Ein einfacher Primzahltest

Größe: px
Ab Seite anzeigen:

Download "Ein einfacher Primzahltest"

Transkript

1 Faktorisierung großer Zahlen Die Sicherheit moderner Datenverschlüsselung beruht darauf, daß es ungeheuer schwierig ist, eine mehr als 100stellige Zahl in ihre Primfaktoren zu zerlegen. Die Technik der Faktorisierung hat jedoch enorme Fortschritte gemacht; möglicherweise sind heute gängige kryptographische Systeme schon bald nicht mehr sicher. Von Prof. Johannes Buchmann Die 129stellige Zahl ist Produkt zweier Primzahlen. Wie lauten diese Faktoren? Diese Frage stellte Martin Gardner den Lesern des Scientific American im August 1977 in seiner Kolumne "Mathematical Recreations". (Sie blieb den Lesern von "Spektrum der Wissenschaft", das die Kolumne unter dem Namen "Mathematische Spielereien" eindeutschte, vorenthalten, denn diese Zeitschrift wurde erst ein Jahr später gegründet.) Im Gegensatz zu den Rätseln, die Gardner sonst aufzugeben pflegte, mußte dieses ungewöhnlich lange auf eine Lösung warten: Erst mehr als 16 Jahre später, im April 1994, präsentierten Paul Leyland von der Universität Oxford, Michael Graff von der Universität von Iowa in Iowa City und Derek Atkins vom Massachusetts Institute of Technology in Cambridge die Faktoren. Sie hatten im Herbst zuvor über das Internet Teile der Aufgabe an etwa 600 Freiwillige vergeben, die dafür ihre Workstations viele Nächte durch laufen ließen. Das Programm stammte von Arjen K. Lenstra vom Zentrum Bell Communications Research in Morristown (New Jersey). Faktorisieren - das Zerlegen von Zahlen in Primfaktoren - ist jedoch alles andere als eine belanglose Spielerei. Zwei Zahlen miteinander zu multiplizieren, auch wenn jede 65 Stellen hat, fällt nicht schwer: Mit Papier und Bleistift schafft man es mit Geduld und Disziplin vielleicht in einer Stunde, mit einem Computer ist es eine Kleinigkeit. Die Umkehrung dieser Aktion, also aus dem Produkt die Faktoren wieder herauszufinden, ist dagegen extrem aufwendig, selbst mit den schnellsten verfügbaren Rechnern. Mathematische Operationen mit einer derartigen Asymmetrie - eine Richtung sehr leicht, die andere sehr schwer - wirken wie Falltüren: Es ist viel leichter, in das Loch hineinzufallen als wieder herauszukommen. Sie bilden die Grundlage moderner kryptographischer Systeme, die mit sogenannten Falltürfunktionen arbeiten. Verschlüsseln muß nämlich schnell gehen, aber Entschlüsseln soll praktisch unmöglich sein. Ronald Rivest vom Massachusetts Institute of Technology in Cambridge, Adi Shamir vom Weizmann-Institut in Rehovot (Israel) und Leonard Adleman von der Universität von Südkalifornien in Los Angeles hatten 1978 auf der Grundlage der Faktorisierung das nach ihren Initialen benannte RSA-Verfahren entwickelt (siehe "Die Mathematik neuer Verschlüsselungssysteme" von Martin E. Hellmann, Spektrum der Wissenschaft, Oktober 1979, Seite 92). Auch Martin Gardner hatte mit den Faktoren der genannten 129stelligen Zahl eine (Nonsense-)Nachricht verschlüsselt: "The magic words are squeamish ossifrage." Wer mit RSA verschlüsselte Nachrichten empfangen will, wählt zwei Primzahlen p und q, also zwei natürliche Zahlen, die nur durch 1 und sich selbst teilbar sind, berechnet deren Produkt n=p q und veröffentlicht es, hält aber die Faktoren geheim. Zum Verschlüsseln muß man lediglich das Produkt n kennen. Entschlüsseln kann dagegen nur, wer die Primfaktoren p und q weiß. Aber wenn diese mehr als 150 Dezimalstellen haben, würde es selbst mit den besten bekannten Methoden auf einer modernen Workstation mehr als 2000 Jahre dauern, n zu faktorisieren. Faktorisierungsprobleme kann man also leicht erzeugen, aber für hinreichend große Primfaktoren heutzutage nicht in vertretbarer Zeit lösen.

2 Wird das immer so bleiben, oder wird es einmal wirklich schnelle Faktorisierungsverfahren geben? Um das herauszufinden, veranstaltet die Firma, die RSA vertreibt, einen weltweiten Wettbewerb. Sie veröffentlicht Produkte großer Primzahlen und lobt ein Preisgeld für deren Faktorisierung aus. Die kleinste zur Zeit noch nicht zerlegte RSA-Zahl ist Sie hat 140 Dezimalstellen, und für ihre Faktorisierung bekommt man vier Siebtel vom Inhalt eines Geldtopfes, der zur Zeit Dollar enthält und in den RSA alle drei Monate 1750 Dollar einzahlt. (Die restlichen drei Siebtel bleiben für den Faktorisierer der nächsthöheren RSA-Zahl im Topf.) Die Idee, möglichst viele Interessierte mit ihrer Denk- und Rechenkapazität auf das Problem anzusetzen, ist durchaus sinnvoll: Es ist nämlich nicht beweisbar, ob Faktorisieren prinzipiell so schwer ist oder ob die Mathematiker vielleicht auf das geschickteste Verfahren nur noch nicht gekommen sind. Das gilt allgemeiner. Man kennt kein Berechnungsproblem, das drei Bedingungen zugleich erfüllt: Es ist rasch zu erzeugen, seine Lösung ist leicht zu verifizieren, und es existiert nachweislich kein schnelles Verfahren zu seiner Lösung. So gibt es für die Sicherheit von Verschlüsselungsverfahren nur die Erfahrung, daß bisher niemand eine schnelle Methode zur Faktorisierung gefunden hat. Die Anbieter von RSA und ähnlichen Verfahren tun also gut daran, nach solchen Algorithmen zu suchen (und ihre Verfahren dagegen zu schützen), bevor ihnen Gegenspieler aus den Geheimdiensten oder der Unterwelt zuvorkommen. Das Faktorisierungsproblem hat eine ehrwürdige Tradition. Schon in der Antike haben Mathematiker bewiesen, daß jede natürliche Zahl ein Produkt von Primzahlen ist und daß die Primzahlen, die in diesem Produkt vorkommen, bis auf die Reihenfolge eindeutig bestimmt sind. So ist zum Beispiel 12= Für die weitere Untersuchung der Eigenschaften natürlicher Zahlen war es wichtig, Methoden für diese Primfaktorzerlegung zu finden. Seit der Entwicklung der Computer hat dieses Gebiet enorme Fortschritte gemacht. Darüber werde ich hier berichten. Ich versuche zu erklären, wie moderne Faktorisierungsalgorithmen funktionieren und wie sie sich in der Praxis verhalten. Stellenweise gehe ich so ins Detail, daß Sie einfache Versionen auf ihrem PC ausprobieren können; im WWW steht dafür eine Programmbibliothek namens LiDIA zur Verfügung. Schließlich werde ich Bilanz ziehen und eine subjektive Antwort auf die Frage geben, ob Faktorisieren ein schweres Problem bleibt. Fermat-Zahlen Der französische Jurist Pierre de Fermat (1601 bis 1665), der vor allem durch seine erst kürzlich bewiesene Vermutung berühmt geworden ist, glaubte ein Rezept zur Erzeugung beliebig großer Primzahlen gefunden zu haben: Zu einer natürlichen Zahl i berechne man F i =2 (2i ) +1; die Zahlen F i heißen heute Fermat-Zahlen. Die ersten unter ihnen sind F 0 =2 (20 ) +1=3, F1 =2 (21 ) +1=5, F 2 =2 (22 ) +1=17, F3 =257, F 4 = Man erkennt sofort, daß die ersten drei Fermat-Zahlen 3, 5 und 17 Primzahlen sind. Das gilt auch für F 3 und F 4. Doch nicht alle F i sind Primzahlen. Der schweizerische Mathematiker Leonhard Euler (1707 bis 1783) fand 1732 bereits heraus, daß F 5 = = , also zusammengesetzt ist. Erst 150 Jahre später stellten Landry und Le Lasseur fest, daß F 6 = Produkt der Primzahlen und ist. Michael A. Morrison und John D. Brillhart (der heute an der Universität von Arizona in Tucson arbeitet) bestimmten 1970 die beiden Primfaktoren von F 7,

3 Richard Brent und John M. Pollard von der Universität Reading (England) zerlegten 1980 die Zahl F 8 und Arjen K. Lenstra, Hendrik W. Lenstra von der Universität von Kalifornien in Berkeley sowie Mark S. Manasse vom Forschungszentrum des Computerherstellers DEC und Pollard 1990 die Zahl F 9 (Spektrum der Wissenschaft, November 1990, Seite 38). Einerseits sieht man an diesen Daten, wie schwierig das Faktorisierungsproblem ist; immerhin hat es bis 1970 gedauert, bis die 39stellige Fermat-Zahl F 7 zerlegt war. Andererseits ist die enorme Weiterentwicklung in jüngster Zeit daran zu erkennen, daß nur 20 Jahre später die 155stellige F 9 faktorisiert wurde. Lange bevor die Faktoren bekannt waren, wußte man allerdings schon, daß F 7, F 8 und F 9 keine Primzahlen sind. Man kann nämlich mit einem speziellen Test festellen, ob eine Zahl zusammengesetzt ist, ohne ihre Faktoren berechnen zu müssen (siehe "Primzahlen im Schnelltest" von Carl Pomerance, Spektrum der Wissenschaft, Februar 1983, Seite 80). Erst wenn man sich so vergewissert hat, daß sich die Mühe lohnt, wird man die aufwendige Faktorisierung in Angriff nehmen. Ein einfacher Primzahltest Wie findet man möglichst schnell heraus, ob beispielsweise n=58483 eine Primzahl ist? Eine Möglichkeit ist der sogenannte Fermat-Test. In seiner einfachsten Version überprüft er, ob n ein Teiler von 2 n-1-1 ist. Fermat hat nämlich bewiesen, daß dies für ungerade Primzahlen n (also alle außer 2) immer zutrifft. Zum Beispiel ist 3 ein Teiler von =3. Ist n also kein Teiler von 2 n-1-1, kann n keine Primzahl sein. Über ihre Primfaktoren weiß man dadurch aber noch nichts. Beispielsweise erhält man für das triviale Beispiel n=6 die Zahl 2 5-1=31. Da 6 kein Teiler von 31 ist, ist 6 keine Primzahl. Das hätte man zur Not auch ohne Fermat-Test gewußt. Nehmen wir ein etwas schwierigeres Beispiel. Wenn ich den Test etwa auf anwenden will, muß ich berechnen und prüfen, ob das Ergebnis durch teilbar ist. Das würde auf die naive Weise extrem lange dauern; die Zahl hat nämlich Dezimalstellen. Statt dessen rechnet man mit Kongruenzen [= K ] (Kasten auf dieser Seite) und verwendet einen raffinierten, sehr schnellen Algorithmus: Es ist zu überprüfen, ob ein Teiler von ist, ob also bei der Division durch den Rest 1 läßt. Diesen Rest berechnet man nun durch binäre Exponentiation. Zuerst schreibt man die Binärdarstellung des Exponenten hin: 58482= Also ist =2 2 2 (24 ) 2 (2 5 ) 2 (2 6 ) 2 (2 10 ) 2 (2 13 ) 2 (2 14 ) 2 (2 15 ). Dann berechnet man der Reihe nach die Reste von 2 2, 2 4, 2 8 und so weiter bei der Division durch 58483, indem man den jeweils vorhergehenden Rest quadriert und das Ergebnis mit Rest durch teilt (Bild 3). Jetzt braucht man nur noch die Potenzen, die in der Binärzerlegung des Exponenten vorkommen, miteinander zu multiplizieren und nach jeder Multiplikation zu reduzieren, das heißt den Rest bezüglich Division durch zu bilden. Dadurch bleiben alle Zwischenergebnisse von erträglicher Größe. Man erhält = K = K mod Also kann keine Primzahl sein, weil sonst das Ergebnis 1 gewesen wäre. Das Verfahren geht relativ schnell, liefert aber noch nicht die Primfaktorzerlegung von Probedivision Nun geht es darum, n in ein Produkt von zwei echten Teilern zu zerlegen, also solchen, die beide weder gleich 1 noch gleich n sind (die Zahlen 1 und n selbst heißen unechte Teiler von n). Zum Beispiel ist 3 ein echter Teiler von 12. Man untersucht dann, ob die Teiler Primzahlen sind. Wenn nicht, zerlegt man sie ihrerseits, und so weiter, bis alle gefundenen Teiler Primzahlen sind. Zum Beispiel ist 12=3&times4. Die 3 ist eine Primzahl. Doch 4 ist zusammengesetzt und muß weiter zerlegt werden. Die Zerlegung ist 4=2&times2. Die vollständige Zerlegung von 12 lautet also

4 12=2&times2&times3. Der wesentliche Schritt eines Faktorisierungsalgorithmus besteht somit darin, einen echten Teiler einer zusammengesetzten Zahl zu finden. Das nächstliegende Verfahren ist die Probedivision: Man teilt n der Reihe nach durch alle Primzahlen 2, 3, 5, 7, 11, 13, 17,..., bis eine der Divisionen aufgeht. Die Primzahlen speichert man vorher in einer Tabelle. Im Falle von n=58483 stellt man fest, daß die einundfünzigste Primzahl, nämlich 233, ein Teiler von n ist (der andere ist 251). Man muß also 51 Divisionen mit Rest durchführen, um diesen Teiler zu finden. Das ist noch zumutbar. Je größer aber der kleinste Primfaktor p von n ist, desto mehr Divisionen sind erforderlich (Bild 4), und desto größer muß die Primzahltabelle sein, mit der man arbeitet. Probedivision ist mithin nur geeignet, kleine Faktoren zu finden; für große Faktoren braucht man grundsätzlich andere Verfahren. Elliptische Kurven Hendrik W. Lenstra hat 1985 ein Verfahren gefunden, das mit elliptischen Kurven arbeitet. Das sind sehr interessante und nützliche mathematische Objekte. Der britische Mathematiker Andrew Wiles verwendete sie an entscheidender Stelle in seinem letztlich geglückten Beweis der Fermatschen Vermutung (Spektrum der Wissenschaft, August 1993, Seite 14). Sie werden auch für Verschlüsselungsverfahren eingesetzt - und eben zur Faktorisierung. Ähnlich wie beim Fermat-Test führt man bei dem Verfahren mit elliptischen Kurven (elliptic curve method, ECM) eine Berechnung aus, die gelingen würde, wenn n eine Primzahl wäre. Weil n aber zusammengesetzt ist - was man zum Beispiel aus einem vorangegangenen Fermat-Test weiß -, kann die Rechnung scheitern. Was bedeutet das? Im Verlauf der Berechnung muß man immer wieder den größten gemeinsamen Teiler (ggt) von n mit anderen Zahlen ausrechnen. Die Rechnung kann nur fortgesetzt werden, wenn der ggt gleich 1 ist, die beiden Zahlen also teilerfremd sind. Anderenfalls hat man einen Teiler von n gefunden und - wenn der Zufall es will - sogar einen echten. Damit ist man am Ziel. Der Zufall spielt bei dieser Methode wirklich mit. Es gibt nämlich sehr viele elliptische Kurven zur Auswahl, an denen man die Berechnungen durchführen kann (Bild 7). Man wählt sich eine nach dem Zufallsprinzip aus. Liefert sie keinen echten Teiler, probiert man die nächste aus. Lenstra konnte zeigen, daß es für jedes zusammengesetzte n Kurven gibt, die einen Teiler liefern. Wie bei der Probedivision hängt die Zeit, die man mit der ECM braucht, um einen Faktor zu finden, von dessen Größe ab. Allerdings sind Faktoren mit bis zu 30 Dezimalstellen in erträglicher Zeit aufzuspüren (Bild 5). Was ist nun eine elliptische Kurve? Zunächst tatsächlich eine Kurve, das heißt eine Menge von Punkten (x,y) in der Ebene, deren Koordinaten eine bestimmte Gleichung erfüllen. Im Falle der elliptischen Kurven ist es die Gleichung y 2 =x 3 +ax+b. Dabei müssen die Parameter a und b ganze Zahlen und derart gewählt sein, daß nicht gerade 4a 3 +27b 2 =0 ist (Bild 5). Ihrem Namen zum Trotz sind übrigens elliptische Kurven keine Ellipsen; sie haben mit ihnen nur sehr entfernt zu tun. Man spricht auch dann von einer Kurve, wenn die Punktmenge, wie in Bild 6, aus mehreren nicht zusammenhängenden Zweigen besteht. Interessant werden elliptische Kurven dadurch, daß man auf ihnen in einem abstrakten Sinne addieren kann: Zu je zwei Punkten P 1 und P 2 der Kurve findet man durch eine geometrische Konstruktion stets einen dritten, der ebenfalls auf der Kurve liegt und P 1 +P 2 genannt wird. Die so definierte Addition folgt den üblichen Regeln: Sie ist assoziativ, kommutativ, es gibt ein neutrales Element, also eines, das, zu einem beliebigen Punkt addiert, diesen nicht verändert, und zu jedem Punkt ein Negatives (Inverses), so daß die Summe beider Punkte aus dem neutralen Element besteht. Eine elliptische Kurve bildet also eine kommutative Gruppe bezüglich dieser Addition. Das Inverse -P eines Kurvenpunktes P ist dessen Spiegelbild an der x-achse. Die Summe P 1 +P 2 zweier Punkte P 1 und P 2 findet man im allgemeinen, indem man die Gerade durch P 1 und P 2 zieht. Sie schneidet die Kurve in einem dritten Punkt Q. Dessen Spiegelbild -Q bezüglich der x-achse ist die gesuchte Summe P 1 +P 2 (Bild 6). In dem Sonderfall P 1 =P 2 tritt an die Stelle der Geraden durch P 1 und P 2 die Tangente an

5 die Kurve im Punkt P 1 =P 2. Wenn schließlich P 1 =-P 2 ist, schneidet die Gerade durch P 1 und P 2 keinen weiteren Punkt der Kurve. Man stellt sich ersatzweise vor, daß die Gerade die Kurve im Unendlichen schneidet. Darum fügt man den Punkten der Kurve noch einen weiteren hinzu, den man sich im Unendlichen denkt, nennt ihn O und setzt P 1 -P 1 =O. Der Punkt O ist also das Nullelement (neutrale Element) der additiven Gruppe. Die geometrische Definition der Punktaddition kann in Formeln umgesetzt werden. Wenn P 1 =(x 1,y 1 ) und P 2 =(x 2,y 2 ) Punkte der elliptischen Kurve sind, dann gilt ((Formel 1)) In den anderen Fällen berechnet man ((Formel 2, erster Teil)) ((Formel 2, zweiter Teil)) Diese Formeln können nun eine Art Eigenleben gewinnen. Man darf sie anwenden, ohne sich unter x und y Koordinaten von Punkten in der Ebene vorstellen zu müssen. Die Bestandteile der Formeln müssen auch nicht unbedingt, wie bisher, reelle Zahlen sein; es genügt, wenn man mit ihnen addieren, subtrahieren, multiplizieren und dividieren kann. Wir haben beim Rechnen mit Kongruenzen (Kasten auf Seite 83) schon gesehen, daß man mit Divisionsresten addieren, subtrahieren und multiplizieren kann. Genauer: Die Reste bei der Division einer ganzen Zahl durch eine natürliche Zahl n können die Werte 0, 1, 2,..., n-1 annehmen. Man rechnet mit diesen Resten so wie gewohnt; nur wenn das Ergebnis der Rechnung über den Bereich von 0 bis n-1 hinausgeht, dividiert man es durch n und nimmt den Rest. Wenn beispielsweise n=12 ist, dann ist 10+5=3 und 1-2=11, wie man es von den Uhrzeiten gewohnt ist: 5 Stunden nach 10 Uhr ist 3 Uhr, und 2 Stunden vor 1 Uhr ist 11 Uhr. Entsprechend ist 4 5=8. Nur die Division erfordert etwas mehr Aufmerksamkeit. Dividieren ist dasselbe wie Multiplizieren mit dem Kehrwert, und der Kehrwert von x ist das Element y, das die Gleichung xy=1 erfüllt. Für n=12 ist beispielsweise 5 der Kehrwert von 5, denn 5 5=25= K 1 mod 12. Aber einen Kehrwert von 4 gibt es nicht, denn 4y ist immer 4, 8 oder 0 mod 12. Insbesondere ist 4 3=0. Nur wenn n eine Primzahl ist, kann man uneingeschränkt dividieren. Der Kehrwert läßt sich mit einer Modifikation des euklidischen Algorithmus berechnen. Zu der Menge dieser Reste mit den entsprechend umdefinierten Grundrechenarten ist nun ebenfalls eine elliptische Kurve definierbar - ganz abstrakt, aber genauso wie zu den reellen Zahlen. Am einfachsten ist es, wenn der Modul n, das heißt die Zahl, bezüglich der man die Reste bildet, eine Primzahl p ist. Die Parameter a und b der Kurve müssen dann ganze Zahlen zwischen 0 und p-1 sein und die Bedingung 4a 3 +27b 2 /= K 0 mod p erfüllen [/= K bedeutet nicht Kongruent]. Die Kurve - die mit der landläufigen Vorstellung von einer gekrümmten Linie nichts mehr gemein hat - besteht aus allen Paaren (x, y) von ganzen Zahlen zwischen 0 und p-1, welche die Kongruenz y 2 = K x 3 +ax+b mod p erfüllen. Zusätzlich gibt es noch den Punkt O. Die Formeln für die Addition bleiben unverändert; man ersetzt nur alle auftretenden Zahlen durch ihre Reste bei der Division durch p. Ein Beispiel: Für p=5, a=1 und b=-1 (= K 4 mod 5) sind P 1 =(1,1) und P 2 =(2,2) Punkte der elliptischen Kurve. Zur Berechnung von P 3 =P 1 +P 2 muß man durch 2y 1 =4 dividieren. Der Kehrwert von 4 ist 4, denn 4 4=16= K 1 mod 5. Also ist x 3 =R(-1-2+1, 5)=3 und y 3 =R(-1+1-3, 5)=2. Tatsächlich ist (3, 2) ein Punkt der Kurve. Wieder ist die Menge E(p) der Punkte auf der elliptischen Kurve modulo p eine kommutative Gruppe. Sie hat aber nur endlich viele Elemente. Ihre Anzahl liegt zwischen p-2&timessqrt(p)+1 und p+2&timessqrt(p)+1. Indem man alle Zahlenpaare, die überhaupt in Frage kommen, durchprobiert, findet man, daß für p=5 die genannte elliptische Kurve E(5) aus den Elementen (3,3), (3,2), (0,3), (0,2), (1,4), (1,1), (2,3), (2,2) und O besteht; sie hat also neun Elemente (Bild 7). Die Grundlage für ECM ist ein Satz des französischen Mathematikers Joseph Louis Lagrange (1736 bis 1813): Wenn man ein Element einer endlichen Gruppe so oft zu sich selbst addiert, wie die Gruppe Elemente hat, dann muß das neutrale Element dabei herauskommen. In unserem Falle: 9 mal ein Element von E(5) ist stets gleich O. (Man schreibt, wie sonst auch üblich, 2P für P+P, 3P für P+P+P und so weiter.) Ich rechne das für P=(1,1) vor. Modulo 5 ist 2P=(2,2), 4P=2 (2P)=(0,2), 8P=2 (4P)=(1,-1), schließlich 9P=8P+P=(1,-1)+ (1,1)=O. Man sieht, daß es nicht nötig ist, neunmal P zu addieren. Vielmehr verwendet man denselben Trick wie bei der binären Exponentiation: Man berechnet der Reihe nach 2P, 4P,..., 2 m P und addiert für das Endergebnis diejenigen Zweierpotenzen zusammen, die man braucht. So hält sich der Rechenaufwand auch dann in Grenzen, wenn an die Stelle der Neun sehr große

6 Zahlen treten. Wie verwendet man nun elliptische Kurven, um Teiler zusammengesetzter Zahlen zu finden? Das will ich am Beispiel n=35 zeigen. Man wählt zuerst eine elliptische Kurve modulo n, das heißt zwei ganze Zahlen a und b mit 4a 3 +27b 2 /= K 0 mod n, und einen Punkt auf der Kurve, also eine Lösung P=(x,y) der Kongruenz y 2 = K x 3 +ax+b mod n. Für n=35 wähle ich wieder a=1, b=-1, x=1 und y=1. Das ergibt zwar eine elliptische Kurve, aber man kann ihre Punkte nicht immer addieren. Nach den Formeln muß man nämlich einen Kehrwert modulo n bilden, und den gibt es nicht immer, weil n zusammengesetzt ist. Die Idee ist: Man versucht es trotzdem; die Berechnung scheitert, aber die Art des Scheiterns gibt einem die Information, die man eigentlich haben will. Man wählt sich eine natürliche Zahl k - wie, beschreibe ich unten. Im Beispiel nehme ich k=9. Den Punkt P versucht man k-mal zu sich selbst zu addieren, und zwar nach der Methode, die ich oben für E(5) beschrieben habe. Im Beispiel berechne ich das Neunfache von P=(1,1) modulo 35. Es ergibt sich 2P=(2,2), 4P=(0,22), 8P=(16,19). Will man nun 9P=8P+P= (16,-16) +(1,1) berechnen, muß man zuerst l bestimmen und dazu durch 16-1=15 mod 35 dividieren. Das geht aber nicht. Es gibt keinen Kehrwert von 15 mod 35, weil der größte gemeinsame Teiler von 15 und 35 nicht 1, sondern 5 ist. Aber bei dem Versuch, den Kehrwert zu finden, hat man mit dem euklidischen Algorithmus den echten Teiler 5 von 35 gefunden, den man eigentlich haben wollte. Die Berechnung ist nun gerade bei k=9 gescheitert, weil 5 ein Teiler von n ist und 9 die Anzahl der Elemente dieser Realisierung von E(5). Das liegt am Satz von Lagrange. Sie wäre bei jedem Vielfachen von 9 ebenfalls gescheitert. Wenn man etwa nach sechsstelligen Primfaktoren sucht, wählt man die Testzahl k so, daß sie Vielfaches möglichst vieler sechsstelliger Zahlen ist, die ihrerseits nicht allzugroße Primfaktoren haben. Dann hat man eine gute Chance, daß k ein Vielfaches der Elementeanzahl von E(p) ist (die wir nicht kennen). Indem man das k-fache eines Elements von E(n) zu berechnen versucht, testet man die Teilbarkeit von n durch alle diese Primzahlen in einem Aufwasch. Um ein geeignetes k zu finden, wählt man eine Zahl B und berechnet k als Produkt aller Primzahlpotenzen, die nicht größer als B sind. Sucht man zum Beispiel nach Faktoren mit höchstens sechs Dezimalstellen, wählt man B=147. Dann ist k= Im allgemeinen hat ECM mit der ersten Kurve keinen Erfolg. Man probiert mehrere Kurven, das heißt mehrere Paare von Parametern a und b. Je größer B ist, desto mehr Kurven muß man durchprobieren (Bild 8). Hat ECM dann immer noch keinen Teiler gefunden, so ist man ziemlich sicher, daß die untersuchte Zahl n in der entsprechenden Größenordung auch keinen Teiler hat. Die Rechenzeit von ECM hängt also hauptsächlich von der Größe des gesuchten Primteilers und kaum von der zu faktorisierenden Zahl ab. Wenn eine Zahl mit 1000 Dezimalstellen einen 20stelligen Teiler hat, kann man ihn mit ECM finden. Andererseits wächst die Rechenzeit beträchtlich mit der Größe des kleinsten Faktors. ECM ist für Faktoren mit bis zu 30 Dezimalstellen geeignet. Der größte bisher mit diesem Verfahren gefundene Primfaktor hat 47 Dezimalstellen und wurde von Peter Montgomery am Zentrum für Mathematik und Informatik (CWI) in Amsterdam entdeckt. Das quadratische Sieb Für die Suche nach noch größeren Teilern einer Zahl n verwendet man ein anderes Verfahren. Die Idee ist: Man finde natürliche Zahlen X und Y mit der Eigenschaft, daß n ein Teiler von X 2 -Y 2 ist. Nach der dritten binomischen Formel ist nämlich X 2 -Y 2 =(X-Y)(X+Y). Die Zahl n muß also in (X-Y)(X+Y) aufgehen. Wenn n nicht selbst Teiler von X-Y oder X+Y ist, muß ein echter Teiler von n in X-Y und ein anderer in X+Y aufgehen. Also ist zum Beispiel der größte gemeinsame Teiler von X-Y und n größer als 1, und so einen hatte man ja gesucht. Wählt man zum Beispiel n=7429, X=227 und Y=210, so ist X 2 -Y 2 =7429. Also ist 7429 ein Teiler von X 2 -Y 2. Die Zahl 7429 ist aber kein Teiler von X-Y=17 und auch kein Teiler von X+Y=437; das geht gar nicht, sie ist ja größer als die beiden anderen Zahlen. Tatsächlich ist ggt(17,7429)=17 ein echter Teiler von Wie aber findet man X und Y? Zunächst stellt man ein lineares Gleichungssystem auf; dann bestimmt man X und Y aus den Lösungen dieses Systems. Die

7 Anzahl der Gleichungen hängt von der Größe der zu faktorisierenden Zahl ab; für 120stellige Zahlen ergeben sich ungefähr Gleichungen für ebensoviele Unbekannte (Bild 9). Anders als bei ECM ist also die Größe der zu faktorisierenden Zahl und nicht die des gesuchten Primfaktors maßgebend für den Rechenaufwand. Man bestimmt zunächst eine Reihe von Quadratzahlen mit zwei Eigenschaften: Sie liegen in der Nähe von n, und ihre Differenz zu n ist bis auf das Vorzeichen ein Produkt kleiner Primzahlen. Für n=7429 wären geeignete Quadratzahlen 83 2, 87 2, und 88 2, denn die Differenzen sind sämtlich Produkte der kleinsten Primzahlen 2, 3, 5 und 7: =-540 =(-1) = 140 = = 315 = Die Zeilen dieser Tabelle heißen Relationen. Wenn man einige dieser Zeilen miteinander multipliziert, addieren sich die Exponenten in der Zerlegung. Ist die Summe der Exponenten jedes Primfaktors gerade, so ist das Produkt ein Quadrat. Beispielsweise ist ( ) ( )= = ( ) 2 = Um X und Y zu finden, braucht man jetzt nur noch die Regeln der Kongruenzrechnung anzuwenden. Danach gilt (87 88)2= K ( ) ( ) mod Also gilt (87 88)2= K mod Hierin kann man auch noch durch seinen Rest bei der Division durch 7429 ersetzen und erhält = K mod 7429, das heißt, 7429 ist ein Teiler von Man kann also X=227 und Y=210 wählen. Diese Werte für X und Y liefern, wie oben gezeigt, den Teiler 17 von Unter typischerweise sehr vielen Relationen sind also solche auszusuchen, die sich in der dargestellten Weise zu einem Quadrat kombinieren lassen. Zu diesem Zweck stellt man das erwähnte lineare Gleichungssytem auf. Für jede Relation gibt es eine Unbekannte, deren Wert 1 ist, wenn die Relation zur Bildung des Quadrats verwendet wird, und 0 im anderen Fall. Im Beispiel hat das System also drei Unbekannte, nämlich l 1, l 2 und l 3. Das Produkt aller Relationen, die verwendet werden, kann man dann allgemein so schreiben: (((Formel 3))) oder umgeformt unter Verwendung der Potenzgesetze: (((Formel 4))) Die Bedingung, daß dieses Produkt ein Quadrat sein soll und damit alle Exponenten gerade sein müssen, liefert das lineare Gleichungssystem l 1 = K 0 mod 2 l 1 + l 2 + l 3 = K 0 mod 2 l 2 + l 3 = K 0 mod 2. Dabei ist die erste Gleichung für den Faktor -1 zuständig, die zweite für 5 und die dritte für 7. Die Exponenten zu den Faktoren 2 und 3 sind in jedem Falle gerade und benötigen deshalb keine eigene Gleichung. Das Gleichungssystem kann man mit einem üblichen Verfahren, zum Beispiel dem Gaußschen Eliminationsverfahren, lösen, wobei man modulo 2 rechnen muß. Das funktioniert, denn das Eliminationsverfahren besteht nur aus Anwendung der vier Grundrechenarten, und modulo 2 kann man immer dividieren, weil 2 eine Primzahl ist. Als Lösung erhält man l 1 =0, l 2 =l 3 =1 und damit die oben angegebenen Werte für X und Y. Es bleibt zu klären, wie die Relationen selbst gefunden werden. Das geschieht mit Hilfe eines Siebverfahrens, dem der Algorithmus seinen Namen "Quadratisches Sieb" verdankt. Gesucht sind Quadratzahlen, die um n vermindert nur in kleine Primfaktoren zerfallen. Man legt zuerst fest, welche Primzahlen in den Relationen vorkommen dürfen. Im Beispiel sind das 2, 3, 5 und 7. Zur Behandlung des Vorzeichens nimmt man noch die Zahl -1 hinzu. Die Menge dieser Primzahlen heißt Faktorbasis. Als nächstes berechnet man Quadratzahlen, die in der Nähe von n liegen. Man bestimmt dazu die größte ganze Zahl m, die noch unterhalb von SQRT-n liegt. Im Beispiel ist m=86. Quadratzahlen in der Nähe von n sind dann zum Beispiel (m-3) 2 = 83 2, (m-2) 2 = 84 2, (m-1) 2 =85 2, m 2 =86 2, (m+1) 2 =87 2, (m+2) 2 =88 2,..., also allgemeiner (m+u) 2, wobei u eine - positive oder negative - ganze Zahl ist, die klein ist im Vergleich zu m. Schließlich legt man das Siebintervall fest, also den Bereich der u, die man bearbeiten will. Die Differenzen der Quadratzahlen zu n (man nennt sie die reduzierten Quadratzahlen) schreibt man in eine Liste (Bild 10). Es sind nun diejenigen reduzierten Quadrate zu bestimmen, deren sämtliche Primfaktoren in der Faktorbasis liegen. Das könnte man mittels Probedivision machen. Schneller geht ein Siebverfahren. Um herauszufinden, welche reduzierten Quadrate durch eine Primzahl p teilbar sind, bestimmt man alle u zwischen 0 und p-1, für die (m+u) 2 -n durch p teilbar ist. Geht man von diesen u-werten in Schritten der Länge p nach rechts und links durch die Liste der u, erhält man alle reduzierten Quadrate, die durch p teilbar sind. Im

8 Beispiel ist (m+1) 2 -n durch 2 teilbar. Also sind auch (m-1) 2 -n, (m-3) 2 -n und (m+3) 2 -n gerade. (Das folgt mit einigen Umrechnungen aus der dritten binomischen Formel.) Diese Zahlen dividiert man so lange durch 2, bis sich eine ungerade Zahl ergibt. Das nennt man das Sieb mit 2, denn es hat eine Verwandtschaft mit dem Sieb des Eratosthenes, dem Standardverfahren für das Auslesen von Primzahlen. Das Sieb mit 3 funktioniert genauso: Man stellt fest, daß m 2 -n und (m+2) 2 -n durch 3 teilbar sind. Ausgehend von u=0 und u=2 geht man in Schritten der Länge 3 nach rechts und links und teilt an den entsprechenden Stellen, solange es geht, durch 3. Entsprechend siebt man mit den anderen Primzahlen der Faktorbasis (Bild 8). Überall, wo in der entstehenden Liste am Schluß eine Eins steht, kann man das entsprechende reduzierte Quadrat über der Faktorbasis zerlegen. Die Zerlegung rekonstruiert man durch Probedivision. Hier wurde nur die allereinfachste Version des quadratischen Siebs beschrieben. Die Technik selbst ist deutlich älter als der Computer: Der französische Offizier Eugène Olivier Carissan (1880 bis 1925) hat ein mechanisches Gerät gebaut, mit dem man das Aussieben mit mehreren Primzahlen auf einmal durchführen kann (Bilder 1 und 2). Um eine Zahl mit 100 Dezimalstellen zu zerlegen, muß man noch viele Verbesserungen anbringen. Faktorbasis und Siebintervall werden riesig (Bild 11). Ich gebe noch die Parameter an, die bei der Faktorisierung von RSA-120 verwendet wurden, der 120stelligen Zahl, die RSA zur Faktorisierung ausgeschrieben hatte. Arjen K. Lenstra, B. Dodson von der Lehigh University, Mark S. Manasse und Thomas Denny von der Universität Saarbrücken hatten Mitte 1993 mit der erfolgreichen Faktorisierung dieser Zahl einen Weltrekord erzielt. Die Faktorbasis enthielt Elemente, und das Gleichungssystem, das am Schluß gelöst werden mußte, hatte Unbekannte und Gleichungen. Die Berechnung hätte auf einem einzelnen Rechner etwa 50 Jahre gedauert. Auch die Faktorisierer der eingangs genannten 129stelligen Zahl haben das quadratische Sieb verwendet. Parallelisierung Außer der Verbesserung der Algorithmen ist der gleichzeitige Einsatz vieler Rechner ein wichtiges Mittel zur Beschleunigung der Faktorisierung. Man kann entweder Parallelrechner verwenden, die aber sehr teuer sind, oder verteilte Systeme, zum Beispiel Netze von Arbeitsplatzrechnern, die ohnehin vorhanden und nachts und am Wochenende oft sehr wenig ausgelastet sind. In Saarbrücken verwenden wir für ECM und quadratische Siebe ein Netz von 250 Workstations, die überall auf dem Campus stehen. Das System LiPS (Library for parallel systems), das in meiner Saarbrücker Arbeitsgruppe innerhalb eines Projekts des Sonderforschungsbereichs "VLSI- Entwurf und Parallelität" unter der Leitung von Thomas Setz entwickelt wird, erkennt automatisch, wenn einer der Rechner nicht von seinem Hauptnutzer gebraucht wird. Es startet dann zum Beispiel eine Faktorisierung. Will der Hauptnutzer wieder an seinem Rechner arbeiten, legt LiPS das Faktorisierungsprogramm schlafen und weckt es erst wieder auf, sobald der Rechner frei ist. LiPS ist auch dafür zuständig, Berechnungsergebnisse an den Computer zu schicken, der die Resultate auswertet (vergleiche Spektrum der Wissenschaft, Februar 1990, Seite 24). Perspektiven Selbst auf unserem verteilten System braucht das quadratische Sieb für die Faktorisierung einer Zahl mit 130 Dezimalstellen mehrere Wochen. Die Rechenzeit verdoppelt sich bei drei zusätzlichen Dezimalstellen. Das liegt daran, daß die reduzierten Quadrate, die gesiebt werden, etwa von der Größe SQRT-n sind. Algorithmen, die auf demselben Prinzip beruhen wie das quadratische Sieb, aber beträchtlich schneller sein sollen, müssen Relationen durch Zerlegung wesentlich kleinerer Zahlen gewinnen. Der einzige Algorithmus, der in dieser Hinsicht dem

9 quadratischen Sieb deutlich überlegen ist, ist das Zahlkörpersieb, das John Pollard erfunden und unter anderem für die Zerlegung der Fermat-Zahl F 9 eingesetzt hat. Mit dem Zahlkörpersieb gelang am 11. April dieses Jahres in einer Gemeinschaftsanstrengung, an der auch unsere Saarbrücker Arbeitsgruppe beteiligt war, die Zerlegung einer 130stelligen Zahl, für die RSA zu diesem Zeitpunkt ein Preisgeld von etwa 6600 Dollar ausgelobt hatte: Die Fachleute erwarten, daß ein weiterentwickeltes Zahlkörpersieb in fünf Jahren beliebige Zahlen mit 160 Dezimalstellen faktorisieren kann. Dies ist insofern bedeutsam, als die zusammengesetzten Zahlen, die zur Zeit im RSA-Kryptosystem meist verwendet werden, weniger als 160 Dezimalstellen haben. Solche RSA-Anwendungen werden also bald nicht mehr sicher sein. Ist Faktorisieren natürlicher Zahlen also ein schwieriges Problem? Zur Zeit ja. Noch kann kein Algorithmus der Welt aus dem Produkt zweier Primzahlen mit je 150 Dezimalstellen die Faktoren rekonstruieren. Vorerst bilden solche Produkte also eine gute Basis für die Sicherheit kryptographischer Verfahren. Aber wie geht es weiter? Eines stimmt gewiß nicht, was immer wieder in diesem Zusammenhang zu hören ist: Weil Mathematiker seit Jahrhunderten nach Faktorisierungsalgorithmen suchen und bislang keine wirklich schnellen gefunden haben, müsse man das Problem als schwer ansehen. Erst seit es Computer gibt, werden Algorithmen erfunden, die deren Stärken nutzen; vorher gab es nur Verfahren zur Beschleunigung von Berechnungen mit Stift und Papier. Es gibt keinen Grund anzunehmen, daß der dramatische Fortschritt der letzten zwanzig Jahre schon an seinem Ende angelangt sei. Literaturhinweise - Factorizations and Primality Testing. Von D. M. Bressoud. Springer, Heidelberg A Course in Computational Algebraic Number Theory. Von H. Cohen. Springer, Heidelberg The Development of the Number Field Sieve. Von Arjen K. Lenstra und Hendrik W. Lenstra Jr. Springer Lecture Notes in Mathematics, Band Springer, Heidelberg The Book of Prime Number Records. Von P. Ribenboim. Springer, Heidelberg Prime Numbers and Computer Methods for Factorization. Von Hans Riesel. 2. Auflage, Birkhäuser, Basel Die Programmbibliotheken LiDIA und LiPS sind erhältlich über Aus: Spektrum der Wissenschaft 9 / 1996, Seite 80 Spektrum der Wissenschaft Verlagsgesellschaft mbh

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel: RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar

Mehr

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher stefan@buettcher.org 1 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Zur Sicherheit von RSA

Zur Sicherheit von RSA Zur Sicherheit von RSA Sebastian Petersen 19. Dezember 2011 RSA Schlüsselerzeugung Der Empfänger (E) wählt große Primzahlen p und q. E berechnet N := pq und ϕ := (p 1)(q 1). E wählt e teilerfremd zu ϕ.

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Tourist Town. wenn Computer ins Schwitzen geraten. Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014

Tourist Town. wenn Computer ins Schwitzen geraten. Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014 Tourist Town wenn Computer ins Schwitzen geraten Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014 Inhalt 1. Was kommt jetzt? 2. Tourist Town Dominierende Mengen 3. Ausblick Isolde Adler Tourist

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Das Leitbild vom Verein WIR

Das Leitbild vom Verein WIR Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich

Mehr

Kulturelle Evolution 12

Kulturelle Evolution 12 3.3 Kulturelle Evolution Kulturelle Evolution Kulturelle Evolution 12 Seit die Menschen Erfindungen machen wie z.b. das Rad oder den Pflug, haben sie sich im Körperbau kaum mehr verändert. Dafür war einfach

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Alle gehören dazu. Vorwort

Alle gehören dazu. Vorwort Alle gehören dazu Alle sollen zusammen Sport machen können. In diesem Text steht: Wie wir dafür sorgen wollen. Wir sind: Der Deutsche Olympische Sport-Bund und die Deutsche Sport-Jugend. Zu uns gehören

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut Von Susanne Göbel und Josef Ströbl Die Ideen der Persönlichen Zukunftsplanung stammen aus Nordamerika. Dort werden Zukunftsplanungen schon

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock infach Ihr Weg zum finanzellen Erfolg Geld Florian Mock FBV Die Grundlagen für finanziellen Erfolg Denn Sie müssten anschließend wieder vom Gehaltskonto Rückzahlungen in Höhe der Entnahmen vornehmen, um

Mehr

1. Standortbestimmung

1. Standortbestimmung 1. Standortbestimmung Wer ein Ziel erreichen will, muss dieses kennen. Dazu kommen wir noch. Er muss aber auch wissen, wo er sich befindet, wie weit er schon ist und welche Strecke bereits hinter ihm liegt.

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016

L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016 L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016 Referentin: Dr. Kelly Neudorfer Universität Hohenheim Was wir jetzt besprechen werden ist eine Frage, mit denen viele

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Wir arbeiten mit Zufallszahlen

Wir arbeiten mit Zufallszahlen Abb. 1: Bei Kartenspielen müssen zu Beginn die Karten zufällig ausgeteilt werden. Wir arbeiten mit Zufallszahlen Jedesmal wenn ein neues Patience-Spiel gestartet wird, muss das Computerprogramm die Karten

Mehr

EINMALEINS BEZIEHUNGSREICH

EINMALEINS BEZIEHUNGSREICH EINMALEINS BEZIEHUNGSREICH Thema: Übung des kleinen Einmaleins; operative Beziehungen erkunden Stufe: ab 2. Schuljahr Dauer: 2 bis 3 Lektionen Materialien: Kleine Einmaleinstafeln (ohne Farben), Punktefelder

Mehr

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN)

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) 1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) D A S S O L L T E N N A C H E U R E M R E F E R A T A L L E K Ö N N E N : Kostenfunktion, Erlösfunktion und Gewinnfunktion aufstellen, graphisch

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

Leichte-Sprache-Bilder

Leichte-Sprache-Bilder Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen

Mehr

Wie oft soll ich essen?

Wie oft soll ich essen? Wie oft soll ich essen? Wie sollen Sie sich als Diabetiker am besten ernähren? Gesunde Ernährung für Menschen mit Diabetes unterscheidet sich nicht von gesunder Ernährung für andere Menschen. Es gibt nichts,

Mehr

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle:

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle: Die neue Aufgabe von der Monitoring-Stelle Das ist die Monitoring-Stelle: Am Deutschen Institut für Menschen-Rechte in Berlin gibt es ein besonderes Büro. Dieses Büro heißt Monitoring-Stelle. Mo-ni-to-ring

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Einfache kryptographische Verfahren

Einfache kryptographische Verfahren Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

1. Was ihr in dieser Anleitung

1. Was ihr in dieser Anleitung Leseprobe 1. Was ihr in dieser Anleitung erfahren könnt 2 Liebe Musiker, in diesem PDF erhaltet ihr eine Anleitung, wie ihr eure Musik online kostenlos per Werbevideo bewerben könnt, ohne dabei Geld für

Mehr

Gutes Leben was ist das?

Gutes Leben was ist das? Lukas Bayer Jahrgangsstufe 12 Im Hirschgarten 1 67435 Neustadt Kurfürst-Ruprecht-Gymnasium Landwehrstraße22 67433 Neustadt a. d. Weinstraße Gutes Leben was ist das? Gutes Leben für alle was genau ist das

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Über das Hüten von Geheimnissen

Über das Hüten von Geheimnissen Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien

Mehr

Woche 1: Was ist NLP? Die Geschichte des NLP.

Woche 1: Was ist NLP? Die Geschichte des NLP. Woche 1: Was ist NLP? Die Geschichte des NLP. Liebe(r) Kursteilnehmer(in)! Im ersten Theorieteil der heutigen Woche beschäftigen wir uns mit der Entstehungsgeschichte des NLP. Zuerst aber eine Frage: Wissen

Mehr