition 4.19
Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung
Ausgleichsrechnung: Methode der kleinsten Quadrate
kleinsten Quadrate Historische Bemerkung In der Neujahrsnacht 1801 entdeckte Giuseppe Piazzi den Zwergplaneten Ceres in der Lücke zwischen Mars und Jupiter. Allerdings verlor man Ceres danach wieder aus
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein
(d) das zu Grunde liegende Problem gut konditioniert ist.
Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt
Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte
Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung
Linear nichtseparable Probleme
Linear nichtseparable Probleme Mustererkennung und Klassifikation, Vorlesung No. 10 1 M. O. Franz 20.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht
10 Lineare Gleichungssysteme
ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a
VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und
IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr
Lösung Semesterendprüfung
MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als
Aufgaben zu Kapitel 20
Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v
2 Die Algebra der Matrizen
Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y
Vorkurs Mathematik Übungen zu linearen Gleichungssystemen
Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden
