F 6-2 π. Seitenumbruch
|
|
|
- Ralph Müller
- vor 10 Jahren
- Abrufe
Transkript
1 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle) berechet werde. st das rehoet der trebssete, das rehoet der btrebssete. e asse, de a de Täzer hägt, st durch dargestellt. er Radus R etsprcht de des ale urchessers des cklers. e ewchtsagabe der Baueleete sd hag aufgeführt. e echasche Lestug des trebes ka durch ech F 6-1 berechet werde. Für de rehzahl a otor glt de Bezehug: vax F 6- Seteubruch e rehzahl des otors ( a ) st t bekat. e axale Legeschwdgket vo 5 / wrd aus Erfahrugswerte vorgegebe. urch Ustellug der Forel F6- ach ka de etrebeübersetzug berechet werde: v ax 0, / 1, F 6- er gewählte 75--Servootor hat e Nedrehoet N 0,6 N ud e Ipulsdrehoet Ip 0,9 N. as ageflaschte Scheckegetrebe t de Übersetzugsverhälts 15 hat ee etrebewrkugsgrad η 0,7. I auerbetreb darf das Nedrehoet ud be dyasche Betreb (kurzzetg) das Ipulsdrehoet cht überschrtte werde a 1 a 180 F 6-
2 t deser rehzahl köe de folgede Berechuge durchgeführt werde. e echasche Lestug setzt sch da zusae aus: ech F 6-5 as trebsoet wrd aus de rehoet ud der kelbeschleugug ω (abtrebssetg), sowe de asseträghetsoet ges des esatsystes bestt. + ges F 6-6 urch Esetze der Forel F6- de Forel F6- ergbt sch: ech + ges F 6-7 as rehoet der btrebssete berechet sch aus der Kraft de de asse auf de Täzer ausübt ( g η ) de wrkugsgrad η (Rebug a de Ulekrolle) ud de aktuelle ckeldurchesser. g F 6-8
3 as Esetzte der Forel F6-8 de Forel F6-7 ergbt: g ech + ges F 6-9 e kelbeschleugug berechet sch aus der axale Beschleugug der der Beschleugug des Täzers ud de urch- esser des cklers. e Täzerbeschleugug (a T ) st doppelt so groß we de der Lebeschleugug (a L ). I Idealfall st de Täzerbeschleugug ull (a T 0). vl + vt vv + vt ω F 6-10 / Heraus folgt: a L + a T Egesetzt de lechug F 6-9: ech g + ges a L + a T v ax F 6-11 F 6-1 as asseträghetsoet ges setzt sch aus de asseträghetsoete der zu beschleugede asse (Täzer t asse), de asseträghetsoet des cklers des etrebes ud des otors zusae. as asseträghetsoet der zu beschleugede asse ergbt sch aus: F 6-1 as asseträghetsoet des cklers setzt sch aus de ver zusaegesetzte Bautele (crylglas C, O-Rolle O, luuschebe L ud der Flasch FL ; Zechug sehe hag) zusae. a de Bautele ee zyldrsche For aufwese wrd das asseträghetsoet we folgt berechet: F 6-1 C O L FL
4 llgeee Forel zur Berechug des asseträghetsoetes vo zyldrsche Körper: l ρ F 6-15 as asseträghetsoet des urtes geht dyasch de Berechug e: B ax dr bρ F 6-16 wobe b de Brete des urtes st. Nach der Itegrato folgt: B b ρ ( ) ax urch Esetze der asseträghete, ud beschl de Forel F 6-18 ergbt sch folgede Bezehug: ech g vax + ( ) B a L + a e axale eschwdgket beträgt 0,588 /s. e axale T F 6-17 F 6-18 Beschleugug des cklers beträgt 5 /s. er ale urchesser st 0,06 ud der axale urchesser st 0,68. e chte des urtes beträgt ρ 987 /. er rkugsgrad wrd ahad vo Erfahrugswerte festgesetzt η 0,98. had deser erte wrd de Lestug ( ech ) berechet. e asse ergbt sch aus der asse des Täzers, das egegewcht t Halterug ud de Stahlsel. Her de Berechug der ezele asseträghetsoete: asseträghetsoet des Servootors (ohe etrebe) laut Herstelleragabe: 6 0,810 F 6-19 asseträghetsoet des cklers berechet sch aus de ezele Kopoete des cklers ach der lechug F6-1.
5 FL 1 0, ,0,8 10 FL 0, ,05,6 10 FL FL1 + FL 5, 10 L C 0, , , 6, 10 0,,7 10 O 0, ,05,6 10 asseträghetsoet des ckels: 11,10 F 6-0 er tel des asseträghetsoetes durch das ewcht beträgt für de ale ckeldurchesser ud für de axale ckeldurchesser ax. 0,06,1 1,8 10 F 6-1 0,68,1 ax 6,8 10 F 6- as asseträghetsoet des urtes be axale ckeldurchesser ( 0,71 ): Bax ( ) b ρ ax 0, ( 0,68 0,06 ) 1, 10 F 6- Be gegebeer echascher Lestug des Servootors N 75 ka be kostater Legeschwdgket de axale asse des ewchtes aus lechug F6-9 ud ech η erttelt werde, wobe N ud a N st:
6 N g ax 0,9 N 700 0,70,98 9,81 / s 0, ,9,1 F 6- Be stllstehede Täzer ka de axale Beschleugug des urtes uter Verachlässgug der asseträghetsoete der Ulekrolle be bgabe des Ipulsdrehoetes Ip des Servootors berechet werde. Für de axale urchesser ergbt sch be de ewcht t,1 (lechug F6-) de kelbeschleugug Τ0 /: T 0 I p ges ax ax I p Bax + g ax + +,10,99,81 / s 0,68 0,9N150,7 0,98 (1,+ 6,8 + 11, + 0, ) 10 ax 1s - F 6-5 e axale Beschleugug a BT0 des urtes, be stllstehede Täzer, beträgt: a 1s 0,68 T 0 ax BT0 16,5 /s F 6-6 E Reverservorgag be axaler eschwdgket v ax ka der folgede Zet realsert werde: vax 0,58 / s t 0, s rev a 16,5/ s 07 F 6-7 BT0 e berechete Zet t rev st de gesate Reverserzet. as bedeutet, dass de lauf- ud de Breszet jewels t 0,05 s dauert. as rehoet ka bhäggket der rehrchtug, cht sprughaft aufgebaut werde. e der raxs realserte Reverserzete sd größer als deser theoretsche ert t rev. eses zegt der Reverservorgag Oszllogra Seteubruch
Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.
Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0
(Markowitz-Portfoliotheorie)
Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug
Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen
Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug
Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten
Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe
1. Zufallsbewegung und Binomialverteilung. Statistische Betrachtungsweise bezieht sich stets auf ein Ensemble.
. Zfallsbewegg d Boalvertelg Statstsche Betrachtgswese bezeht sch stets af e Eseble. Eseble: Gesathet eer sehr große Zahl N detscher Systee. Wahrschelchket für das Etrete ees Eregsses A: Brchtel der Systee,
Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst
Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage
1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen
.. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt
Sitzplatzreservierungsproblem
tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche
Geometrisches Mittel und durchschnittliche Wachstumsraten
Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches
Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden
Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4
Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot
Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)
Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot
Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer
Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:
Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet
1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren
Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts
Leitfaden zu den Indexkennzahlen der Deutschen Börse
Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete
Quantitative BWL 2. Teil: Finanzwirtschaft
Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt
Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7
Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...
Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit
Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.
Multiple Regression (1) - Einführung I -
Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da
2.2 Rangkorrelation nach Spearman
. Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable
Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE)
Stoffwerte vo Flüssgkete Oberflächespaug (PHYWE) Zel des Versuches st, de Platzbedarf ees Ethaol-Moleküls der Grezfläche zwsche Dapfphase ud Lösug aus der Kozetratosabhäggket der Oberflächespaug be wässrge
Deskriptive Statistik - Aufgabe 3
Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der
Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik
Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert
Erzeugen und Testen von Zufallszahlen
Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto
Private Altersvorsorge. Berufsunfähigkeitsschutz plus Steuerersparnis. Günstig vorsorgen durch Kombination mit unserer fondsgebundenen Basisrente.
Private Altersvorsorge Steueroptimierter Berufsufähigkeitsschutz Berufsufähigkeitsschutz plus Steuerersparis Güstig vorsorge durch Kombiatio mit userer fodsgebudee Basisrete. Berufsufähigkeitsschutz +
Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222
Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme
Lerneinheit 2: Grundlagen der Investition und Finanzierung
Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der
Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert
Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m
WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}
1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade
2. Mittelwerte (Lageparameter)
2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde
Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban
Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,
Datenblatt. Geber- und Geberkabelvergleich MOVIDRIVE MDX 61B DT..- / DV..-Motoren zu DR..-Motoren
Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces Dateblatt Geber- ud Geberkabelverglech MOVIDRIVE MDX B DT..- / DV..-Motore zu -Motore Ausgabe 02/200 0040 / DE SEW-EURODRIVE Drvg the world Geberverglech
Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:
E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge
Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar.
Hochschle Frtwage Uversty Sommersemester 0 Fakltät Dgtale Mede Mathematk Prof. Dr. Thomas Scheder Mede d Iformatk Übgsblatt. Elemetares Reche mt komplexe Zahle Es se w= +. a) Blde Se de komplex Kojgerte
Histogramm / Säulendiagramm
Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre
Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re
atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische
Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung
Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket
Quellencodierung I: Redundanzreduktion, redundanzsparende Codes
Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug
Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac
Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala
Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield
Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der
6. Zusammenhangsmaße (Kovarianz und Korrelation)
6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe
2. Arbeitsgemeinschaft (11.11.2002)
Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba
Einführung Fehlerrechnung
IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate
Mathematische Modellierung Lösungen zum 1. Übungsblatt
Mathematsche Modellerug Lösuge zum Klaus G. Blümel Lars Hoege 6. Oktober 005 Aufgabe 1 a) Der Raumhalt vo eem Kubkmeter etsprcht gerade 1000 Lter, d.h. 1 m 3 = 1000 l. Reche zuächst 1 m 3 cm 3 um. E Meter
Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1.
Preisblatt über Netzaschlüsse Erdgas, Trikwasser, Strom ud Ferwärme, Baukostezuschüsse ud sostige Koste Gültig ab 1. Jui 2015 Service Preisblatt Netzaschluss ud sostige Koste zu de Ergäzede Bestimmuge
2 Vollständige Induktion
8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes
Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten
Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte
Maße zur Kennzeichnung der Form einer Verteilung (1)
Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug
Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F
B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee
Innerbetriebliche Leistungsverrechnung
Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der
Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)
Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)
Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung
Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,
wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)
Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der
Gliederung. Value-at-Risk
Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug
Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,
Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i
D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi
1 s. 1 s. 1 k. n j. j = Wärmedurchgang durch eine mehrschichtige, ebene Wand:
Wärmeurchgg urch ee mehrchchtge, ebee W: ugehe vo er Löug er Fourer'che Dfferetlglechug für e Wärmetrport urch ee ebee Wfläche : A T ergbt ch ru für ee mehrchchtge, ebee Wfläche: A ru wr e Wärmeurchggwertzhl
Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes
Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche
14. Folgen und Reihen, Grenzwerte
4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,
Finanzmathematische Formeln und Tabellen
Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,
BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS
Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8
2. Diophantische Gleichungen
2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze
Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen
IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass
Varianzfortpflanzung
5.0 / SES.5 Parameterschätzug Varazortplazug Torste Maer-Gürr Torste Maer-Gürr Dskrete Zuallsvarable Ee dskrete Zuallsvarable mmt edlch vele oder abzählbar uedlch vele Werte a. - Werte: - Wahrschelchket:,,,,,,,,
Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39
Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle
GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.
eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases
Versicherungstechnik
Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge
