1 Elementare Finanzmathematik
|
|
|
- Erich Hermann
- vor 9 Jahren
- Abrufe
Transkript
1 Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput N ee Zahlug zuordet. Dabe bezeche poste Werte E- ud egate Auszahluge auf bzw. aus dem Guthabe des Betrachters. Bespel: Jhrlch um % stegede, am Ede des Jahres gelestete Ezahluge (Zetrete) über Jahre beged mt., ach dem erste Jahr. Z()., (-), für {, 2,..., }, Z() sost 25 2 Z() Frage: Was st dese Rete zum Zetput Wert?
2 Elemetare Fazmathemat 5 Bezechuge: B, S Kaptal zu Beg ud zum Ede der betrachtete Perode p Zsfuß Prozet p Zssatz, effeter Zs für e Jahr auf Kaptal r + Aufzsugsfator + Abzsugs- oder Dsoterugsfator d jhrlche Dsotrate (Umformuge: r + d ) Arte der Verzsug: Efache Verzsug über Zetschrtte (wrd be Verscheruge üblcherwese be Berechug moatlcher Verzsug aus Jahreszs erwedet): S B + B B B (+ ) mal Verzsug mt Zseszs über Zetschrtte (wrd be Verscheruge üblcherwese be Berechug mehrjhrger Verzsug): S B (+ )... (+ ) B (+ ) mal Bede Methode zusamme ergbt de gemschte Verzsug über Jahre ud m Moate: S B (+ ) (+ m 2 ) Defto: (Barwert, Edwert ees determstsche Zahlugsstroms) Bezeche mt Z + max(z, ) bzw. Z m(z, ) de Post- bzw. Negattel des Zahlugsstroms. Als Barwert bezechet ma de Summe der jewels auf de Zetput abgezste Futoswerte ees Zahlugsstroms Z, orausgesetzt de etsprechede Telsumme des Post- ud Negattels sd edlch. B (Z) Z( ) Z + ( ) Z ( ) Exstert der Barwert ees Zahlugsstroms, so et ma bewertbar.
3 Elemetare Fazmathemat 6 Als Edwert bezechet ma de Summe der jewels auf de Zetput sup( N; Z() ) aufgezste Futoswerte ees Zahlugsstroms Z. der Edwert exstert ur, we der Zahlugsstrom Z beschrt st, d.h. we sup( N; Z() ) <. S (Z,) Z( ) r Bespel: (Fortsetzug) Mt eem Zssatz 3, % ergbt sch als Barwert bzw. Edwert für das letzte Bespel: B (Z) Z( )., ( ), ,54 S(Z,) Z( ) r.,, ,66 25 Z(), Z(), Z() r Offeschtlch glt obgem Bespel: B(Z),3 S(Z,)
4 Elemetare Fazmathemat 7 Satz: (Bezehug Barwert Edwert). Jeder beschrte Zahlugsstrom st bewertbar. 2. Se sup( N; Z() ) <, da glt B(Z) r S(Z,) Bewes: Offeschtlch. Defto: (Äqualezprzp) Zwe bewertbare Zahlugsströme Z ud Z 2 heße qualet, we se de gleche Barwert bestze, d.h. we glt B(Z ) B(Z 2 ). Bespel: (Fortsetzug) Der Zahlugsstrom Z aus de orausgegagee Bespele st qualet zum Zahlugsstrom Z() 3.285,54 ud Z() für. Über das Äqualetprzp lsst sch damt e Pres für de Zahlugsstrom festlege: Um dese Zetrete o eer Ba zu erhalte müsste der Kude zum Zetput emalg 3.285,54 zahle..2 Zetrete Defto: Ee Zetrete st e poster Zahlugsstrom orher festgelegter Höhe ud mt orher festgelegtem Beg ud Ede. Ee Rete heßt orschüssg gezahlt, we se jewels zum Beg eer Zetperode fllg wrd. Se heßt achschüssg gezahlt, we se jewels zum Ede eer Zetperode fllg wrd I desem Abschtt gehe wr o eer ostate jhrlche Rete Höhe o aus. Adere ostate Rete lasse sch efach durch Multplato des etsprechede Barwerts mt deser Rete bestmme.
5 Elemetare Fazmathemat 8 Barwertformel ud Bezechuge: Vorschüssge Zetrete mt Jahre Laufzet ud sofortgem Beg: d Nachschüssge Zetrete mt Jahre Laufzet ud sofortgem Beg: a + Vorschüssge Zetrete mt ewger Laufzet ud sofortgem Beg (achschüssg aalog): lm d Vorschüssge um m Jahre aufgeschobee Zetrete mt Jahre Laufzet (achschüssg aalog): m m+ m m+ m m Bespele:. We hoch sd de jhrlche Tlgugsrate R, we. be eem ostate effete Jahreszs o 5,5% auf 3 Jahre gleche Rate zurüc gezahlt werde solle? R a. R. : a,55. 3, ,54 2. Aus eer Stftug solle jhrlch 5. als Presgelder für erdete Wsseschaftler ausgeschüttet werde. De Zahluge solle beged mt der Grüdug der Stftug zetlch ubegrezt möglch se. We el Kaptal K muss be der Grüdug zur Verfügug stehe, damt be eem Zs o 4,% de Zahluge gewhrlestet sd? K 5. 5.,4 3..
6 Elemetare Fazmathemat 9 Barwertformel ud Bezechuge: (Fortsetzug) Vorschüssge Zetrete mt Jahre Laufzet ud sofortgem Beg ausgezahlt uterjhrge Tele (achschüssg aalog): () Ersetzt ma obger Formel durch d, so a ma für lee d de Futo / durch d aher (Taylor-Rehe-Etwclug): () ( d) d 2 Bespel: (Fortsetzug). We hoch sd de moatlche Tlgugsrate R, we. be eem ostate effete Jahreszs o 5,5% auf 3 Jahre gleche Rate zurüc gezahlt werde solle? 2 R a (2). R. : (2 a (2) ). 2 : (2 (2) ) 554,44 Beachte, dass 2 554, ,28 < 6.88,54, dem Ergebs be jhrlcher Zahlug. Mt dem Nherugserfahre ergbt sch R 554,3. Amerug: Vortel des Nherugserfahres st, dass es zur be Verscheruge üblche gemschte Verzsug passt (uterjhrg ur efach, d.h. lear, erzst)..3 Zufllge Zahlugsströme Defto: E zufllger Zahlugsstrom st ee Futo Z: N X, de jedem Zetput N ee reellwertge Zufallsarable Z() X auf dem Wahrschelchetsraum (Ω, B, P ) zuordet.
7 Elemetare Fazmathemat Bespel: Garateerlgerug o zwe auf füf Jahre Lestugsbeschrebug: Be Ausfall des erscherte Gertes lestet de Verscherug emalg achschüssg für de Jahre 3 bs 5 ach Kauf des Gerts de Kaufpres Höhe o.. Defert ma mt q de Wahrschelchet, dass das Gert m Jahr ausfllt, so st de Zufallsarable Z() gegebe durch Z() Z() Z(2)., mt WSK ( q ) K ( q Z(), sost ) q für 3, 4, 5 De q wurde aus de Date des Herstellers geschtzt: q,,2,2,5, We hoch st de zu zahlede Prme für de Verscherug? Defto: (Barwert ees zufllge Zahlugsstroms) Als Barwert bezechet ma de Summe der jewels auf de Zetput abgezste Erwartugswerte der Zufallsarable ees Zahlugsstroms Z, orausgesetzt de Erwartugswerte ud de etsprechede Telsumme des Post- ud Negattels sd edlch. B (Z) E[Z( )] Bespel: (Fortsetzug) Nehme wr a, dass de Verscherug Geld für 3,% alege a, da ergbt sch als Barwert B(Z),99,98 (,2 +,98,5, , ,98,95, 5 ).
Peter Hager: Eine kleine mathematische Auffrischung
Peter Hager: Ee klee mathematsche Auffrschug Überscht Überscht... 1 Formel ud Bespele... 1 Lteraturhwes... 2 1. Eführug... 2 2. Zseszsrechug... 2 2.1. Edwert... 2 2.2. Barwertermttlug... 3 2.3. Zssatzermttlug...
1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen
.. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt
Ordnungsstatistiken und Quantile
KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der
D. Rentenrechnungen 4 Progressive Renten 4.1 Geometrisch fortschreitende Renten. Formel: D. Rentenrechnung 3. Progressive Renten.
Fazmathematk Thema: Reterechuge Dr. Alfred Brk Fazmathematk A Eführug B Fazmathematsche Grudlage C Zsrechuge D Reterechuge Systematserug vo Retevorgäge 2 Edlche Rete 3 Ewge Rete 4 Progressve Rete 5 Aufgabe
WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}
1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade
Quellencodierung I: Redundanzreduktion, redundanzsparende Codes
Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug
Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik
Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert
Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten
Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe
Tilgungsrechnung 2. Bearbeitet von Martin Kubsch. 12.01.2005 Tilgungsrechnung 2 1. Formelsammlung. Jahres-, Quartals,- Halbjahres oder Monatsrechnung
Tlgugsrechug Bearbetet vo Mart Kubsch.0.00 Tlgugsrechug Formelsammlug Uterjährge Tlgug a) m r = m z Azahl glech Jahres-, Quartals,- Halbjahres oder Moatsrechug b) m z > m r (mehr Zs- als Tlgugsperode)
Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.
Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0
Prof. Dr. Dietmar Pfeifer Institut für Mathematik. Risikotheorie
Prof. Dr. Detmar Pfefer Isttut für Mathemat Rsotheore Stad: 08. März 06 Ihalt Vorbemerug... 3 I Persoeverscherugsmathemat... 6 I.. Bewertug vo Fazströme... 6 I.. Lebesdauerverteluge ud Sterbetafel... 0
Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik
Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft
Erzeugen und Testen von Zufallszahlen
Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto
Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes
Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche
(Markowitz-Portfoliotheorie)
Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug
Der Approximationssatz von Weierstraß
Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert
Versicherungsmathematische Formeln und Sätze WS 2001/02
Pof. D. Detma Pfefe Vescheugsmathematsche Fomel ud Stze WS 200/02 Zsechug effete Zssatz: totale Zsetag aus dem fagsaptal "" ehalb ees Jahes Bawet des ach eem Jah fllge Kaptals "" Edwet des ach eem Jah
Sitzplatzreservierungsproblem
tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche
Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.
Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,
AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion
AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff
2. Mittelwerte (Lageparameter)
2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde
Konzentrationsanalyse
Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher
Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung
Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket
Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)
Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)
Einführung Fehlerrechnung
IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate
Prof. Dr. Dietmar Pfeifer Institut für Mathematik. Risikotheorie
Prof. Dr. Detmar Pfefer Isttut für Mathemat Rsotheore Stad: 5. Aprl 5 Ihalt Vorbemerug... 3 I Persoeverscherugsmathemat... 6 I.. Bewertug vo Fazströme... 6 I.. Lebesdauerverteluge ud Sterbetafel... I.
Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert
Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m
Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot
Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)
Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot
Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer
Geometrisches Mittel und durchschnittliche Wachstumsraten
Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches
die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).
Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.
Ergebnis- und Ereignisräume
I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt
2.2 Rangkorrelation nach Spearman
. Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable
4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern
Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:
Frequently Asked Questions FAQ. Stand: 1. Januar KGAST Immo-Index
Stad: 1. Jauar 217 KGAST Immo-Idex KGAST Immo-Idex-Famle FREQUENTLY ASKED QUESTIONS Was behaltet der KGAST Immo-Idex? De KGAST Immo-Idex-Famle umfasst ee Hauptdex ud dre Subdzes. Der KGAST Immo- Idex als
Finanzmathematik. Formelsammlung. von Andreas Pfeifer. 2. Auflage
Fazmathematk Formelsammlug vo Adreas Pfefer 2. Auflage VERLAG EUROPA-LEHRMITTEL Nourey, Vollmer GmbH & Co. KG Düsselberger Straße 23 42781 Haa-Grute Europa-Nr.: 55187 Der Autor Prof. Dr. Adreas Pfefer
Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen
Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug
v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr
5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =
Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit
Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage
Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.
Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud
Fehlerrechnung im Praktikum
Fehlerrechug m Pratum Pratum Phsalsche Cheme (A. Dael Boese) I chts zegt sch der Magel a mathematscher Bldug mehr, als eer überbertrebe geaue Rechug. Carl Fredrch Gauß, 777-855 Themegebete Utertelug vo
Multiple Regression (1) - Einführung I -
Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da
Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik
Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre
Taylor-Entwicklung der exakten Lösung und Verfahrensfehler
Lösug ud Verfaresfeler Ngaleu Poutceu Paul Fracs [email protected] 8.6.4 Semar Numerk 1 Lösug ud Verfaresfeler Beobactug, Defto ud Notato Beobactug Notato Taylor-Etwcklug Defto ud Bespele Satz ud Bewes Verfaresfeler
Regressionsrechnung und Korrelationsrechnung
Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache
Leitfaden zu den Indexkennzahlen der Deutschen Börse
Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete
Verdichtete Informationen
Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)
Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen
IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass
Maße zur Kennzeichnung der Form einer Verteilung (1)
Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug
Grundgesetze der BOOLEschen Algebra und Rechenregeln
5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst
6. Zusammenhangsmaße (Kovarianz und Korrelation)
6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe
Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:
Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet
Lineare Optimierung Dualität
Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen
Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition
Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden
