Wirtschaftswissenschaftliches Forum
|
|
|
- Christian Zimmermann
- vor 10 Jahren
- Abrufe
Transkript
1 Wirtschaftswissenschaftliches Forum Prof. Dr. Dr. Andreas Löffler Universität Paderborn Investitionsneutrale Steuersysteme unter Unsicherheit
2 Investitionsneutrale Steuersysteme unter Unsicherheit Wirtschaftswiss. Forum, ifu Bochum 11. Mai 2009
3 Übersicht Einführung Das Problem Literatur Das Modell Zinskorrektur Unsichere Cashflows Idee Einbeziehung von Steuern
4 Das Problem Literatur Einführung 1 Steuern können ökonomische Entscheidungen verzerren. Das vergeudet Ressourcen. Wie muss ein Steuersystem ausgestaltet sein, das keine Verzerrungen auslöst? Umsatzsteuererklärung Manfred Rose (Heidelberg), Franz W. Wagner (Tübingen), Ekkehart Wenger (Würzburg): Kroatien
5 Das Problem Literatur Das Konzept 2 Der Markt Eine Realinvest. Kapitalmarkt (Finanzinvest.) Notwendig sind die folgenden zwei Annahmen spanning (die Realinvestition lässt sich durch den Kapitalmarkt duplizieren) und Kapitalmarkt und Markt mit Realinvestition sind arbitragefrei.
6 Das Problem Literatur Investitionsneutrale Steuersysteme 3 Steuersysteme ohne Verzerrungswirkung heißen investitionsneutral: Ökonomischer Gewinn Preinreich, Samuelson (1951, 1964): Besteuere Investition so, als ob sie ein Kapitalmarktkredit wäre. Problem: Man muss jedes Mal eine Unternehmensbewertung durchführen. Cashflow-Steuer Brown (1948) Besteuere Zahlungen. Damit Kapitalwert besteuert. Problem: Geht nur bei zeitlich konstantem Steuersatz. Zinskorrektur Boadway/Bruce, Wenger (1979, 1983) Verzinse die Abschreibungen. (In Kroatien umgesetzt.) Bisher nötig: konstanter Steuersatz und sichere CF
7 Das Problem Literatur Symbole 4 Ein Investitionsprojekt hat Cashflows CF t und kostet im Zeitpunkt t genau I t. Der Kapitalwert heute beträgt NPV = I 0 + und er bildet das Entscheidungskriterium. Wir unterscheiden weiter CF t (1 + r f ) t fairer Preis V t, Summe zukünftiger diskontierter Cashflows Investitionsausgabe I t, Kosten für Erwerb des Projektes (auch Marktpreis) Buchwert BW t, bestimmt die Abschreibungen Bei Kapitalmarktinvestitionen stimmen alle drei überein.
8 Das Problem Literatur Symbole (risikoneutrale Investoren) 4 Ein Investitionsprojekt hat Cashflows CF t und kostet im Zeitpunkt t genau I t. Der Kapitalwert heute beträgt NPV = I 0 + E[ CF t ] (1 + r f ) t und er bildet das Entscheidungskriterium für risikoneutrale Investoren. Wir unterscheiden weiter fairer Preis V t, Summe zukünftiger diskontierter Cashflows Investitionsausgabe I t, Kosten für Erwerb des Projektes (auch Marktpreis) Buchwert BW t, bestimmt die Abschreibungen Bei Kapitalmarktinvestitionen stimmen alle drei überein.
9 Das Problem Literatur Cashflow-Steuer 5 NPV τ = I 0 + τi 0 + = (1 τ) ( = (1 τ)npv I 0 + Diese Steuer ist investitionsneutral. CF t τcf t (1 + r f ) t CF t (1 + r f ) t Man erkennt auch, dass diese Rechnung bei nicht zeitlich konstanter Steuer zusammenbricht. )
10 Das Problem Literatur Cashflow-Steuer (risikoneutrale Investoren) 5 NPV τ = I 0 + τi 0 + = (1 τ) ( = (1 τ)npv I 0 + Diese Steuer ist investitionsneutral. [ E CF t τ CF ] t (1 + r f ) t E[ CF ) t ] (1 + r f ) t Man erkennt auch, dass diese Rechnung bei nicht zeitlich konstanter Steuer zusammenbricht. (Dies gilt auch für risikoneutrale Investoren.)
11 Das Problem Literatur Verzinste Abschreibungen 6 Die Idee besteht darin, bei einem beliebigen Abschreibungsystem die Abschreibungen zu verzinsen: NPV τ CF t τ (CF t AfA t (1 + r f ) t ) = I 0 + (1 + r f ) t ( T ) CF t = I 0 + (1 τ) (1 + r f ) t + τ AfA t } {{ } =I 0 = (1 τ)npv Das ist keine Cashflow Steuer, aber sie verhält sich so. Inbesondere ist sie auch investitionsneutral.
12 Das Problem Literatur Verzinste Abschreibungen (risikoneutrale Investoren) 6 Die Idee besteht darin, bei einem beliebigen Abschreibungsystem die Abschreibungen zu verzinsen: [ ( ) ] E CF t τ CF t ÃfA t(1 + r f ) t NPV τ = I 0 + (1 + r f ) t ( T E[ = I 0 + (1 τ) CF ) t ] (1 + r f ) t + τ ÃfA t = (1 τ)npv } {{ } =I 0 Das ist keine Cashflow Steuer, aber sie verhält sich so. Inbesondere ist sie auch investitionsneutral. (Dies gilt auch für risikoneutrale Investoren.)
13 Das Problem Literatur Verzinste AfA = Zinskorrektur 7 Achten Sie auf T AfA t(1+r f ) t (1+r f ) : t AfA t (1 + r f ) t (1 + r f ) t = I 0 = = = BW T t 1 (1 + r f ) t 1 BW t (1 + r f ) t + BW T (1 + r f ) } {{ T } =0 (1 + r f )BW t 1 (1 + r f ) t (AfA t + r f BW t 1 ) (1 + r f ) t BW t (1 + r f ) t
14 Das Problem Literatur Zinskorrektur, II 8 Einsetzen in die Hauptgleichung ergibt NPV τ = I 0 + = I 0 + CF t τ (CF t AfA t (1 + r f ) t ) (1 + r f ) t CF t τ (CF t AfA t r f BW t 1 ) (1 + r f ) t und erklärt den Begriff Zinskorrektur: Man korrigiert den Gewinn um Zinsen auf den Buchwert der Vorperiode. Kann man diese Zinskorrektur übertragen auf zeitlich veränderbare Steuersätze und unsichere Cashflows?
15 Das Problem Literatur Literatur 9 Untersuchungen bei Risikoneutralität Richter (1986) König (1997) Sureth (1999) Niemann (1999) Untersuchungen bei Risikoaversion Fane (1987) Bond/Devereux (1995): für nicht konstante Steuersätze unmöglich! Untersuchungen für spez. Nutzenfunktionen Schwinger (1992) Feldhoff (1995) Sureth (1999) Untersuchungen nichtkonst. Steuersätze Ross (1987)
16 Das Modell Zinskorrektur Unsichere Cashflows Das Steuersystem 10 Wir betrachten eine Tauschökonomie mit einer Art Einkommensteuer. Die Zukunft t = 1,..., T ist vorerst sicher. Steuersubjekt Investor Steuerobjekt Investition, Kapitalmarktanlage Bemessungsgrundlage Gewinn (hier Cashflow minus Abschreibung) bzw. Zins Steuersatz zeitlich variabel, τ t Ein Steuersystem ist investitionsneutral genau dann, wenn NPV > 0 NPV τ > 0.
17 Das Modell Zinskorrektur Unsichere Cashflows Zinskorrektur 11 Die BMG wird zinskorrigiert ( Steuerschuld = τ t CF t τ ) t 1 1 τ t (1 + r f ) I t 1 + I t. τ t 1 τ t 1 Diese Gleichung versteckt mehrere Forderungen: 1. bei zeitkonstantem Steuersatz ist dies (fast) die klassische Zinskorrektur 2. Abschreibungen orientieren sich an Restverkaufserlösen (hier I t ) 3. bei veränderlichen Steuersätzen kommt eine Korrektur hinzu
18 Das Modell Zinskorrektur Unsichere Cashflows Investitionsneutralität der Zinskorrektur 12 Dieses Steuersystem ist sogar dynamisch neutral, d.h. es gilt V t I t = NPV t = (1 τ t )NPV τ = (1 τ t )(V τ t I t ) d.h. die Neutralität gilt auch in zukünftigen Zeitpunkten t.
19 Das Modell Zinskorrektur Unsichere Cashflows Beweis Schritt 1: Barwertgleichung mit Zinskorrektur 13 Ausgangspunkt: Für Kapitalmarktanlagen ändert sich auch bei Einführung einer Steuer der Marktpreis nicht. Daraus errechnen wir die Rendite von Kapitalmarktanlagen r t = V t+1 V t + CF t+1 Steuerschuld t+1 V ( t ) τt+1 τ t = r f (1 + r f ) 1 τ t Daraus lassen sich die Marktpreise Vt τ einer Sachinvestition und damit der Kapitalwert rückwärts ermitteln. Nun gilt im letzten Zeitpunkt V τ T = V T = 0 und damit die Behauptung. Daraus folgern wir rückwärts die Behauptung für alle t < T.
20 Das Modell Zinskorrektur Unsichere Cashflows Verallgemeinerung auf unsichere Cashflows 14 Drei Ideen, wie man mit unsicheren Cashflows umgehen kann: 1. Kapitalkosten statt risikoloser Zins 2. Nutzenfunktionen 3. risikoneutrale Wahrscheinlichkeiten Die ersten beiden Ideen haben sich im Fall unsicherer Cashflows als nicht gangbar erwiesen: Man kennt die Höhe der Kapitalkosten nicht. Nutzenfunktionen sind nichtlinear und daher sehr schwer handhabbar. Dagegen lässt sich die Idee risikoneutraler Wahrscheinlichkeiten nutzen.
21 Idee Einbeziehung von Steuern Idee risikoneutraler Wahrscheinlichkeiten 15 Will man einen riskanten Cashflow bewerten, so rechnet man beispielsweise E[ CF 1 ] > E[ CF 1 ] 1 + r f 1 + k = V 0 mit geeigneten Kapitalkosten. Kann man nicht statt dessen die Wahrscheinlichkeiten anpassen? V 0 = E Q[ CF 1 ] = E[ CF 1 ] 1 + r f 1 + k
22 Idee Einbeziehung von Steuern Fundamentalsatz der Preistheorie 16 Wenn Märkte arbitragefrei sind, gelingt diese Anpassung immer. Es gibt eine Wahrscheinlichkeit Q derart, dass gilt 1 NPV = I 0 + E Q [ CF t ] (1 + r f ) t. Beweise u.a. Harrison/Kreps (1979), Back/Pliska (1990) Beweisidee also: Wenn man risikoaverse Investoren betrachten will, rechnet man wie mit risikoneutralen, nutzt aber dieses Q! Einziges Problem: Verändert sich diese Gleichung nicht unter (Unternehmer-)Steuern? 1 Keine Aussage wird darüber getroffen, wie man Q konkret bestimmt.
23 Idee Einbeziehung von Steuern Fundamentalsatz mit Steuern 17 Wenn man eine Steuer einführt, lautet der Fundamentalsatz wie folgt NPV = I 0 + E Q [ CF t ] (1 + r f (1 τ)) t. Beweis Löffler/Schneider, Kruschwitz/Löffler (Theorem 3.2) Unterschiedliche Verzinsung von Dividenden und Zinsen kann berücksichtigt werden.
24 Idee Einbeziehung von Steuern Zurück zu den investitionsneutralen Steuersystemen 18 Es gilt nun auch unter Unsicherheit: Die Zinskorrektur Steuerschuld = τ t ist investitionsneutral. ( CF t τ ) t 1 1 τ t (1 + r f ) τ t 1 τ Ĩt 1 + Ĩt. t 1 Beweis: Man bildet in den Beweisen unter Sicherheit den Erwartungswert E Q, passt den risikolosen Zins an und das Ergebnis stellt sich ein.
25 19 Diese Ideen lassen sich auch auf zeitstetige Modelle übertragen. Der Kurs einer Realinvestition folgt (Cashflows sind hier X ) dv t = µ t V t dt dx t + σ t V t dw t. Die Steuerschuld bei Zinskorrektur ist, wenn B t den Buchwert bezeichnet ( ) ) dτ t dt dt t = τ t (dx t + db t r B t dt. τ t (1 τ t ) Dieses System ist ebenfalls investitionsneutral.
26 20 Investitionsneutrale Steuersysteme bei zeitlich veränderlichen Steuersätzen und unsicheren Cashflows sind möglich, wenn man sich der Zinskorrektur bedient. Die Idee risikoneutraler Wahrscheinlichkeiten bietet das richtige Werkzeug.
Übersicht. Investitionsneutrale Steuersysteme 2. Investitionsneutrale Steuersysteme unter Unsicherheit. Einführung,
Übersicht Investitionsneutrale Steuersysteme unter Unsicherheit Andreas Löffler, [email protected] Friedrich-Alexander-Universität Erlangen-Nürnberg Einführung Literatur mit variierendem Steuersatz Das Modell
INVESTITION UND BESTEUERUNG Investitionsneutralität
Univ.-Prof. Dr. Stefan D. Josten Öffentliche Finanzen E.1 Investitionsneutralität Kapitalwerte vor Steuern: K 1, K 2, Kapitalwerte nach Steuern: Investitionsneutralität der Besteuerung verlangt, dass:
Aufgabenset 1 (abzugeben 16.03.2012 an [email protected])
Aufgabenset 1 (abzugeben 16.03.2012 an [email protected]) Aufgabe 1 Betrachten Sie die Cashflows der Abbildung 1 (Auf- und Abwärtsbewegungen finden mit gleicher Wahrscheinlichkeit statt). 1 Nehmen Sie an, dass
4. Versicherungsangebot
4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
IWW-Studienprogramm. Vertiefungsstudium. Modul IV Finanz-, Investitions- und Risikomanagement
Institut für Wirtschaftswissenschaftliche orschung und Weiterbildung GmbH Institut an der ernuniversität in Hagen IWW-Studienprogramm Vertiefungsstudium Modul IV inanz-, Investitions- und isikomanagement
Risikoeinstellungen empirisch
Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten
Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Kom pet enz auf Kurs gebracht
Der Cashflow Unternehmenskennzahl mit zentraler Bedeutung Stellen Sie sich Ihr Unternehmen einmal als Badewanne vor: Aus dem Hahn in der Wand fließt ein (hoffentlich) warmer, stetiger Geldstrom, die Einzahlungen.
Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre
Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)
Übung 2 Erfolgsrechnung
Controlling in deutschen Unternehmen Übung 2 Erfolgsrechnung Dipl.-Kfm. Florian Böckling, MBA Dipl.-Kfm. Franz Zinser, MBA Lehrstuhl für Controlling Prof. Dr. Louis Velthuis Johannes Gutenberg-Universität
1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?
Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht
Aufgabe 1) 100.000 350.000
Aufgabe 1) Ausgangsdaten: Altanlage Ersatzinvestition Anschaffungskosten 500.000 (vor 4 Jahren) 850.000 Nutzungsdauer bisher 4 Jahre 8 Jahre ges. Geschätzte Restnutzungsdauer 5 Jahre erwartete Auslastung:
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
Bernadette Büsgen HR-Consulting www.buesgen-consult.de
Reiss Profile Es ist besser mit dem Wind zu segeln, als gegen ihn! Möchten Sie anhand Ihres Reiss Rofiles erkennen, woher Ihr Wind weht? Sie haben verschiedene Möglichkeiten, Ihr Leben aktiv zu gestalten.
Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02)
Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang Aufgabenblatt 3 (KW 44) (30.10.02) Aufgabe 1: Preisdiskriminierung dritten Grades (20 Punkte) Ein innovativer Uni-Absolvent plant,
Lösungshinweise zur Einsendearbeit 2 SS 2011
Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen
Steuerliche Gestaltungsmöglichkeiten nutzen
Page 1 of 5 Investieren - noch im Jahr 2010 Steuerliche Gestaltungsmöglichkeiten nutzen 16. Oktober 2010 - Bis zum Jahresende hat jeder Zahnarzt noch Zeit. Bis dahin muss er sich entschieden haben, ob
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Bruchrechnung Wir teilen gerecht auf
Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen
Finanzwirtschaft. Teil II: Bewertung
Zeitwert des Geldes 1 Finanzwirtschaft Teil II: Bewertung Zeitwert des Geldes Zeitwert des Geldes 2 Bewertung & Zeitwert des Geldes Finanzwirtschaft behandelt die Bewertung von Real- und Finanzwerten.
Was ist das Budget für Arbeit?
1 Was ist das Budget für Arbeit? Das Budget für Arbeit ist ein Persönliches Geld für Arbeit wenn Sie arbeiten möchten aber nicht mehr in einer Werkstatt. Das gibt es bisher nur in Nieder-Sachsen. Und in
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
11.AsymmetrischeInformation
.AsymmetrischeInformation Informationistnurwichtig,wenneineEntscheidungssituationdurcheinunsicheresUmfeld charakterisiertist.istesvielleichtso,daßauchdieunsicherheitselbstzueinereinschränkung derfunktionsfähigkeitvonmärktenführt?diesistinder
Auswertung des Jahresabschlusses Bilanzanalyse 2
KA11 Unternehmensergebnisse aufbereiten, bewerten und nutzen Auswertung des Jahresabschlusses Bilanzanalyse 2 Kennzahlen zur Bilanzanalyse Die aufbereitete Bilanz kann mit Hilfe unterschiedlicher Kennzahlen
Kapitel 14: Unvollständige Informationen
Kapitel 14: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Approximation durch Taylorpolynome
TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni
Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:
Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn
Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen
Kapitel 6 Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen Übungsaufgabe 6-1a 6-1a) Welche Typen von Zinsstrukturkurven kennen Sie? Stellen Sie die Typen graphisch dar und erläutern Sie diese.
Erfahrungen mit Hartz IV- Empfängern
Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November
Lehrer: Einschreibemethoden
Lehrer: Einschreibemethoden Einschreibemethoden Für die Einschreibung in Ihren Kurs gibt es unterschiedliche Methoden. Sie können die Schüler über die Liste eingeschriebene Nutzer Ihrem Kurs zuweisen oder
Investition und Finanzierung. Investition Teil 1
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Investition Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,
ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme
Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Das Leitbild vom Verein WIR
Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Übungsaufgaben Tilgungsrechnung
1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf
SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...
Drucken - Druckformat Frage Wie passt man Bilder beim Drucken an bestimmte Papierformate an? Antwort Das Drucken von Bildern ist mit der Druckfunktion von Capture NX sehr einfach. Hier erklären wir, wie
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements
Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen
Lösung. Prüfungsteil 1: Aufgabe 1
Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
2. Gesundheitsfinanzierung
2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung
Privatinsolvenz anmelden oder vielleicht sogar vermeiden. Tipps und Hinweise für die Anmeldung der Privatinsolvenz
Privatinsolvenz anmelden oder vielleicht sogar vermeiden Tipps und Hinweise für die Anmeldung der Privatinsolvenz Privatinsolvenz anmelden oder vielleicht sogar vermeiden Überschuldet Was nun? Derzeit
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Aufgabe 1: Steuerwirkungen auf Investitionsentscheidungen (22 Punkte)
Aufgabe 1: Steuerwirkungen auf Investitionsentscheidungen (22 Punkte) Ein Investor versucht im Zeitpunkt 0 eine Entscheidung über die optimale Verwendung der ihm zur Verfügung stehenden Mittel in Höhe
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist
Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei
Viele Bilder auf der FA-Homepage
Viele Bilder auf der FA-Homepage Standardmäßig lassen sich auf einer FA-Homepage nur 2 Bilder mit zugehörigem Text unterbringen. Sollen es mehr Bilder sein, muss man diese als von einer im Internet
Der Vollstreckungsbescheid. 12 Fragen und Antworten
Der Vollstreckungsbescheid 12 Fragen und Antworten Was bewirkt der Vollstreckungsbescheid eigentlich? Anerkennung der Schuld durch eine neutrale, eine richterliche Instanz Kein späterer Widerspruch möglich
Schleswig-Holstein 2011. Kernfach Mathematik
Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative
Bewertung des Blattes
Bewertung des Blattes Es besteht immer die Schwierigkeit, sein Blatt richtig einzuschätzen. Im folgenden werden einige Anhaltspunkte gegeben. Man unterscheidet: Figurenpunkte Verteilungspunkte Längenpunkte
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Lineare Differentialgleichungen erster Ordnung erkennen
Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die
Versetzungsgefahr als ultimative Chance. ein vortrag für versetzungsgefährdete
Versetzungsgefahr als ultimative Chance ein vortrag für versetzungsgefährdete Versetzungsgefährdete haben zum Großteil einige Fallen, die ihnen das normale Lernen schwer machen und mit der Zeit ins Hintertreffen
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang
sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche
Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de
1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht
Kap. 8: Speziell gewählte Kurven
Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl
Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.
Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip
50 Fragen, um Dir das Rauchen abzugewöhnen 1/6
50 Fragen, um Dir das Rauchen abzugewöhnen 1/6 Name:....................................... Datum:............... Dieser Fragebogen kann und wird Dir dabei helfen, in Zukunft ohne Zigaretten auszukommen
Satzhilfen Publisher Seite Einrichten
Satzhilfen Publisher Seite Einrichten Es gibt verschiedene Möglichkeiten die Seite einzurichten, wir fangen mit der normalen Version an, Seite einrichten auf Format A5 Wählen Sie zunächst Datei Seite einrichten,
http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen
2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Regeln zur Beurteilung von Investitionen
6-0 Kapitel Regeln zur Beurteilung von Investitionen 6-1 Kapitelübersicht 6.1 Kapitalwert: Warum? 6.2 Payback-Periode (statisch) 6.3 Payback-Periode (dynamisch) 6.4 (Durchschnittliche) Buchrendite 6.5
Kernfach Mathematik Thema: Analysis
Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang
Vorbemerkung. [disclaimer]
Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel
Menü auf zwei Module verteilt (Joomla 3.4.0)
Menü auf zwei Module verteilt (Joomla 3.4.0) Oft wird bei Joomla das Menü in einem Modul dargestellt, wenn Sie aber z.b. ein horizontales Hauptmenü mit einem vertikalen Untermenü machen möchten, dann finden
1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4
1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung
Also kann nur A ist roter Südler und B ist grüner Nordler gelten.
Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf
Korrigenda Handbuch der Bewertung
Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz
ONLINE-AKADEMIE. "Diplomierter NLP Anwender für Schule und Unterricht" Ziele
ONLINE-AKADEMIE Ziele Wenn man von Menschen hört, die etwas Großartiges in ihrem Leben geleistet haben, erfahren wir oft, dass diese ihr Ziel über Jahre verfolgt haben oder diesen Wunsch schon bereits
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Angewandte Stochastik
Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis
Verschenken Sie kein Geld!
20 Verschenken Sie kein Geld! einschlägigen Börsenplätzen hat zudem die Kaufprovisionen der Fonds spürbar nach unten gedrückt. Trotzdem sind die Kosten nach wie vor ein wichtiges Bewertungskriterium dafür,
4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"
4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,
V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,
Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen
Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002
Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung
Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge
Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe
Erstellen von x-y-diagrammen in OpenOffice.calc
Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei
Finanzierung: Übungsserie III Innenfinanzierung
Thema Dokumentart Finanzierung: Übungsserie III Innenfinanzierung Lösungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Finanzmanagement 2.3 Innenfinanzierung Finanzierung: Übungsserie
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Anleitung über den Umgang mit Schildern
Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder
Finanzwirtschaft. Teil II: Bewertung
Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981)
Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe 100 identische Unternehmer
