Wirtschaftswissenschaftliches Forum

Größe: px
Ab Seite anzeigen:

Download "Wirtschaftswissenschaftliches Forum"

Transkript

1 Wirtschaftswissenschaftliches Forum Prof. Dr. Dr. Andreas Löffler Universität Paderborn Investitionsneutrale Steuersysteme unter Unsicherheit

2 Investitionsneutrale Steuersysteme unter Unsicherheit Wirtschaftswiss. Forum, ifu Bochum 11. Mai 2009

3 Übersicht Einführung Das Problem Literatur Das Modell Zinskorrektur Unsichere Cashflows Idee Einbeziehung von Steuern

4 Das Problem Literatur Einführung 1 Steuern können ökonomische Entscheidungen verzerren. Das vergeudet Ressourcen. Wie muss ein Steuersystem ausgestaltet sein, das keine Verzerrungen auslöst? Umsatzsteuererklärung Manfred Rose (Heidelberg), Franz W. Wagner (Tübingen), Ekkehart Wenger (Würzburg): Kroatien

5 Das Problem Literatur Das Konzept 2 Der Markt Eine Realinvest. Kapitalmarkt (Finanzinvest.) Notwendig sind die folgenden zwei Annahmen spanning (die Realinvestition lässt sich durch den Kapitalmarkt duplizieren) und Kapitalmarkt und Markt mit Realinvestition sind arbitragefrei.

6 Das Problem Literatur Investitionsneutrale Steuersysteme 3 Steuersysteme ohne Verzerrungswirkung heißen investitionsneutral: Ökonomischer Gewinn Preinreich, Samuelson (1951, 1964): Besteuere Investition so, als ob sie ein Kapitalmarktkredit wäre. Problem: Man muss jedes Mal eine Unternehmensbewertung durchführen. Cashflow-Steuer Brown (1948) Besteuere Zahlungen. Damit Kapitalwert besteuert. Problem: Geht nur bei zeitlich konstantem Steuersatz. Zinskorrektur Boadway/Bruce, Wenger (1979, 1983) Verzinse die Abschreibungen. (In Kroatien umgesetzt.) Bisher nötig: konstanter Steuersatz und sichere CF

7 Das Problem Literatur Symbole 4 Ein Investitionsprojekt hat Cashflows CF t und kostet im Zeitpunkt t genau I t. Der Kapitalwert heute beträgt NPV = I 0 + und er bildet das Entscheidungskriterium. Wir unterscheiden weiter CF t (1 + r f ) t fairer Preis V t, Summe zukünftiger diskontierter Cashflows Investitionsausgabe I t, Kosten für Erwerb des Projektes (auch Marktpreis) Buchwert BW t, bestimmt die Abschreibungen Bei Kapitalmarktinvestitionen stimmen alle drei überein.

8 Das Problem Literatur Symbole (risikoneutrale Investoren) 4 Ein Investitionsprojekt hat Cashflows CF t und kostet im Zeitpunkt t genau I t. Der Kapitalwert heute beträgt NPV = I 0 + E[ CF t ] (1 + r f ) t und er bildet das Entscheidungskriterium für risikoneutrale Investoren. Wir unterscheiden weiter fairer Preis V t, Summe zukünftiger diskontierter Cashflows Investitionsausgabe I t, Kosten für Erwerb des Projektes (auch Marktpreis) Buchwert BW t, bestimmt die Abschreibungen Bei Kapitalmarktinvestitionen stimmen alle drei überein.

9 Das Problem Literatur Cashflow-Steuer 5 NPV τ = I 0 + τi 0 + = (1 τ) ( = (1 τ)npv I 0 + Diese Steuer ist investitionsneutral. CF t τcf t (1 + r f ) t CF t (1 + r f ) t Man erkennt auch, dass diese Rechnung bei nicht zeitlich konstanter Steuer zusammenbricht. )

10 Das Problem Literatur Cashflow-Steuer (risikoneutrale Investoren) 5 NPV τ = I 0 + τi 0 + = (1 τ) ( = (1 τ)npv I 0 + Diese Steuer ist investitionsneutral. [ E CF t τ CF ] t (1 + r f ) t E[ CF ) t ] (1 + r f ) t Man erkennt auch, dass diese Rechnung bei nicht zeitlich konstanter Steuer zusammenbricht. (Dies gilt auch für risikoneutrale Investoren.)

11 Das Problem Literatur Verzinste Abschreibungen 6 Die Idee besteht darin, bei einem beliebigen Abschreibungsystem die Abschreibungen zu verzinsen: NPV τ CF t τ (CF t AfA t (1 + r f ) t ) = I 0 + (1 + r f ) t ( T ) CF t = I 0 + (1 τ) (1 + r f ) t + τ AfA t } {{ } =I 0 = (1 τ)npv Das ist keine Cashflow Steuer, aber sie verhält sich so. Inbesondere ist sie auch investitionsneutral.

12 Das Problem Literatur Verzinste Abschreibungen (risikoneutrale Investoren) 6 Die Idee besteht darin, bei einem beliebigen Abschreibungsystem die Abschreibungen zu verzinsen: [ ( ) ] E CF t τ CF t ÃfA t(1 + r f ) t NPV τ = I 0 + (1 + r f ) t ( T E[ = I 0 + (1 τ) CF ) t ] (1 + r f ) t + τ ÃfA t = (1 τ)npv } {{ } =I 0 Das ist keine Cashflow Steuer, aber sie verhält sich so. Inbesondere ist sie auch investitionsneutral. (Dies gilt auch für risikoneutrale Investoren.)

13 Das Problem Literatur Verzinste AfA = Zinskorrektur 7 Achten Sie auf T AfA t(1+r f ) t (1+r f ) : t AfA t (1 + r f ) t (1 + r f ) t = I 0 = = = BW T t 1 (1 + r f ) t 1 BW t (1 + r f ) t + BW T (1 + r f ) } {{ T } =0 (1 + r f )BW t 1 (1 + r f ) t (AfA t + r f BW t 1 ) (1 + r f ) t BW t (1 + r f ) t

14 Das Problem Literatur Zinskorrektur, II 8 Einsetzen in die Hauptgleichung ergibt NPV τ = I 0 + = I 0 + CF t τ (CF t AfA t (1 + r f ) t ) (1 + r f ) t CF t τ (CF t AfA t r f BW t 1 ) (1 + r f ) t und erklärt den Begriff Zinskorrektur: Man korrigiert den Gewinn um Zinsen auf den Buchwert der Vorperiode. Kann man diese Zinskorrektur übertragen auf zeitlich veränderbare Steuersätze und unsichere Cashflows?

15 Das Problem Literatur Literatur 9 Untersuchungen bei Risikoneutralität Richter (1986) König (1997) Sureth (1999) Niemann (1999) Untersuchungen bei Risikoaversion Fane (1987) Bond/Devereux (1995): für nicht konstante Steuersätze unmöglich! Untersuchungen für spez. Nutzenfunktionen Schwinger (1992) Feldhoff (1995) Sureth (1999) Untersuchungen nichtkonst. Steuersätze Ross (1987)

16 Das Modell Zinskorrektur Unsichere Cashflows Das Steuersystem 10 Wir betrachten eine Tauschökonomie mit einer Art Einkommensteuer. Die Zukunft t = 1,..., T ist vorerst sicher. Steuersubjekt Investor Steuerobjekt Investition, Kapitalmarktanlage Bemessungsgrundlage Gewinn (hier Cashflow minus Abschreibung) bzw. Zins Steuersatz zeitlich variabel, τ t Ein Steuersystem ist investitionsneutral genau dann, wenn NPV > 0 NPV τ > 0.

17 Das Modell Zinskorrektur Unsichere Cashflows Zinskorrektur 11 Die BMG wird zinskorrigiert ( Steuerschuld = τ t CF t τ ) t 1 1 τ t (1 + r f ) I t 1 + I t. τ t 1 τ t 1 Diese Gleichung versteckt mehrere Forderungen: 1. bei zeitkonstantem Steuersatz ist dies (fast) die klassische Zinskorrektur 2. Abschreibungen orientieren sich an Restverkaufserlösen (hier I t ) 3. bei veränderlichen Steuersätzen kommt eine Korrektur hinzu

18 Das Modell Zinskorrektur Unsichere Cashflows Investitionsneutralität der Zinskorrektur 12 Dieses Steuersystem ist sogar dynamisch neutral, d.h. es gilt V t I t = NPV t = (1 τ t )NPV τ = (1 τ t )(V τ t I t ) d.h. die Neutralität gilt auch in zukünftigen Zeitpunkten t.

19 Das Modell Zinskorrektur Unsichere Cashflows Beweis Schritt 1: Barwertgleichung mit Zinskorrektur 13 Ausgangspunkt: Für Kapitalmarktanlagen ändert sich auch bei Einführung einer Steuer der Marktpreis nicht. Daraus errechnen wir die Rendite von Kapitalmarktanlagen r t = V t+1 V t + CF t+1 Steuerschuld t+1 V ( t ) τt+1 τ t = r f (1 + r f ) 1 τ t Daraus lassen sich die Marktpreise Vt τ einer Sachinvestition und damit der Kapitalwert rückwärts ermitteln. Nun gilt im letzten Zeitpunkt V τ T = V T = 0 und damit die Behauptung. Daraus folgern wir rückwärts die Behauptung für alle t < T.

20 Das Modell Zinskorrektur Unsichere Cashflows Verallgemeinerung auf unsichere Cashflows 14 Drei Ideen, wie man mit unsicheren Cashflows umgehen kann: 1. Kapitalkosten statt risikoloser Zins 2. Nutzenfunktionen 3. risikoneutrale Wahrscheinlichkeiten Die ersten beiden Ideen haben sich im Fall unsicherer Cashflows als nicht gangbar erwiesen: Man kennt die Höhe der Kapitalkosten nicht. Nutzenfunktionen sind nichtlinear und daher sehr schwer handhabbar. Dagegen lässt sich die Idee risikoneutraler Wahrscheinlichkeiten nutzen.

21 Idee Einbeziehung von Steuern Idee risikoneutraler Wahrscheinlichkeiten 15 Will man einen riskanten Cashflow bewerten, so rechnet man beispielsweise E[ CF 1 ] > E[ CF 1 ] 1 + r f 1 + k = V 0 mit geeigneten Kapitalkosten. Kann man nicht statt dessen die Wahrscheinlichkeiten anpassen? V 0 = E Q[ CF 1 ] = E[ CF 1 ] 1 + r f 1 + k

22 Idee Einbeziehung von Steuern Fundamentalsatz der Preistheorie 16 Wenn Märkte arbitragefrei sind, gelingt diese Anpassung immer. Es gibt eine Wahrscheinlichkeit Q derart, dass gilt 1 NPV = I 0 + E Q [ CF t ] (1 + r f ) t. Beweise u.a. Harrison/Kreps (1979), Back/Pliska (1990) Beweisidee also: Wenn man risikoaverse Investoren betrachten will, rechnet man wie mit risikoneutralen, nutzt aber dieses Q! Einziges Problem: Verändert sich diese Gleichung nicht unter (Unternehmer-)Steuern? 1 Keine Aussage wird darüber getroffen, wie man Q konkret bestimmt.

23 Idee Einbeziehung von Steuern Fundamentalsatz mit Steuern 17 Wenn man eine Steuer einführt, lautet der Fundamentalsatz wie folgt NPV = I 0 + E Q [ CF t ] (1 + r f (1 τ)) t. Beweis Löffler/Schneider, Kruschwitz/Löffler (Theorem 3.2) Unterschiedliche Verzinsung von Dividenden und Zinsen kann berücksichtigt werden.

24 Idee Einbeziehung von Steuern Zurück zu den investitionsneutralen Steuersystemen 18 Es gilt nun auch unter Unsicherheit: Die Zinskorrektur Steuerschuld = τ t ist investitionsneutral. ( CF t τ ) t 1 1 τ t (1 + r f ) τ t 1 τ Ĩt 1 + Ĩt. t 1 Beweis: Man bildet in den Beweisen unter Sicherheit den Erwartungswert E Q, passt den risikolosen Zins an und das Ergebnis stellt sich ein.

25 19 Diese Ideen lassen sich auch auf zeitstetige Modelle übertragen. Der Kurs einer Realinvestition folgt (Cashflows sind hier X ) dv t = µ t V t dt dx t + σ t V t dw t. Die Steuerschuld bei Zinskorrektur ist, wenn B t den Buchwert bezeichnet ( ) ) dτ t dt dt t = τ t (dx t + db t r B t dt. τ t (1 τ t ) Dieses System ist ebenfalls investitionsneutral.

26 20 Investitionsneutrale Steuersysteme bei zeitlich veränderlichen Steuersätzen und unsicheren Cashflows sind möglich, wenn man sich der Zinskorrektur bedient. Die Idee risikoneutraler Wahrscheinlichkeiten bietet das richtige Werkzeug.

Übersicht. Investitionsneutrale Steuersysteme 2. Investitionsneutrale Steuersysteme unter Unsicherheit. Einführung,

Übersicht. Investitionsneutrale Steuersysteme 2. Investitionsneutrale Steuersysteme unter Unsicherheit. Einführung, Übersicht Investitionsneutrale Steuersysteme unter Unsicherheit Andreas Löffler, [email protected] Friedrich-Alexander-Universität Erlangen-Nürnberg Einführung Literatur mit variierendem Steuersatz Das Modell

Mehr

INVESTITION UND BESTEUERUNG Investitionsneutralität

INVESTITION UND BESTEUERUNG Investitionsneutralität Univ.-Prof. Dr. Stefan D. Josten Öffentliche Finanzen E.1 Investitionsneutralität Kapitalwerte vor Steuern: K 1, K 2, Kapitalwerte nach Steuern: Investitionsneutralität der Besteuerung verlangt, dass:

Mehr

Aufgabenset 1 (abzugeben 16.03.2012 an [email protected])

Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de) Aufgabenset 1 (abzugeben 16.03.2012 an [email protected]) Aufgabe 1 Betrachten Sie die Cashflows der Abbildung 1 (Auf- und Abwärtsbewegungen finden mit gleicher Wahrscheinlichkeit statt). 1 Nehmen Sie an, dass

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

IWW-Studienprogramm. Vertiefungsstudium. Modul IV Finanz-, Investitions- und Risikomanagement

IWW-Studienprogramm. Vertiefungsstudium. Modul IV Finanz-, Investitions- und Risikomanagement Institut für Wirtschaftswissenschaftliche orschung und Weiterbildung GmbH Institut an der ernuniversität in Hagen IWW-Studienprogramm Vertiefungsstudium Modul IV inanz-, Investitions- und isikomanagement

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Kom pet enz auf Kurs gebracht

Kom pet enz auf Kurs gebracht Der Cashflow Unternehmenskennzahl mit zentraler Bedeutung Stellen Sie sich Ihr Unternehmen einmal als Badewanne vor: Aus dem Hahn in der Wand fließt ein (hoffentlich) warmer, stetiger Geldstrom, die Einzahlungen.

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)

Mehr

Übung 2 Erfolgsrechnung

Übung 2 Erfolgsrechnung Controlling in deutschen Unternehmen Übung 2 Erfolgsrechnung Dipl.-Kfm. Florian Böckling, MBA Dipl.-Kfm. Franz Zinser, MBA Lehrstuhl für Controlling Prof. Dr. Louis Velthuis Johannes Gutenberg-Universität

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Aufgabe 1) 100.000 350.000

Aufgabe 1) 100.000 350.000 Aufgabe 1) Ausgangsdaten: Altanlage Ersatzinvestition Anschaffungskosten 500.000 (vor 4 Jahren) 850.000 Nutzungsdauer bisher 4 Jahre 8 Jahre ges. Geschätzte Restnutzungsdauer 5 Jahre erwartete Auslastung:

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

Bernadette Büsgen HR-Consulting www.buesgen-consult.de

Bernadette Büsgen HR-Consulting www.buesgen-consult.de Reiss Profile Es ist besser mit dem Wind zu segeln, als gegen ihn! Möchten Sie anhand Ihres Reiss Rofiles erkennen, woher Ihr Wind weht? Sie haben verschiedene Möglichkeiten, Ihr Leben aktiv zu gestalten.

Mehr

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02)

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02) Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang Aufgabenblatt 3 (KW 44) (30.10.02) Aufgabe 1: Preisdiskriminierung dritten Grades (20 Punkte) Ein innovativer Uni-Absolvent plant,

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

Steuerliche Gestaltungsmöglichkeiten nutzen

Steuerliche Gestaltungsmöglichkeiten nutzen Page 1 of 5 Investieren - noch im Jahr 2010 Steuerliche Gestaltungsmöglichkeiten nutzen 16. Oktober 2010 - Bis zum Jahresende hat jeder Zahnarzt noch Zeit. Bis dahin muss er sich entschieden haben, ob

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Zeitwert des Geldes 1 Finanzwirtschaft Teil II: Bewertung Zeitwert des Geldes Zeitwert des Geldes 2 Bewertung & Zeitwert des Geldes Finanzwirtschaft behandelt die Bewertung von Real- und Finanzwerten.

Mehr

Was ist das Budget für Arbeit?

Was ist das Budget für Arbeit? 1 Was ist das Budget für Arbeit? Das Budget für Arbeit ist ein Persönliches Geld für Arbeit wenn Sie arbeiten möchten aber nicht mehr in einer Werkstatt. Das gibt es bisher nur in Nieder-Sachsen. Und in

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

11.AsymmetrischeInformation

11.AsymmetrischeInformation .AsymmetrischeInformation Informationistnurwichtig,wenneineEntscheidungssituationdurcheinunsicheresUmfeld charakterisiertist.istesvielleichtso,daßauchdieunsicherheitselbstzueinereinschränkung derfunktionsfähigkeitvonmärktenführt?diesistinder

Mehr

Auswertung des Jahresabschlusses Bilanzanalyse 2

Auswertung des Jahresabschlusses Bilanzanalyse 2 KA11 Unternehmensergebnisse aufbereiten, bewerten und nutzen Auswertung des Jahresabschlusses Bilanzanalyse 2 Kennzahlen zur Bilanzanalyse Die aufbereitete Bilanz kann mit Hilfe unterschiedlicher Kennzahlen

Mehr

Kapitel 14: Unvollständige Informationen

Kapitel 14: Unvollständige Informationen Kapitel 14: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen

Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen Kapitel 6 Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen Übungsaufgabe 6-1a 6-1a) Welche Typen von Zinsstrukturkurven kennen Sie? Stellen Sie die Typen graphisch dar und erläutern Sie diese.

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Lehrer: Einschreibemethoden

Lehrer: Einschreibemethoden Lehrer: Einschreibemethoden Einschreibemethoden Für die Einschreibung in Ihren Kurs gibt es unterschiedliche Methoden. Sie können die Schüler über die Liste eingeschriebene Nutzer Ihrem Kurs zuweisen oder

Mehr

Investition und Finanzierung. Investition Teil 1

Investition und Finanzierung. Investition Teil 1 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Investition Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Das Leitbild vom Verein WIR

Das Leitbild vom Verein WIR Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...

SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«... Drucken - Druckformat Frage Wie passt man Bilder beim Drucken an bestimmte Papierformate an? Antwort Das Drucken von Bildern ist mit der Druckfunktion von Capture NX sehr einfach. Hier erklären wir, wie

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Privatinsolvenz anmelden oder vielleicht sogar vermeiden. Tipps und Hinweise für die Anmeldung der Privatinsolvenz

Privatinsolvenz anmelden oder vielleicht sogar vermeiden. Tipps und Hinweise für die Anmeldung der Privatinsolvenz Privatinsolvenz anmelden oder vielleicht sogar vermeiden Tipps und Hinweise für die Anmeldung der Privatinsolvenz Privatinsolvenz anmelden oder vielleicht sogar vermeiden Überschuldet Was nun? Derzeit

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Aufgabe 1: Steuerwirkungen auf Investitionsentscheidungen (22 Punkte)

Aufgabe 1: Steuerwirkungen auf Investitionsentscheidungen (22 Punkte) Aufgabe 1: Steuerwirkungen auf Investitionsentscheidungen (22 Punkte) Ein Investor versucht im Zeitpunkt 0 eine Entscheidung über die optimale Verwendung der ihm zur Verfügung stehenden Mittel in Höhe

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Viele Bilder auf der FA-Homepage

Viele Bilder auf der FA-Homepage Viele Bilder auf der FA-Homepage Standardmäßig lassen sich auf einer FA-Homepage nur 2 Bilder mit zugehörigem Text unterbringen. Sollen es mehr Bilder sein, muss man diese als von einer im Internet

Mehr

Der Vollstreckungsbescheid. 12 Fragen und Antworten

Der Vollstreckungsbescheid. 12 Fragen und Antworten Der Vollstreckungsbescheid 12 Fragen und Antworten Was bewirkt der Vollstreckungsbescheid eigentlich? Anerkennung der Schuld durch eine neutrale, eine richterliche Instanz Kein späterer Widerspruch möglich

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

Bewertung des Blattes

Bewertung des Blattes Bewertung des Blattes Es besteht immer die Schwierigkeit, sein Blatt richtig einzuschätzen. Im folgenden werden einige Anhaltspunkte gegeben. Man unterscheidet: Figurenpunkte Verteilungspunkte Längenpunkte

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Versetzungsgefahr als ultimative Chance. ein vortrag für versetzungsgefährdete

Versetzungsgefahr als ultimative Chance. ein vortrag für versetzungsgefährdete Versetzungsgefahr als ultimative Chance ein vortrag für versetzungsgefährdete Versetzungsgefährdete haben zum Großteil einige Fallen, die ihnen das normale Lernen schwer machen und mit der Zeit ins Hintertreffen

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

50 Fragen, um Dir das Rauchen abzugewöhnen 1/6

50 Fragen, um Dir das Rauchen abzugewöhnen 1/6 50 Fragen, um Dir das Rauchen abzugewöhnen 1/6 Name:....................................... Datum:............... Dieser Fragebogen kann und wird Dir dabei helfen, in Zukunft ohne Zigaretten auszukommen

Mehr

Satzhilfen Publisher Seite Einrichten

Satzhilfen Publisher Seite Einrichten Satzhilfen Publisher Seite Einrichten Es gibt verschiedene Möglichkeiten die Seite einzurichten, wir fangen mit der normalen Version an, Seite einrichten auf Format A5 Wählen Sie zunächst Datei Seite einrichten,

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Regeln zur Beurteilung von Investitionen

Regeln zur Beurteilung von Investitionen 6-0 Kapitel Regeln zur Beurteilung von Investitionen 6-1 Kapitelübersicht 6.1 Kapitalwert: Warum? 6.2 Payback-Periode (statisch) 6.3 Payback-Periode (dynamisch) 6.4 (Durchschnittliche) Buchrendite 6.5

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Menü auf zwei Module verteilt (Joomla 3.4.0)

Menü auf zwei Module verteilt (Joomla 3.4.0) Menü auf zwei Module verteilt (Joomla 3.4.0) Oft wird bei Joomla das Menü in einem Modul dargestellt, wenn Sie aber z.b. ein horizontales Hauptmenü mit einem vertikalen Untermenü machen möchten, dann finden

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

ONLINE-AKADEMIE. "Diplomierter NLP Anwender für Schule und Unterricht" Ziele

ONLINE-AKADEMIE. Diplomierter NLP Anwender für Schule und Unterricht Ziele ONLINE-AKADEMIE Ziele Wenn man von Menschen hört, die etwas Großartiges in ihrem Leben geleistet haben, erfahren wir oft, dass diese ihr Ziel über Jahre verfolgt haben oder diesen Wunsch schon bereits

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Verschenken Sie kein Geld!

Verschenken Sie kein Geld! 20 Verschenken Sie kein Geld! einschlägigen Börsenplätzen hat zudem die Kaufprovisionen der Fonds spürbar nach unten gedrückt. Trotzdem sind die Kosten nach wie vor ein wichtiges Bewertungskriterium dafür,

Mehr

4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"

4.4 AnonymeMärkteunddasGleichgewichtdervollständigen Konkurrenz 4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Finanzierung: Übungsserie III Innenfinanzierung

Finanzierung: Übungsserie III Innenfinanzierung Thema Dokumentart Finanzierung: Übungsserie III Innenfinanzierung Lösungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Finanzmanagement 2.3 Innenfinanzierung Finanzierung: Übungsserie

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981)

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe 100 identische Unternehmer

Mehr