Formelsammlung Finanzmanagement
|
|
|
- Mathias Scholz
- vor 10 Jahren
- Abrufe
Transkript
1 UNIERSIÄ REGENSBURG Lehsuhl fü Beebswschafslehe, sbesodee Fazdeslesuge UNI.-PROF. R. LUS RÖER Uvesässaße 3, 9353 Regesbug, el. (94) Fomelsammlug Fazmaageme e Symbol espch de de jewelge easalug vewedee Noao. e dese Fomelsammlug agegebee Fomel wede ggf. de lausu ohe weee ommeae ode Hwese zu Noao abgeduc. ese Fomelsammlug daf ch de lausu mgefüh wede. eso:. ugus 6 Ihal I FINNMNGEMEN... II EREILUNGSBELLEN UR SNR-NORMLEREILUNG... 8
2 I Fazmaageme Efühug - Rsomaße alue-a-rs ar PF a P a RORC RORC ( ) f MW EC RP RROC RROC ( ) f MW RP ( f ) MWRP Rsopäme R Rsopäme auf das Rsoapal Rsoapal Fazplaug - opmale assehalug allgemee Lösug fü osefuoe vom yp X y b X m y (y )be (y )be y ( y) ewaee Gesamose E(c) bem Modell vo Mlle/O m z E(c) b z 3 m h z Paamee m oseopmum z * 3bm 4 * * h 3z / 3
3 eaalyse - eagsoeee Ueehmesaalyse Bawe R ee geomesch veädelche Ree g R Ree fü g Ree fü g g Ueehmesgesamwe U m epu ach dem CF-saz (-Phasemodell) FCF S ( g) [ FCF S ] U g apalosesaz m CF-saz Ueehmesgesamwe U m epu ach dem WCC-saz (-Phasemodell) U FCF ( WCC) ( g) [ FCF ] ( WCC) ( WCC g) apalosesaz m WCC-saz WCC ( s) ( s) Ueehmesgesamwe U ach dem P-saz (-Phasemodell) S ( g) S u U U,u ( ) ( ) ( ) u u u g m U,u FCF ( ) ( g) FCF g ( ) u u u m u ( WCC) ( ) ( s ) (Mles/Ezzell) 3
4 u ( s) (Modgla/Mlle) ( s) Mawe des Egeapals m epu ach dem Flow-o-Equy-saz (-Phasemodell) FCF ( s) ( g) FCF ( s) g g Ueehmesgesamwe ach dem E-saz (-Phasemodell) NOP WCC B ( g) FCF U B B ( WCC ) ( WCC ) WCC g eaalyse - echsche eaalyse dvace-ecle-le: ( ) Gleede uchsche G, ( ) Momeum M abs M el Relave-Säe-Idex RSI u u d Sochas-Idao Schlussus efse us de Peode % Höchse us de Peode efse us de Peode Sho-Rage-Oszllao SRO
5 lehe - usbesmmug ud Effevzs Regula Fals zu echesche Emlug des ee sfußes x x x x ( x) ( x) ( x ) Edwebesmmug ee lehe f f ( q) ( ) q c q ( ) q q c Näheugsfomel zu Effevzsbesmmug be lehe Nomalzs us Baefomel: P eff us Laufze Bösefomel: P eff Nomalzs us us Laufze us logge: P eff Nomalzs us us Laufze us Nomalzs Laufze 5
6 lehe - sädeugsso uao ee lehe (allgemee Fomel) uao ee lehe wedugsvoaussezuge: - ee uejähge Laufze (gazzahlge Laufze) - glech blebede jählch afallede upozahluge, vollsädge edfällge lgug (sagh bod) Nomalzs Nomalzs fü fesmal lee sädeuge gl C,5 C,5 M ovexä ee lehe C Besmmug de sche sädeug λ B x x B B λ Pofoloedvemöge (epu ) B B zahl zahl λ λ λ 6
7 Rsomaageme - Hedgg Hedge-Rao HR op assaposo C uswe uswe C assa ovesosfao Clehe allgemee Fomel: Meachsfomel x, b ± b 4 a c a 7
8 II eelugsabelle zu Sadad-Nomalveelug u d d eelugsfuo de N(;)-eelug Φ(d) Φ(d) e u. π d,,,,3,4,5,6,7,8,9,,5,54,58,5,56,599,539,579,539,5359,,5398,5438,5478,557,5557,5596,5636,5675,574,5753,,5793,583,587,59,5948,5987,66,664,63,64,3,679,67,655,693,633,6368,646,6443,648,657,4,6554,659,668,6664,67,6736,677,688,6844,6879,5,695,695,6985,79,754,788,73,757,79,74,6,757,79,734,7357,7389,74,7454,7486,757,7549,7,758,76,764,7673,774,7734,7764,7794,783,785,8,788,79,7939,7967,7995,83,85,878,86,833,9,859,886,8,838,864,889,835,834,8365,8389,,843,8438,846,8485,858,853,8554,8577,8599,86,,8643,8665,8686,878,879,8749,877,879,88,883,,8849,8869,8888,897,895,8944,896,898,8997,95,3,93,949,966,98,999,95,93,947,96,977,4,99,97,9,936,95,965,979,99,936,939,5,933,9345,9357,937,938,9394,946,948,949,944,6,945,9463,9474,9484,9495,955,955,955,9535,9545,7,9554,9564,9573,958,959,9599,968,966,965,9633,8,964,9649,9656,9664,967,9678,9686,9693,9699,976,9,973,979,976,973,9738,9744,975,9756,976,9767,,977,9778,9783,9788,9793,9798,983,988,98,987,,98,986,983,9834,9838,984,9846,985,9854,9857,,986,9864,9868,987,9875,9878,988,9884,9887,989,3,9893,9896,9898,99,994,996,999,99,993,996,4,998,99,99,995,997,999,993,993,9934,9936,5,9938,994,994,9943,9945,9946,9948,9949,995,995,6,9953,9955,9956,9957,9959,996,996,996,9963,9964,7,9965,9966,9967,9968,9969,997,997,997,9973,9974,8,9974,9975,9976,9977,9977,9978,9979,9979,998,998,9,998,998,998,9983,9984,9984,9985,9985,9986,9986 3,,9987,9987,9987,9988,9988,9989,9989,9989,999,999 3,,999,999,999,999,999,999,999,999,9993,9993 3,,9993,9993,9994,9994,9994,9994,9994,9995,9995,9995 3,3,9995,9995,9995,9996,9996,9996,9996,9996,9996,9997 3,4,9997,9997,9997,9997,9997,9997,9997,9997,9997,9998 3,5,9998,9998,9998,9998,9998,9998,9998,9998,9998,9998 3,6,9998,9998,9999,9999,9999,9999,9999,9999,9999,9999 3,7,9999,9999,9999,9999,9999,9999,9999,9999,9999,9999 3,8,9999,9999,9999,9999,9999,9999,9999,9999,9999,9999 3,9,,,,,,,,,, 8
9 chefuo de N(;)-eelug ϕ(d) ϕ (d) e π d,,,,3,4,5,6,7,8,9,,3989,3989,3989,3988,3986,3984,398,398,3977,3973,,397,3965,396,3956,395,3945,3939,393,395,398,,39,39,3894,3885,3876,3867,3857,3847,3836,385,3,384,38,379,3778,3765,375,3739,375,37,3697,4,3683,3668,3653,3637,36,365,3589,357,3555,3538,5,35,353,3485,3467,3448,349,34,339,337,335,6,333,33,39,37,35,33,39,387,366,344,7,33,3,379,356,334,3,989,966,943,9,8,897,874,85,87,83,78,756,73,79,685,9,66,637,63,589,565,54,56,49,468,444,,4,396,37,347,33,99,75,5,7,3,,79,55,3,7,83,59,36,,989,965,,94,99,895,87,849,86,84,78,758,736,3,74,69,669,647,66,64,58,56,539,58,4,497,476,456,435,45,394,374,354,334,35,5,95,76,57,38,9,,8,63,45,7,6,9,9,74,57,4,3,6,989,973,957,7,94,95,99,893,878,863,848,833,88,84,8,79,775,76,748,734,7,77,694,68,669,9,656,644,63,6,68,596,584,573,56,55,,54,59,59,58,498,488,478,468,459,449,,44,43,4,43,44,396,387,379,37,363,,355,347,339,33,35,37,3,33,97,9,3,83,77,7,64,58,5,46,4,35,9,4,4,9,3,8,3,98,94,89,84,8,5,75,7,67,63,58,54,5,47,43,39,6,36,3,9,6,,9,6,3,,7,7,4,,99,96,93,9,88,86,84,8,8,79,77,75,73,7,69,67,65,63,6,9,6,58,56,55,53,5,5,48,47,46 3,,44,43,4,4,39,38,37,36,35,34 3,,33,3,3,3,9,8,7,6,5,5 3,,4,3,,,,,,9,8,8 3,3,7,7,6,6,5,5,4,4,3,3 3,4,,,,,,,,,9,9 3,5,9,8,8,8,8,7,7,7,7,6 3,6,6,6,6,5,5,5,5,5,5,4 3,7,4,4,4,4,4,4,3,3,3,3 3,8,3,3,3,3,3,,,,, 3,9,,,,,,,,,, d 9
Finanzmathematik Folien zur Vorlesung
Fazmahemak Fole zu Volesug FINANZMAHEMAI. Zsechug.. Gudbegffe de Zsechug.. De ve Fageselluge de Zsechug.3. Beechug des Edkapals.4. Beechug vo Afagskapal, Zssaz ud Laufze.5. Uejähge Vezsug.6. Sege Vezsug.
Finanzmathematik II: Barwert- und Endwertrechnung
D. habl. Bukhad Uech Beufsakademe Thüge Saalche Sudeakademe Sudeabelug Eseach Sudebeech Wschaf Wschafsmahemak Wesemese 004/0 Fazmahemak II: Bawe- ud Edweechug. Bawee ud Edwee vo Zahlugsehe. Effekve Jaheszssaz
Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:
E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge
Formelsammlung Finanzmathematik
FH D WS 9/ Pof. D. Hos Pees Oobe 9 Foelslug Fze BA-Sudegg Ieol Mgee See /7 Foelslug Fze Sue, Folge ud ee eceegel fü Sue: U Aesce Folge: U U... U U U (Dsbuvgesez) U U U U (Udzeug) d d,,3,... Aesce ee: d
Deskriptive Statistik und moderne Datenanalyse
homas Cleff Destve tatst ud modee Dateaalse Ee comutegestützte Efühug mt Ecel ud AA 0XX /. Auflage Fomelsammlug Cleff Destve tatst ud modee Dateaalse Gable Velag Wesbade 0XX GableL Zusatzfomatoe zu Mede
Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf
Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov
Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten
Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe
Formelsammlung Finanzmathematik
ZÜHE HOHSHULE WINTETHU (ZHW) INSTITUT BNING & FINNE Fomelsammlug Fazmahema [ ] [ ] (X,Y) (x E x ) * (y E y ) D π V() m m m m m. Zsfome.... eefome... 3. Veschuldugsfome...4 4. useche...6 5. ede vo fesvezslche
F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen
ORMESRI Zuammehäge zwche de etale Stoffezahle etale Reflexogad ( ( geamt ( ( fü läche etale Retamogad ( a ( b a b Setale amogad ee laaallele latte au otoem homogee Medum ( ( mt
Versicherungsmathematische Formeln und Sätze WS 2001/02
Pof. D. Detma Pfefe Vescheugsmathematsche Fomel ud Stze WS 200/02 Zsechug effete Zssatz: totale Zsetag aus dem fagsaptal "" ehalb ees Jahes Bawet des ach eem Jah fllge Kaptals "" Edwet des ach eem Jah
(Markowitz-Portfoliotheorie)
Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug
2. Arbeitsgemeinschaft (11.11.2002)
Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba
Formelsammlung für Investition und Finanzierung
Formelsammlug für Ivesiio ud Fiazierug (Sad: 3.2.22) Seie vo 8 Formelsammlug für Ivesiio ud Fiazierug INHALSVERZEICHNIS. Mahemaische Grudlage...3 a) Auflösug quadraischer Gleichuge mi der pq-formel...3
Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :
Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h
Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.
Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0
Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222
Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme
1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen
.. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt
Erzeugen und Testen von Zufallszahlen
Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto
Mitteilungen an die AHV-Ausgleichskassen und EL-Durchführungsstellen Nr. 207
Eidgenössisches Departement des Innern EDI Bundesamt für Sozialversicherungen BSV Geschäftsfeld Alters- und Hinterlassenenvorsorge 12. Juni 2007 Mitteilungen an die AHV-Ausgleichskassen und EL-Durchführungsstellen
WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}
1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade
Multiple Regression (1) - Einführung I -
Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da
Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen
Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug
Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08
y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge
Datenblatt. Geber- und Geberkabelvergleich MOVIDRIVE MDX 61B DT..- / DV..-Motoren zu DR..-Motoren
Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces Dateblatt Geber- ud Geberkabelverglech MOVIDRIVE MDX B DT..- / DV..-Motore zu -Motore Ausgabe 02/200 0040 / DE SEW-EURODRIVE Drvg the world Geberverglech
AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion
AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff
Logarithmus - Übungsaufgaben. I. Allgemeines
Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht
Übersicht über Zahlen zur Lohnsteuer 2012 BuchhalterSeite
Übersicht über Zahle zur Lohsteuer Fudstelle - Ihalt 3 Nr. 11 EStG, R 3.11 LStR Beihilfe ud Uterstützuge i Notfälle steuerfrei bis 3 Nr. 26 EStG Eiahme aus ebeberufliche Tätigkei te steuerfrei bis 3 Nr.
Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden
Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4
Finanzmathematische Formeln und Tabellen
Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,
HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER
HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER I. VERGABEKRITERIEN 1. D i e g a s t i e r e n d e Gr u p p e k o m m t a u s e i n e m a n d e r e n B u n d e s l a n d. 2. D i e g e p l a n t
- - Forelalug EEOEH i achiebau (ad vo:.. ) Größe Forelzeiche Eihei Elekriche paug [ol] Elekriche roärke [pere] rodiche Elekricher Widerad, Wirkwiderad, eiaz Ω [Oh] Elekricher eiwer, G Wirkleiwer, odukaz
Sitzplatzreservierungsproblem
tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche
Leistungsmessung im Drehstromnetz
Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n
3 Leistungsbarwerte und Prämien
Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug
14. Folgen und Reihen, Grenzwerte
4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,
2. Diophantische Gleichungen
2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze
Finanzierung und Investition
ruschwiz/husmann (2012) Finanzierung und Invesiion 1/46 ruschwiz/husmann (2012) Finanzierung und Invesiion 2/46 Finanzierung und Invesiion ruschwiz/husmann (2012) Oldenbourg Verlag München 7. Auflage,
Karten für das digitale Kontrollgerät
Karte für das digitale Kotrollgerät Wichtige Iformatioe TÜV SÜD Auto Service GmbH Die Fahrerkarte Im Besitz eier Fahrerkarte muss jeder Fahrer sei, der ei Kraftfahrzeug mit digitalem Kotrollgerät zur Persoebeförderug
Formelsammlung zur Zuverlässigkeitsberechnung
Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.
Der Bonus wird nach Zustellung der erforderlichen Formulare 1 bis 3 (siehe Anlage) ausbezahlt.
FFA Far the Game. Far the Warld. An de Generalsekretäre der Mtgleder der FFA Zrkular Nr. 1426 Sao Paulo, 12. Jun 2014 GS/clo-csu-esv Fnanzergebns des Zyklus 2011-2014 - Sonderbonus für de FFA-Mtgledsverbände
Übungsaufgaben zur Finanzmathematik - Lösungen
Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (
Netzwerk Umweltbildung Sachsen
Nzwk Umwlbildug Sachs Koodiiugssll ds Nzwks Umwlbildug Sachs Jahsagug 2013 Nzwk Umwlbildug Sachs Jahsagug 2013 1. Vosllug d u Ipäsz ds NUS/TNU 3. Sad ud Übblick üb di Öfflichkisabi im NUS 4. Zilsllug fü
Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik
Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert
Feldeffekttransistoren in Speicherbauelementen
Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit
Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot
Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)
Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst
Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage
Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7
Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...
Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot
Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer
JUBILÄUMSTAFEL. 18. Ju l i. 18: 0 0 U hr. 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l
18. Ju l i 18: 0 0 U hr 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l #01 Pizzeria Ristorante Salmen G e f ü l l t e r M o zza r e l l a m i t S p i na t u n d G a r n e l
F 6-2 π. Seitenumbruch
6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)
Innerbetriebliche Leistungsverrechnung
Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der
v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr
5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,
Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v
Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)
3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale
3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche
Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F
B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee
2. Mittelwerte (Lageparameter)
2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde
b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern)
HTL Jebach. eeechug Maheak Sask.. Gudbegffe ee = egeläßg wedekehede Zahlug 4 weselche Mekale ee ee a) eehöhe ) glechblebede ee ) veädelche ee a) egeläßg (z.b. Idex-ageaß) ) egellos b) eedaue Azahl de eezahluge
1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren
Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts
Motordaten und Betriebsbereiche. von DC Motoren. DC-Motor als Energiewandler
2, maxo otordate ud Betriebsbereiche otordate ud Betriebsbereiche vo DC otore otorverhalte: Keliie, Strom otordate ud Betriebsbereiche 2010 maxo motor ag, Sachsel, Schweiz DC-otor als Eergiewadler Elektrische
Versicherungstechnik
Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge
4. Thermische Eigenschaften von Kristallen - spezifische Wärme
4. rmisc igscaft vo Kristall - spzifisc Wärm f.: spz. Wärm bi ost. olum: S tropi, ir rgi, mpratur S primtll: - bi Zimmrtmpratur ist N M bi fast all Fstörpr (ulog-ptitsc Rgl), N Azal dr Atom, M Mass ds
Statistik für Ingenieure (IAM) Version 3.0/21.07.2004
Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de
AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3
INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE
Lageplan des Hangsicherungsbereichs
Lageplan des Hangsicherungsbereichs Anlage 1 zur Presseinformation vom 23.09.05 zu sichernder Bereich Grenze des Abtrag-Bereichs Lage der Blickpunkte der Visualisierung Anlage 2 zur Presseinformation vom
2 Integrierte Sicherheitstechnik
Iegrere Scherhesechk Scherhesechsche Archekur o MOISAFE UCS..B 2 2 Iegrere Scherhesechk De acholged beschrebee Scherhesechk des MOISAFE UCS..B erüll olgede Scherhesaorderuge: Kaegore 4 ud erorace Leel
Verkäufer/-in im Einzelhandel. Kaufmann/-frau im Einzelhandel. belmodi mode & mehr ein modernes Unternehmen mit Tradition.
Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung
Wärmedurchgang durch Rohrwände
ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)
Mitteilungen an die AHV-Ausgleichskassen und EL-Durchführungsstellen Nr. 334
Eidgenössisches Departement des Innern EDI Bundesamt für Sozialversicherungen BSV Geschäftsfeld AHV, Berufliche Vorsorge und Ergänzungsleistungen 10.07.2013 Mitteilungen an die AHV-Ausgleichskassen und
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
NAE Nachrichtentechnik und angewandte Elektronik
nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung
Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield
Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der
Bürgerwindkraftanlage in Klein Woltersdorf Projektentwicklung, Finanzierung, Erfahrungsbericht. Gemeinde Groß Pankow (Prignitz)
Wertschöpfungsmodell lokales BürgerEnergieProjekt Beteiligungsformen und Geschäftsmodelle Bürgerwindkraftanlage in Klein Woltersdorf Projektentwicklung, Finanzierung, Erfahrungsbericht Gemeinde Groß Pankow
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Geometrisches Mittel und durchschnittliche Wachstumsraten
Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches
Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I
Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik
Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit
Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.
BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule
BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher
NEL Suchspulen - für jeden Detektor! TOP Leistung von unabhängigen Experten bestätigt. Such Spulen. nel-coils.de Shop ww.nuggets24.
NEL Suchspule - für jede Detektor! TOP Leistug vo uabhägige Experte bestätigt Such Spule el-coils.de Shop ww.uggets24.com el-coils.de Metalldetektor OlieShop www.uggets.at www.uggets24.com NEL BIG Die
Rechensystem-Modelle zur Kapazitätsplanung
2. orddeutche Kolloquium Recheytem-Modelle zur Kapazitätplaug 2. orddeutche Kolloquium ordaademie Elmhor. Mai 2007 Güter Totzauer FH OL/Otfrielad/WHV Emde Kapazitätplaug DKoll2007 0 2. orddeutche Kolloquium
Es gibt drei Untergruppen, welche abhängig vom Beschäftigungsgrad sind:
15 Anhang 1 Bewachung, Sicherheit und Werttransport Kategorie A: Mindestlöhne für Bewachung, Sicherheit und Werttransport Es gibt drei Untergruppen, welche abhängig vom Beschäftigungsgrad sind: A1 Mitarbeitende
