Urease. Peter Bützer. 1 Das Enzym Urease. Inhalt
|
|
|
- Samuel Kneller
- vor 9 Jahren
- Abrufe
Transkript
1 Urease Inhalt 1 Das Enzym Urease Das Substrat arnstoff Die chemische Reaktion Folgerung Messung Aufgabenstellung Simulation Annahmen Simulationsdiagramm (Typ 1 und Typ 3) Dokumentation (Gleichungen, Parameter) Zeitdiagramm Interpretation Vergleich von Messung und Simulation Interpretation Temperaturabhängigkeit, Aktivierungsenergie Folgerung Das Enzym Urease Das Enzym Urease katalysiert die arnstoff- ydrolyse 1 14 mal rascher als die unkatalysierte Reaktion (Ribbon-Modell der Proteinketten von Urease-Monomer im Bild rechts). So spaltet 1 g Urease bei Raumtemperatur innerhalb 1 Minute ca. 6 g arnstoff. Die pflanzliche Urease aus der Schwertbohne hat ein Molekulargewicht von ca. 544 g/mol. Sie ist ein Metallenzym mit ickel- Zentren und besteht aus 6 aktiven Monomeren (Quartärstruktur, abgebildet ist nur ein Monomer). Die Urease aus Schwertbohnen war eines der ersten Enzyme überhaupt, die um das Jahr 1926 durch James Batcheller Sumner (Chemie-obelpreis 1946) gereinigt und kristallisiert werden konnten. Die Urease der Bodenbakterien spielt eine wichtige Rolle im Stickstoffkreislauf, denn ohne sie würde der hydrolysebeständigen arnstoff der Jauche zu wenig rasch abgebaut - eine Stickstoffdüngung wäre nur schwer möglich. Urease ist weit verbreitet, sie kommt besonders oft in Pflanzensamen, Bakterien, Krebsen und Meeres-Muscheln vor. Prof. Dr., Pädagogische ochschule, St.Gallen Abbildung 1: Urease Monomer (Ribbon- Modell) Abbildung 2: Urease examer
2 2 2 Das Substrat arnstoff C Abbildung 3: Formeln von arnstoff: Konstitutionsformel, Stick and Ball-Modell mit der Elektronenhülle, Elektronenhülle (grosse Elektronendichte: rot, kleine Elektronendichte: blau) Die Australier Robin Warren und Barry Marshall haben 1982 erstmals die Existenz des Magenbakteriums elicobacter pylori nachgewiesen und auf dessen Gefahren aufmerksam gemacht. 25 erhielten sie für diese Erkenntnis den obelpreis für Medizin. elicobacter pylori schützt sich selbst vor der aggressiven Magensäure mit einem basischen Schutzmantel aus Ammoniak, den das Bakterium mit ilfe der Urease herstellt. Dieses Enzym kommt normalerweise nicht im Magen vor. Gelingt es, das Enzym beim Menschen nachzuweisen, ist das ein sicheres Zeichen für die Anwesenheit von elicobacter pylori. eute werden z.b. Gastritis, Magengeschwüre oder Magenkrebs teilweise auf dieses Bakterium zurückgeführt. Bei frühzeitiger Erkennung wird nicht mehr operiert, sondern das Bakterium mit Antibiotika beseitigt. Der elicobacter-urease-test (kurz UT oder UT- Test) dient dabei zum achweis einer elicobacter-besiedlung im Magen. Bei einer Magenspiegelung wird oft eine Gewebeprobe für einen UT-Test entnommen. Die Gewebeprobe wird in ein Testmedium gegeben, welches aus einer ährlösung für die Bakterien sowie aus arnstoff und einem Indikator besteht. Ist das Bakterium in der Probe enthalten, verarbeitet es den arnstoff zu Ammoniak und Kohlendioxid. Das Ammoniak färbt dann den Indikator rot. Das Testergebnis ist nach wenigen Minuten zu erkennen. 3 Die chemische Reaktion Die Spaltung von arnstoff in Kohlenstoffdioxid und Ammoniak ist summarisch: 2 -(C=) C 2 arnstoff C Urease + C + ydrolyse Wasser Abbildung 4: Vereinfachtes Reaktionsschema Detaillierter betrachtet bildet sich aus arnstoff jedoch zuerst die Carbamidsäure, welche dann spontan zu Ammoniak und Kohlendioxid zerfällt:
3 3 C + 2 C spontan Carbamidsäure arnstoff + 3 Abbildung 5: Reaktion mit dem wichtigen Zwischenschritt der Carbamidsäure 3 + C 2 Dabei bilden sich geladene Teilchen: 3 + C C 3 - Die bei der Spaltung gebildeten Ionen erhöhen die Leitfähigkeit der Lösung. Auf Grund dieser sich verändernden Eigenschaft lässt sich die Reaktion mit einer Leitfähigkeitssonde verfolgen. Im aktiven Zentrum der Urease (ickel-atom) laufen folgende, heute mechanistisch recht genau bekannte Reaktionsschritte ab: - 3 Lys 217 is 136 is is i i 2 Asp is is 272 is Lys 217 i is 136 i 2 is 134 Asp is 272 is Lys 217 i is 136 i 2 is 134 Asp 36 2 Abbildung 6: Mechanismus der Reaktion 2 Dieser genaue Ablauf zeigt, dass nicht Wasser direkt, sondern eine an ickel gebundene - Gruppe beim C-Atom des arnstoffs angreift.
4 Leitfähigkeit (mikros/cm) 4 4 Folgerung Diese Reaktion ist so komplex, dass sie sich mit den einzelnen Schritten nicht simulieren lässt, da die Reaktions-Geschwindigkeitskonstanten der Teilschritte nicht bekannt sind. Als Gesamtreaktion lässt sich aber trotzdem viel über die Dynamik aussagen, wenn man das Michaelis-Menten-Modell der Enzymkinetik verwendet. 5 Messung Durchführung: 1 mg Urease, 1 ml.1 mol/l arnstofflösung mit einem Rührer. Die Messung erfolgt mit einer Leitfähigkeitssonde (z.b. Vernier), Bereich 2 mikros/cm Temperatur 22 C Zeit (s)
5 5 6 Aufgabenstellung Man suche ein geeignetes Modell für diese Enzymreaktion (Urease) und simuliere den gemessenen Verlauf mit dem Michelis-Menten-Modell. 6.1 Simulation Annahmen Der zeitliche Verlauf dieser Enzymreaktion soll mit der Michaelis-Menten-Gleichung simuliert werden 1. Michaelis-Menten Gleichung 2 [S] v vmax [S] K M v: Geschwindigkeit [mol l -1 s -1 ]: [S]: Substratkonzentration [mol/l] K M : Dissoziationskonstante (mol/l) entspricht der Konzentration für die halbmaximale Geschwindigkeit. Übliche Werte von K M : [mol/l]. K M = (k 1 + k 3 )/k 2 ; 3 meist ist k 1 >> k 3, dann gilt K M k 1 /k 2 Km = 25, k1 und k3 müssen der Messung angepasst werden, da die Reinheit der verwendeten Urease nicht bestimmt werden kann. Bei der Konzentration der Produkte muss ein Umrechnungsfaktor eingesetzt werden, um die Anzahl Millimole Produkt in eine Leitfähigkeit umzurechnen. Mit diesem Vorgehen ist ein Vergleich mit den Messresultaten möglich Simulationsdiagramm 4 (Typ 1 und Typ 3) 5 S1 RGr ES P k1 RGh Km me k3 RGe Umrechnungs Faktor Grundwert Leitfähigkeit Abbildung 7: Simulationsdiagramm der Michaelis-Menten-Gleichung 1 Bützer P., Roth M., Chemische Reaktionen als dynamische Systeme, T^3-Schweiz, August, 22, S.24ff 2 Christensen.., Lehrprogramm Enzymkinetik, Verlag Chemie, Weinheim 1974, 12ff 3 Schumacher E., Chemische Reaktionskinetik (Skript zur Vorlesung), Universität Bern, Chemie Departement, 1997, CR Simulations-Software: Vensim PLE, Ventana Systems, Inc., 5 Bützer Peter, Roth Markus, Die Zeit im Griff, Systemdynamik in Chemie und Biochemie, verlag pestalozzianum, Zürich 26, S. 37ff und 5ff
6 Dokumentation (Gleichungen, Parameter) (1) ES= ITEG ( RGh-RGr-RGe, ) Units: mmol [,?] (2) FIAL TIME = 6 Units: Second The final time for the simulation. (3) Grundwert= 225 (Grundwert der Messung) Units: mikros/cm [,?] (4) IITIAL TIME = Units: Second The initial time for the simulation. (5) k1= 4 (Annahme) Units: 1/(Second*mmol) [,?] (6) k3= 1 Units: 1/Second [,?] (7) Km= 25 (aus der Literatur) Units: mmol [,?] (8) Leitfähigkeit= Grundwert+Umrechnungs Faktor*P Units: mikros/cm [,?] (9) me=.1 (verwendete Menge) Units: mmol [,1] (1) P= ITEG (RGe, ) Units: mmol [,?] (11) RGe= k3*es Units: mmol/second [,?] (12) RGh= k1*(me-es)*s1 Units: mmol/second [,?] (13) RGr= Km*k1*ES Units: mmol/second [,?] (14) S1= ITEG ( RGr-RGh, 1) (1 mmol/l, bei der Messung) Units: mmol [,?] (15) SAVEPER = 1 (für den direkten Vergleich mit der Messung) Units: Second [,?] The frequency with which output is stored. (16) TIME STEP =.1 Units: Second [,?] The time step for the simulation. (17) Umrechnungs Faktor= 1 Units: mikros/(cm*mmol) [,?]
7 Leitfähigkeit (mikros/cm) Zeitdiagramm Leitfähigkeit 1, Time (Second) Leitfähigkeit : Current mikros/cm Abbildung 8: Zeitdiagramm der Messung der Leitfähigkeit Interpretation Die flache Kurve weist darauf hin, dass die Enzyme in einer zum arnstoff kleinen Konzentration vorliegen Vergleich von Messung und Simulation Zeit (s) Messung Simulation Abbildung 9: Vergleich von Messung und Simulation
8 Geschwindigkeit der Ammoniakbildung (mmol/min) Interpretation Die Geschwindigkeit der arnstoffhydrolyse durch Urease lässt sich leicht messen. Die Simulation mit der Michaelis-Menten-Gleichung für Enzyme gibt den zeitlichen Verlauf der Reaktion sehr gut wieder. Die Beobachtung, dass die Reaktion einem Gleichgewichtswert zustrebt, auch wenn noch nicht aller arnstoff aufgebraucht ist weist darauf hin, dass die Zunahme des p-werts und der Ionenkonzentration die Enzymreaktion bremst. Man beobachtet hier also eine sogenannte Endprodukthemmung. Die Urease ist für diesen Prozess ein Regler mit einer negativen Rückkopplung Temperaturabhängigkeit, Aktivierungsenergie Die Temperaturabhängigkeit der Urease zeigt sich wie folgt: Temperatur ( C) Abbildung 1: Messresultate der Geschwindigkeit in Funktion der Reaktionstemperatur Die maximale Geschwindigkeit ist bei Körpertemperatur schon beinahe erreicht. Mit einem modifizierten Arrhenius-Plot lässt sich mit diesen Messdaten die Aktivierungsenergie der arnstoffspaltung durch Urease bestimmen:
9 ln(k) y = x R 2 = /(R x T) Abbildung 11: Modifizierter Arrhenius-Plot (Die Steigung entspricht dem negativen Wert der Aktivierungsenergie in kj/mol) Die Aktivierungsenergie dieser enzymatischen Reaktion beträgt kj/mol. Die durchschnittliche mittlere Bindungsenthalpien bei 25 C einer C--Bindung beträgt rund achtmal mehr, nämlich 35 kj/mol! Folgerung Die kleine Aktivierungsenergie macht deutlich, dass Enzymreaktionen sehr schnell sind.
Michaelis-Menten-Kinetik
Michaelis-Menten-Kinetik Peter Bützer Inhalt 1 Einführung... 1 2 Modell... 2 2.1 Modellannahmen... 2 2.2 Drei Fälle... 2. Simulationsdiagramm (Typ ), Systemdynamik... 2.4 Dokumentation (Gleichungen, Parameter)...
Kohlenmonoxid aus Ethanal, CH 3 -CHO
Kohlenmonoxid aus Ethanal, CH 3 -CHO Peter Bützer Chemiker haben viele nette Reaktionen! Inhalt 1 Einleitung/Theorie... 1 2 Aufgabenstellung... 2 2.1 Beobachtungen/Messungen, Datenbasis... 2 2.2 Reaktionsgleichungen/Berechnungen...
Gipshärtung Energiefreisetzung, Systemdynamik
Gipshärtung Energiefreisetzung, Systemdynamik Inhalt 1 Reaktion... 1 2 Experiment... 2 3 Simulation... 3 3.1 Simulationsdiagramm... 3 3.2 Dokumentation (Gleichungen, Parameter)... 3 3.3 Zeitdiagramm...
Monod-Kinetik. Peter Bützer
Monod-Kinetik Peter Bützer Inhalt 1 Einleitung... 1 1.1 Modell... 1 1.2 Modellannahmen... 2 1. Gleichung... 2 1.4 Drei Fälle... 2 Simulation, Systemdynamik... 2.1 Simulationsdiagramm (Typ 1)... 2.2 Dokumentation
Titration einer Säure mit einer Base
Titration einer Säure mit einer Base Peter Bützer Inhalt 1 Einleitung... 1 2 Modellannahmen (Systemdynamik)... 2 3 Simulationsdiagramm (Typ 1)... 2 4 Dokumentation (Gleichungen, Parameter)... 3 5 Simulation...
Ethanolbildung in Bananen
Ethanolbildung in Bananen Peter Bützer Inhalt 1 Einführung... 1 2 Modell... 2 2.1 Annahmen:... 2 2.2 Simulation(Typ 1)... 2 2.3 Dokumentation (Gleichungen, Parameter)... 3 2.4 Vergleich der Simulation
Hefewachstum. Peter Bützer
Hefewachstum Peter Bützer Inhalt 1 Hefe... 1 2 Das System als Black Box... 2 3 Messung des... 2 4 Modell... 3 5 Simulation (Typ 9)... 3 5.1 Simulationsdiagramm... 4 5.2 Messung... 4 5.3 Dokumentation (Gleichungen,
Säureangriff auf die Zähne
Säureangriff auf die Zähne Eine erfolgreiche Reduktion ist vielleicht die erfolgreichste Form aller wissenschaftlichen Erklärungen, die man sich vorstellen kann. 1 Karl R. Popper, (1902-199) britischer
Daisyworld. Peter Bützer. 1 Eine kurze Theorie. Inhalt
Daisyworld Peter Bützer Inhalt 1 Eine kurze Theorie... 1 2 Aufgabe... 2 3 Simulation, Lösung (Typ 3), Systemdynamik... 3 3.1 Annahmen... 3 3.2 Simulationsdiagramm... 3 3.3 Zeitdiagramm... 4 3.4 Dokumentation
Kohlendioxidfreisetzung aus Champagner. 1 Einleitung/Theorie. Peter Bützer. Inhalt
Kohlendioxidfreisetzung aus Champagner Inhalt 1 Einleitung/Theorie... 1 2 Experiment... 2 2.1 Aufgabenstellung... 2 2.2 Durchführung... 2 2.3 Beobachtungen/Messungen... 2 2.4 Reaktionsgleichungen/Berechnungen...
Eine Brennstoffzelle, die Umkehr der Wasserelektrolyse
Wasserelektrolyse Peter Bützer Inhalt Eine Brennstoffzelle, die Umkehr der Wasserelektrolyse 1 Einleitung/Theorie... 1 2 Datenbasis... 2 2.1 Aufgabenstellung... 2 2.2 Durchführung... 2 2.3 Beobachtungen/Messungen...
Phototrope Gläser. Dr. Peter Bützer. Inhalt
1 Phototrope Gläser Inhalt 1 Einleitung/Theorie... 2 2 Experiment... 2 2.1 Aufgabenstellung... 2 2.2 Durchführung... 2 2.3 Beobachtungen/Messungen... 3 2.4 Reaktionsgleichungen/Berechnungen... 3 3 Simulation,
Sauerstoffbindung im Blut
Sauerstoffbindung im Blut Die Fähigkeit uns zu wundern, ist das Einzige, was wir brauchen, um gute Philosophen zu werden. Gaarder Jostein, Sofies Welt 1 Inhalt 1 Einleitung/Theorie... 1 2 Aufgabenstellung...
Zink, ein wichtiges Spurenelement
Zink, ein wichtiges Spurenelement Peter Bützer Inhalt 1 Einleitung... 1 2 Aufgaben... 2 3 Lösungen... 3 3.1 Simulationsdiagramm (Typ 1)... 3 3.2 Dokumentation (Gleichungen, Parameter)... 3 3.3 Zeitdiagramm...
Atmung, Dissimilation
Atmung, Dissimilation Peter Bützer Abbildung 1: Atmung Inhalt 1 Physiologisches... 1 2 Atmung, eine Reaktion 0. Ordnung... 2 3 Simulation... 2 4 Interpretation... 4 5 Mikroökologie im Zimmer... 4 6 Interpretation...
Indigokarmin, Indigotin - Metabolismus
Indigokarmin, Indigotin - Metabolismus Inhalt 1.1 Chemische Charakterisierung,... 1 1.2 Verwendung und physiologische Eigenschaften... 3 1.3 Simulation des Metabolismus (Simulations-Typ 4), Systemdynamik...
Probleme sind Gelegenheiten zu zeigen, was man kann. Duke Ellington, amerikanischer Jazz-Musiker (1899-1974)
1 H 2 -Atemtest (Lactose-Toleranztest) Inhalt Probleme sind Gelegenheiten zu zeigen, was man kann. Duke Ellington, amerikanischer Jazz-Musiker (1899-1974) 1 Lactose-Intoleranz: Einführung... 1 2 Wasserstoff...
Kläranlage, biologischer Teil (Abwasserreinigungsanlage, ARA)
Kläranlage, biologischer Teil (Abwasserreinigungsanlage, ARA) Peter Bützer Inhalt 1 Abwasser?... 1 2 Einleitung... 2 3 Aufgabe... 2 3.1 Substanzdaten... 2 3.2 Daten für das Kläranlagemodell... 3 3.3 Anlage...
Michaelis-Menten-Gleichung
Physikalisch-Chemische Praktika Michaelis-Menten-Gleichung Versuch K4 1 Aufgabe Experimentelle Bestimmung der Kinetik der Zersetzung von Harnsto durch Urease. 2 Grundlagen Im Bereich der Biochemie spielen
Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k
Versuche des Kapitel 7 Reaktionskinetik Einleitung Die Reaktion von Piperidin mit Dinitrochlorbenzol zum gelben Dinitrophenylpiperidin soll auf die Geschwindigkeitskonstante und die Arrheniusparameter
spaltet. Der Sauerstoff entflammt den Glimmspan. Bei der katalytischen Substanz handelt es sich um das Enzym Katalase.
ENZYMATIK 1. Vorversuch Versuch Spaltung von Wasserstoffperoxid (H 2 O 2 ) Material: Bäckerhefe, Braunstein (MnO 2 ), Wasserstoffperoxid, Rundkolben, Stativ, Brenner, Glimmspan Durchführung 1: 5ml Wasserstoffperoxid
Den Magnesiumbedarf des Menschen abschätzen
Den Magnesiumbedarf des Menschen abschätzen Peter Bützer Inhalt Die Zeit ist vorbeigegangen und niemand weiss wohin. 1 Einleitung... 1 2 Aufgabe... 2 3 Simulation, Systemdynamik... 3 3.1 Simulationsmodell
Enzym-Dynamik an einzelnen Molekülen. Paul Käufl
Enzym-Dynamik an einzelnen Molekülen Paul Käufl Enzym-Dynamik einzelner Moleküle Quelle: (5) 2 Enzym-Dynamik einzelner Moleküle Bis vor ca. 20 Jahren: Chemische Reaktionen (in Lösung) im Wesentlichen nur
Zementhärtung. Peter Bützer
Zementhärtung Peter Bützer Vollkommenheit entsteht offensichtlich nicht dann, wenn man nichts mehr hinzuzufügen hat, sondern, wenn man nichts mehr wegnehmen kann. Antoine de Saint-Exupéry, französischer
Harnstoffspaltung durch Urease. Messzylinder, 50 ml Stativ Muffe Greifklemme, klein Magnetrührer Rührfisch
Prinzip Bei der Spaltung von Harnstoff entstehen Kohlenstoffdioxid und Ammoniak, wobei insbesondere letzteres mit Wasser leicht zu Ammonium- und Hydroxidionen reagiert. Daher bietet sich eine Verfolgung
Versuch: Enzyme (LDH)
Versuch: Enzyme (LDH) 25.11.02 Seiten im Campell, Tierphysbuch (Penzlin) und Eckert Zusammenfassung Campbell S. 105-113 Zusammenfassung Eckert S. 77 89 Zusammenfassung Penzlin S. 50 ff. Allgemein: Temperatur
Chemie Protokoll. Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung. Stuttgart, Sommersemester 2012
Chemie Protokoll Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung Stuttgart, Sommersemester 202 Gruppe 0 Jan Schnabel Maximilian Möckel Henri Menke Assistent: Durmus 20. Mai 202 Inhaltsverzeichnis Theorie
6. Fragentyp A Wie berechnet man die ph-werte wässriger Lösungen starker Basen? A) ph = pks - log [HA] / 2 B) ph = 14 + log [OH-] C) ph = 7+ 1/2 pkb +
1. Fragentyp D Welche der folgenden Einheiten für den molaren Extinktionskoeffizienten ist/sind korrekt? 1) liter I mol x cm 2) liter I mol 3) cm2 / mmol 4) cm2 / mmol x m1 2. Wie lautet die Henderson-Hasselbalch-Gleichung?
Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo
Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: [email protected] innere Energie U Energieumsatz bei
Stoffwechsel bei Mehlkäferlarven
Stoffwechsel bei Mehlkäferlarven Franziskus Graber, Peter Bützer 1 Inhalt 1 Einleitung... 1 2 Warum gerade der Mehlwurm als Versuchstier?... 2 3 Das Experiment... 2 3.1 Einige Bilder von Mehlkäferlarven...
2 NO 2 N 2 O 4, ein einfaches Gleichgewicht
2 NO 2 N 2 O 4, ein einfaches Gleichgewicht Peter Bützer Inhalt 1 Einführung... 1 2 Grundlagen zur Reaktion... 1 3 Simulation (Typ 3), Systemdynamik... 4 3.1 Das einfache Gleichgewicht... 4 3.2 Das Prinzip
Fragen zum Versuch Kinetik:
Fragen zum Versuch Kinetik: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen von Rohrzucker im Wasser
ENZYME. Teil 1: Grundlagen und Substratbestimmungen
ENZYME Teil 1: Grundlagen und Substratbestimmungen Metastabiler Zustand Beispiel: Glucose-6-Phosphat + H 2 O [Glc6P] [H 2 0] K = = 1.135 x 10 [Glc] [Pi] -3 Gleichgewicht stark auf Seite von Glc + Pi Glucose
endotherme Reaktionen
Exotherme/endotherme endotherme Reaktionen Edukte - H Produkte Exotherme Reaktion Edukte Produkte + H Endotherme Reaktion 101 Das Massenwirkungsgesetz Das Massenwirkungsgesetz Gleichgewicht chemischer
Aufgaben zur Enzymatik
Aufgaben zur Enzymatik Viele dieser Aufgaben wurden in den vergangenen Jahren im Rahmen von Klassenarbeiten und/oder Prüfungen gestellt. 1. Grundlagen 1.1. Die Temperatur wird in einem Enzymversuch mit
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease Einleitung: In diesem Versuch soll die Umsetzung von Harnstoff durch das Enzym Urease beobachtet werden. Fast alle Enzyme sind Proteine, manche bestehen
Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.
A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen
Glykämischer Index. Peter Bützer
Glykämischer Index Peter Bützer Inhalt 1 Einleitung/Theorie... 1 2 Datenbasis... 3 2.1 Aufgabenstellung... 3 2.2 Durchführung... 3 2.3 Beobachtungen/Messungen... 3 2.4 Reaktionsgleichungen/Berechnungen...
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease Einleitung: In diesem Versuch soll die Umsetzung von Harnstoff durch das Enzym Urease beobachtet werden. Fast alle Enzyme sind Proteine, manche bestehen
Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten
Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten 1. Grundlagen 1.1. Vorkenntnisse Informieren Sie sich vor Durchführung
Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11
Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose
Organische Chemie 1 Teil 2 1. Vorlesung, Dienstag
Inhalte der 1. Vorlesung: 1. Die Reaktivität organischer Moleküle 1.1 Warum geschehen Chemische Reaktionen 1.2 Gleichgewichtsreaktionen, Ungleichgewichtsreaktionen 1.2.1 Triebkraft chemischer Reaktionen
Bioorganische Chemie Enzymatische Katalyse 2011
Ringvorlesung Chemie B - Studiengang Molekulare Biotechnologie Bioorganische Chemie Enzymatische Katalyse 2011 Prof. Dr. A. Jäschke INF 364, Zi. 308, Tel. 54 48 51 [email protected] Lehrziele I Kenntnis
Einführung in die Biochemie Wirkungsweise von Enzymen
Wirkungsweise von en Am Aktiven Zentrum kann ein nur in einer ganz bestimmten Orientierung anlegen, wie ein Schlüssel zum Schloss. Dieses Prinzip ist die Ursache der spezifität von en. Dies resultiert
EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg.
Studienvorbereitung Chemie EinFaCh 2 Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik tu-freiberg.de tu-freiberg.de/fakultaet2/einfach Was bedeutet Chemische Reaktionskinetik?
1 Michaelis-Menten-Kinetik
Physikalische Chemie II Lösung 2 9. Dezember 206 Michaelis-Menten-Kinetik. Das Geschwindigkeitsgesetz für die zeitliche Änderung der ES-Konzentration ist durch folgendes Geschwindigkeitsgesetz beschrieben:
Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie
Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie H S G= H-T S Prozeß 1. (-) (+) (-) immer exergonisch, erfolgt spontan bei allen Temperaturen
Systemdynamik: Iodwasserstoff-Gleichgewicht
1 Systemdynamik: Iodwasserstoff-Gleichgewicht Inhalt 1 Einleitung... 1 2 Reaktionsgleichung, Substanzdaten... 2 3 Simulation... 3 3.1 Simulationsdiagramm (Reaktions Typ 3)... 3 3.2 Zeitdiagramme... 3 3.3
Praktikum. Enzymkinetik am Beispiel der Protease Trypsin
Praktikum Methoden der molekularen Biowissenschaften Teil 1: Biochemie Enzymkinetik am Beispiel der Protease Trypsin Prof. Walter Nickel Biochemie-Zentrum der Universität Heidelberg Thermodynamische Eigenschaften
Versuch 4. Enzymkinetik
Versuch 4 Enzymkinetik Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann [email protected] X X X Dr. Postina Wird benotet?: Aufgabenstellung Ermittlung der maximalen Reaktionsgeschwindigkeit
7 ENZYMKINETIK 7.5 Pre-steady State Kinetik bei schnellen Reaktionen. (t 1 e (k 1[S] 0 +k 2 +k 1. k 1 [S] 0 + k 2 + k 1. t/ms
v0(t) [P](t) " & $ " & $ " [P] = v max τ k 2 [S] 0 [E] 0 [S] 0 +(k + k 2 )/k " & " % " $ " # v max " $ & (t e (k [S] 0 +k 2 +k ) )t & # ' ' # " $ & k [S] 0 + k 2 + k t/ms t/ms Bild 5: Allmähliche Annäherung
1. Klausur: Veranstaltung Allgemeine und Anorganische Chemie
1. Klausur: Veranstaltung Allgemeine und Anorganische Chemie Geowissenschaften (BSc, Diplom), Mathematik (BSc, Diplom), Informatik mit Anwendungsfach Chemie und andere Naturwissenschaften 1. Klausur Modulbegleitende
Themen heute: Reaktionsgleichungen, chemische Gleichgewichte
Wiederholung der letzten Vorlesungsstunde: Ionenbindung, Coulomb-Gesetz, Ionen- (Kristall-)strukturen, NaCl, CsCl, ZnS, Elementarzelle, 7 Kristallsysteme Themen heute: Reaktionsgleichungen, chemische Gleichgewichte
Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg
Institut für Physikalische Chemie Albert-Ludwigs-Uniersität Freiburg Lösungen zum 11. Übungsblatt zur Vorlesung Physikalische Chemie I SS 214 Prof. Dr. Bartsch 11.1 L a) Die Bildungsgeschwindigkeit on
Flüchtige organische Säuren. Skript Kapitel 5.5.2, Seite 108
Flüchtige organische Säuren Skript Kapitel 5.5.2, Seite 108 201409_V1_#1 Schlammfaulung allgemein Die Schlammfaulung dient der Stabilisierung von Klärschlämmen Dazu wird eine anaerobe (sauerstofffreie)
Katalyse. höhere Reaktionsgeschwindigkeit bei derselben Temperatur! Achtung: Gleichgewicht der chemischen Reaktion wird nicht verschoben
Katalyse Ein Katalysator setzt Aktivierungsenergie einer Reaktion herab, indem er einen anderen Reaktionsweg ermöglicht, so dass der geschwindigkeitsbestimmende Schritt der nicht-katalysierten Reaktion
Modul 1 Dynamik multidsziplinär
Dynamik multidisziplinär Diese Lerneinheit befasst sich mit den Grundlagen der Kinetik am Beispiel des enzymatischen Abbaus von Alkohol Zum Verständnis für die Abbaukinetik pseudo-nullter Ordnung! Zur
Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1
Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient
Fragen zum Versuch 11a Kinetik Rohrzuckerinversion:
Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen
Enzymkinetik in der Schule Michaelis-Menten-Kinetik von Urease. Das Enzym Urease. Sara Müller 1, 2, Marianne Kromke 2, Helmut Vogt 2, Daniela Moll 3
Enzymkinetik in der Schule Michaelis-Menten-Kinetik von Urease Sara Müller 1, 2, Marianne Kromke 2, Helmut Vogt 2, Daniela Moll 3 1 Science Bridge, Universität Kassel 2 Abt. Didaktik der Biologie, Universität
Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen. c(a) t. v = -
REAKTIONSKINETIK 1 Reaktionskinetik Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen Anwendung: - Vorgänge in den lebenden Organismen
Chemisches Rechnen für Bauingenieure
Chemisches Rechnen für Bauingenieure PD Dr. Martin Denecke Sprechstunde: Freitag, 13.30 14.30 [email protected] ++49 201 183 2742 Raum: V15 R05 H18 Periodensystem der Elemente Chemie im Netz http://www.arnold-chemie.de/downloads/molrechnen.pdf
(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.
Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)
6. Tag: Chemisches Gleichgewicht und Reaktionskinetik
6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn
Verseifungsgeschwindigkeit eines Esters
A 32 Verseifungsgeschwindigkeit eines Esters Aufgabe: Man bestimme die Geschwindigkeitskonstante k der Methylacetatverseifung bei 2 verschiedenen Temperaturen und berechne daraus den Vorfaktor sowie die
Physikalische Chemie 1
Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2
Grundlagen: Galvanische Zellen:
E1 : Ionenprodukt des Wassers Grundlagen: Galvanische Zellen: Die Galvanische Zelle ist eine elektrochemische Zelle. In ihr laufen spontan elektrochemische Reaktionen unter Erzeugung von elektrischer Energie
Stoffe oder Teilchen, die Protonen abgeben kånnen, werden als SÄuren bezeichnet (Protonendonatoren).
5 10 15 20 25 30 35 40 45 O C 50 Chemie Technische BerufsmaturitÄt BMS AGS Basel Kapitel 6 SÄuren und Basen Baars, Kap. 12.1; 12.2; 13 Versuch 1 Ein Becherglas mit Thermometer enthält violette FarbstofflÅsung
Biochemische UE Alkaline Phosphatase.
Biochemische UE Alkaline Phosphatase [email protected] Alkaline Phosphatase: Katalysiert die Hydrolyse von Phosphorsäure-Estern: O - O - Ser-102 R O P==O O - H 2 O R OH + HO P==O O - ph-optimum im
1 Relaxationskinetik der Neutralisationsreaktion in Wasser
Physikalische Chemie II Lösung 6 28. Oktober 206 Relaxationskinetik der Neutralisationsreaktion in Wasser. Für die Reaktion A + B definiert man die Auslenkungsvariable x so, dass gilt k a kb 2P [A] = [A]
Gegenstand der letzten Vorlesung
Gegenstand der letzten Vorlesung Reaktionsgeschwindigkeit Reaktionsordnung Molekularität Reaktion 0., 1.,. Ordnung Reaktion pseudo-erster Ordnung Aktivierungsenergie Temperaturabhängigkeit der Geschwindigkeitskonstanten
2. Klausur zum Chemischen Grundpraktikum im WS 2015/16 vom 21. März 2016
2. Klausur zum Chemischen Grundpraktikum im WS 2015/16 vom 21. März 2016 A1 A2 A3 A4 A5 A6 A7 P8 P9 P10 Note 8 10 10 10 10 12 10 11 9 10 100 NAME/VORNAME:... Matrikelnummer:... Pseudonym für Ergebnisveröffentlichung
Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13
Kantonsschule Kreuzlingen, Klaus Hensler Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13 Grundregeln für stöchiometrische Berechnungen Wenn es um Reaktionen geht zuerst die chem. Gleichung aufstellen
(a) [4] Um welches Element handelt es sich? (Lösungsweg angeben)
Klausur zur Vorlesung LV 18000, AC1 (Anorganische Experimentalchemie) am 03.09.2007 1 1 2 3 4 5 6 7 8 9 10 Σ Note: Vorname: Matr.-Nr.: Nachname: Chemie und Biochemie Lehramt Chemie vertieft Lehramt Chemie
Biostatistik, Winter 2018/19
1/37 Biostatistik, Winter 2018/19 Differentialgleichungen 2. Ordnung Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 16.11.2018 2/37 Inhalt 1 Differentialgleichungen 1. Ordnung Michaelis-Menten
4.1. Eigenschaften von Enzymen
4. Enzyme 106 107 4.1. Eigenschaften von Enzymen Enzyme sind Proteine, die chemische Reaktionen beschleunigen (Biokatalysatoren) Herausragende Merkmale verglichen mit anderen Katalysatoren: drastische
Grundlagen der Kinetik
Kapitel 1 Grundlagen der Kinetik In diesem Kapitel werden die folgenden Themen kurz wiederholt: Die differenziellen und integralen Geschwindigkeitsgesetze von irreversiblen Reaktionen., 1., und. Ordnung
V 23 Dilatometrische Bestimmung reaktionskinetischer Größen
Grundpraktikum Physikalische Chemie V 23 Dilatometrische Bestimmung reaktionskinetischer Größen Überarbeitetes Versuchsskript, L. Kibler, 19.11.2007 1 1. Vorkenntnisse Vor Durchführung des Versuches sollten
Thermodynamik & Kinetik
Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters
Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum WS 2004/
Klausur zum Anorganisch-Chemischen Grundpraktikum vom 08.04.05 Seite 1 von 10 Punkte: von 84 Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum WS 2004/2005 08.04.2005 Matrikelnummer: Name:
Enzyme: Grundlegende Konzepte und Kinetik
Enzyme: Grundlegende Konzepte und Kinetik Enzyme sind Katalysatoren biologischer Systeme Wichtigste Eigenschaften: katalytische Stärke und Spezifität Nahezu alle bekannten Enzyme sind Proteine, es gibt
Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum SS
achklausur zum Anorganisch-Chemischen Grundpraktikum, 19.09.05 Seite 1 von 12 Punkte: von 103 Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum SS 2005 19.09.2005 Matrikelnummer: ame: Vorname:
1.1. Grundlage aller enzymkinetischen Untersuchungen ist die Michaelis-Menten- Gleichung: V 0 = V max x [S] K m + [S]
1.1 ABSHNITT 1: ENZYME Einführung Enzyme sind informationelle Makromoleküle und als solche Instrumente gezielter Prozeßsteuerung. Sie haben eine katalytische und eine kognitive Funktion. Die katalytische
Vertiefendes Seminar zur Vorlesung Biochemie I. Bearbeitung Übungsblatt 6
Vertiefendes Seminar zur Vorlesung Biochemie I 04.12.2015 Bearbeitung Übungsblatt 6 Gerhild van Echten-Deckert Fon. +49-228-732703 Homepage: http://www.limes-institut-bonn.de/forschung/arbeitsgruppen/unit-3/
Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum WS 2005/
Nachklausur zum Anorganisch-Chemischen Grundpraktikum vom 21.04.06 Seite 1 von 10 Punkte: von 98 Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum WS 2005/2006 21.04.2006 Matrikelnummer:
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Kinetik: a) Reaktionsgeschwindigkeit (zeitlicher Verlauf) b) Reaktionsweg (Mechanismus)
Kinetik Kinetik: a) Reaktionsgeschwindigkeit (zeitlicher Verlauf) b) Reaktionsweg (Mechanismus) Klassifizierung chem. Reaktionen nach kinetischen Aspekten a) Reaktionsmolekularität: wie viele Teilchen
Arbeitsblatt. Puffer
Arbeitsblatt Ziele: Vertiefen des konzeptes Anwenden der Henderson-Hasselbalch Gleichung: i) Berechnen der ph-änderung bei Zugabe von Säure (mit konkreten Konzentrationen durchgeführte Repetition des Wandtafelbeispiels)
Physikalische Chemie
Physikalische Chemie Prüfungstag 03.02.2017 Bitte beachten Sie Erlaubt sind 4 Seiten Zusammenfassung plus ein Periodensystem. Erlaubt ist ein Taschenrechner. Alle Hilfsmittel, die nicht explizit erlaubt
Lösungen 10 (Kinetik)
Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen
BIOCHEMIE. Prof. Manfred SUSSITZ. über(be)arbeitet und zusammengestellt nach Internetvorlagen:
BIOCHEMIE Prof. Manfred SUSSITZ über(be)arbeitet und zusammengestellt nach Internetvorlagen: Medizinische Fakultät, Universität Erlangen http://www2.chemie.uni-erlangen.de/projects/vsc/chemie-mediziner-neu/start.html
Einzelmolekül. Enzym-Dynamik. Fabian Wolfertstetter
Einzelmolekül Enzym-Dynamik Fabian Wolfertstetter Bisher: Untersuchung chemischer Reaktionen nur im Ensemble Messung nur der Edukte und Produkte (fast) ohne Details über Zwischenschritte Dazwischen: Black
Versuch 03: Enzyme. Bestimmung der Serum-Acetylcholinesterase Aktivität: 1. Bestimmung der Acetylcholinesterase-Aktivität
Versuch 03: Enzyme Lactatdehydrogenase I. Der optische Test: Bestimmung von Pyruvat Acetylcholinesterase II. Bestimmung der Serum-Acetylcholinesterase Aktivität: 1. Bestimmung der Acetylcholinesterase-Aktivität
2. Teilklausur zum Chemischen Grundpraktikum im WS 2016/17 vom
2. Teilklausur zum Chemischen Grundpraktikum im WS 2016/17 vom 25.01.2017 A1 A2 A3 F4 R5 E6 Note 10 10 5 8 9 8 50 NAME/VORNAME:... Matrikelnummer:... Pseudonym für Ergebnisveröffentlichung Schreiben Sie
Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung
Versuchsprotokoll: Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung Gruppe 10 29.06.2013 Patrik Wolfram TId:20 Alina Heidbüchel TId:19 1 Inhaltsverzeichnis 1 Einleitung... 3 2 Theorie...
Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2
Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 10. Temperaturabhängigkeit der Reaktionsgeschwindigkeit: Arrhenius-Beziehung Thema In diesem Versuch
Eine Runaway-Reaktion
Eine Runaway-Reaktion Peter Bützer, Markus Roth Inhalt 0H1 1H2 2H3 3H4 8H5 15H6 17H7 18H8 19H9 20H10 Dynamik in der Chemie... 21H1 Schritte der Systemdynamik... 22H2 Ein Katalysator... 23H3 Das Experiment...
9 ENZYMKINETIK 9.5 Pre-steady State Kinetik bei schnellen Reaktionen. 9.5 Pre-steady State Kinetik bei schnellen Reaktionen
9.5 Pre-steady State Kinetik bei schnellen Reaktionen Die bisherige Diskussion der enzymkatalytischen Mechanismen hat sich auf stationäre Zustände beschränkt. Dies wurde dazu benutzt, die Parameter v max,k
