Chaos Oder Mandelbrot und Peitsche

Größe: px
Ab Seite anzeigen:

Download "Chaos Oder Mandelbrot und Peitsche"

Transkript

1 Chaos Oder Mandelbrot und Peitsche Warum kann man das Wetter nicht genau vorhersagen? Du kennst sicher das Problem: du planst mit deiner Familie ein Picknick, dass in letzter Minute abgesagt werden muss, weil das Wetter nicht gut genug ist. Ein Woche vorher war an diesem Tag noch strahlender Sonneschein angesagt. Warum sind Wettervorhersagen so unzuverlässig? Die Menschen hatten immer schon ein Interesse daran zu wissen, wie das Wetter der nächsten Tag sein würde. Aber erst ab 1800 wurde Wettervorhersage im heutigen Sinne überhaupt möglich der Telegraf wurde erfunden. Erst mit dieser Erfindung, die es ermöglichte Nachrichten schnell über große Entfernungen zu transportieren, war es machbar Wetterdaten weiterzuleiten, die schneller waren als das Wetter selbst ankamen. Das wäre mit Briefen noch unmöglich gewesen. Während die Wetterforschung (Meteorologie) in den letzten zwei Jahrhunderten große Fortschritte gemacht hat, ist es uns immer noch nicht möglich zuverlässige Aussagen über das Wetter von nächster Woche zu machen. Ein Grund dafür ist sicher, dass das Wetter ein sehr kompliziertes System ist, auf das viele Faktoren einwirken. Das stimmt aber nur zum Teil. Es gibt nämlich Systeme, die sehr einfach aufgebaut sind. Trotzdem können wir ihr Verhalten nicht vorhersagen. Schülerversuch: Das Doppelpendel Lenke das Doppelpendel senkrecht nach oben aus und lass es los. Wie bewegt sich das Pendel? Versuche das Pendel dazu zu bringen immer genau die gleiche Bewegung zu durchlaufen, indem du es immer genau gleich auslenkst. Gelingt es?

2 Du wirst herausfinden, das es unmöglich ist, dass das Pendel noch einmal genau die Bewegung macht, die es davor gemacht hat, selbst wenn du das Pendel sehr sorgfältig immer vom gleichen Ausgangszustand fallen lässt. In der Physik nennt man das Chaos. Der Laplac`sche Dämon Pierre Simon Marqius de Laplace ( ), formulierte in einem Gedankenexperiment diesen Dämon und beschrieb ihn folgendermaßen: Wir müssen also den gegenwärtigen Zustand des Universums als Folge eines früheren Zustandes ansehen und als Ursache des Zustandes, der danach kommt. Eine Intelligenz, die in einem gegebenen Augenblick alle Kräfte kennt, mit denen die Welt begabt ist, und die gegenwärtige Lage der Gebilde, die sie zusammensetzen, und die überdies umfassend genug wäre, diese Kenntnisse der Analyse zu unterwerfen, würde in der gleichen Formel die Bewegungen der größten Himmelskörper und die des leichtesten Atoms einbegreifen. Nichts wäre für sie ungewiss, Zukunft und Vergangenheit lägen klar vor ihren Augen. Pierre Simon Marquis de Laplace Also, es handelt sich hierbei um einen Dämon, der alles versteht und alle Naturgesetze kennt. Nachdem das Universum sich auch zeitlich verändert, geht es von einem Zustand in den nächsten über. Sollte zu einem einzigen Zeitpunkt jede Kraft kennt, die vorhanden ist, wäre er somit in der Lage, über das zukünftige Verhalten Auskunft zu geben. Dies ist aufgrund mehrerer Gründe nicht möglich, unter anderem durch: Zur Lösung des sogenannten Dreikörperproblems benötigt man Differentialgleichungssysteme, die sich nur selten analytisch lösen lassen. Dies wäre also eine mathematische Hürde für den Dämon. Relativistisch betrachtet ist es nicht möglich, dass Informationen mit einer Geschwindigkeit, die Größer als die Lichtgeschwindigkeit (C=3*10 8 m/s) ist transportiert werden. Da das Universum doch eine enorme Größe hat (Forscher Wissen selbst nicht genau wie groß) bräuchten die Informationen

3 so lange um zum Laplac`schen Dämon zu gelangen, bis die Information über die Zukunft nicht mehr wichtig wäre, da es sich bei der berechneten Zukunft mittlerweile über die Vergangenheit handelt. In der Quantenmechanik gibt es die sogenannten Heisenberg`schen Unschärferelationen. Sie wurde von Werner Heisenberg formuliert. Die Grundannahme ist: Es existieren komplementäre Größen. Wenn ich zwei solche von einem Quantenobjekt betrachte so werde ich nie beide gleich genau erhalten. Je genauer ich die eine Größe messe umso ungenauer, bzw. unschärfer wird die andere. Komplementäre Größen sind: Ort und Impuls, Zeit und Energie. Das heißt, dass es für den Dämon quantenmechanisch nicht möglich wäre, genaue Informationen über den Zustand jedes Teilchens zu erhalten. Gedankenexperiment - Diskurs in die Philosophie: Überlege dir, wie sich dein Leben bzw. das aller Menschen durch den Umstand verändern würde, wenn alles bekannt wäre, wenn wir über alle zukünftigen Ereignisse Bescheid wissen würden. Versuche eine Pro und Kontra Liste oder einen kurzen Aufsatz zu erstellen, in dem du diese Thematik diskutierst. Was ist Chaos? Es gibt verschiedene Bedeutungen des Begriffs Chaos. Man muss streng unterscheiden zwischen dem alltäglichen Begriff Chaos (z.b.: Chaos im Sinne von Unordnung, Unstrukturiertheit) und einem wissenschaftlichen Chaosbegriff. Wenn deine Mutter dir etwa sagt, dass du das Chaos in deinem Zimmer beseitigen sollst, oder der Lehrer meint du seist chaotisch, dann ist damit gemeint, dass jemand unordentlich ist bzw. Ordnung schaffen soll. In den Naturwissenschaften ist damit etwas anderes gemeint: nämlich, dass das Verhalten eines Systems nicht vorhersagbar ist. In der Physik betrachtet man daher das sogenannte deterministische Chaos.

4 Unter deterministischen Chaos versteht man Systeme deren zeitliche Entwicklung sehr empfindlich von den Anfangsbedingungen abhängt, wodurch ihr Verhalten für längere Zeitspannen unvorhersehbar ist. Die Physik die sich mit diesem Thema auseinandersetzt wird Chaosforschung genannt, in der rein mathematischen Betrachtungsweise spricht man jedoch von Chaostheorie. Die Geburtssunde des Chaos Im Jahre 1900 reichte ein Herr namens Henri Bèrnard seine Doktorarbeit ein, in der er gezielt Experimente zur Wärmeströmungen behandelte. Ein Wärmestrom (Q), durch eine Flüssigkeitsschicht lässt sich mit Hilfe des Temperaturunterschiedes ( T) zwischen oberer und unterer Platte und deren Abstand H einstellen, auf die Erdatmosphäre umegelegt, sorgt dieser Wärmestrom für die Abkühlung der Erde bei klarem Himmel. In dem sogenannten Raighley-Bèrnard Experiment erkannte man folgenden Zusammenhang: Eigenschaften chaotischer Systeme Chaotische Systeme haben ein paar Eigenheiten gemeinsam, die sich beschreiben lassen. Die in einem chaotischen System gemessene Größe 1. ist andauernd zeitlich veränderlich. 2. ist beschränkt. 3. wiederholt sich nicht periodisch. 4. hängt empfindlich vom Anfangszustand ab.

5 Was heißt das genau? Betrachten wir wieder unser Doppelpendel. Es verändert sich ständig, das heißt, es bleibt nie stehen. Das stimmt natürlich nicht ganz, weil wir nicht vergessen dürfen, dass wir durch Reibung Energie verlieren. Aber wäre unser Pendel reibungsfrei, würde es immer weiter schwingen und drehen. Obwohl es sich immer bewegt, vollführt es keine periodische Bewegung, wie etwa ein einfaches Pendel. Außerdem hat die Bewegung des Pendels klare Grenzen. Wer außerhalb dieser Reihweite steht ist sicher, wird niemals vom Pendel getroffen werden. Was du durch das Experiment mit dem Doppelpendel vielleicht schon bemerkt hast, ist, dass schon kleine Änderungen am Anfang große Änderungen in der Bewegung danach bewirken können. Wenn man ähnliche Anfangsbedingungen hat, wird sich das Pendel anfangs ähnlich bewegen aber bald unterscheiden sich die Bewegungen deutlich voneinander. Chaos erzeugende Gesetze Die Regeln, die für ein System gelten müssen, damit es chaotisches Verhalten aufweist, lauten: 1. Der Zustandsraum ist beschränkt. 2. Das Bewegungsgesetz ist nichtlinear. 3. Das Bewegungsgesetz ist intern expandierend. Das klingt jetzt schon sehr mathematisch, ist aber gar nicht so schwer zu verstehen. Der Zustandsraum ist die Menge aller Zustände, die ein dynamisches System einnehmen kann. Diese Menge der möglichen Zustände muss beschränkt sein, es kann also nur endlich viele geben. Ähnliches haben wir weiter oben schon mit Beschränktheit und Grenzen festgestellt. Das Bewegungsgesetz besteht aus einer oder mehreren Formeln, die nicht linear sein dürfen. Linearität bedeutet so viel wie doppelte Ursache erzeugt doppelte Wirkung oder noch einfacher: aus mehr wird mehr. Die Bewegunsggesetze chaotischer Systeme müssen aber gerade nichtlinear sein, das heißt das große

6 Ursachen auch kleine Wirkungen haben können und ebenso umgekehrt kleine Ursachen können große Wirkungen haben. Der Begriff intern expansiv, sagt im Wesentlichen nur, dass das zukünftige Verhalten eines Systems sich enorm empfindlich gegenüber den Anfangsbedingungen verhält. Schmetterlingseffekt Der Schmetterlingseffekt tritt in Systemen auf, die zeitlich veränderlich (also zeitabhängig) und nichtlinear sind. Was bedeutet nichtlinear? In der sogenannten Systemtheorie, welche ein Spezialgebiet der Mathematik darstellt, werden komplexe Phänomene anhand von unterschiedlichen Systemen erklärt. Wie bereits erwähnt, ist die Wettervorhersage ein gutes Beispiel dafür, es ist von vielen Variablen abhängig, aber anhand eines Systems kann man versuchen es zu beschreiben. Wenn in diesem aufgestellten System, welches im Normalfall aus mehreren Gleichungen besteht, Größen mit Potenzen Größer 1 (zum Beispiel hoch 2) auftreten, so handelt es sich um ein nichtlineares System. Aber was hat das jetzt mit Chaos zu tun? Wenn eine Größe mit einer Potenz größer Eins vorkommt, dann wirkt sie stark in das Ergebnis ein. Wenn ich die Zahl, dieser Größe um auch nur einen wenig verändere, kommt es zu einer stärkeren Veränderung des Ergebnisses, als wenn ich eine Zahl hoch Eins verändere. Gehen wir nun wieder zurück zu den Systemen. Ich will etwas über mein System wissen und setze in die Gleichungen ein und erhalte ein Ergebnis. Mache ich das selbe nochmals, nur mit leicht veränderten Werten, so werde ich ein anderes und je nach Potenz gravierend anders Ergebnis erhalten. Somit stellt sich die Frage, inwiefern etwas vorhersagbar ist? Der Name einer Präsentation im Jahr 1972, der Amerivan Association for Advancement of Science, verdeutlicht dies: Kann der Flügelschlag eines Schmetterlings in Brasilien einen Tornardo in Texas auslösen? Diese enorme Empfindlichkeit einer zeitlichen Entwicklung eines Systems, wird auch Schmetterlingseffekt genannt. Die sogenannte Mandelbrotmenge ein Fraktal

7 Was sind Fraktale und sind Attraktoren attraktiver? Der Begriff Fraktal wurde von Benoit Mandelbrot geprägt. Es beschriebt eine geometrische Form, mit einer nichtganzzahligen Dimension und einer Selbstähnlichkeit. Was ist damit jetzt gemeint? Mit nichtganzzahligen Dimensionen ist gemeint, dass es bei dieser Geometrie der Fall ist, dass es keine 3 (x-y-z) oder 4 (x-y-z-t) Dimensionen gibt, sondern gebrochene, also nicht ganze Dimensionen. Wenn man es nicht streng mathematisch sieht, ist dies natürlich enorm schwer zu erfassen bzw. sich vorzustellen. Eine Selbstähnlichkeit heißt, dass ich immer weiter in das Fraktal blicken kann und ein Fraktal erkenne, dass meinem betrachteten Fraktal wieder ähnlich sieht. Also, solltest du einmal ein Objekt filmen und hineinzoomen und das selbe Objekt erneut sehen, ist nicht zwingend deine Kamera kaputt, evt. Blickst du ja auf ein Fraktal. Auch sogenannte Attraktoren (hierbei werden nur die seltsamen Attraktoren betrachtet) weisen ein Fraktale Struktur auf. Sie werden zur Beschreibung dynamischer Systeme verwendet und sind invariant (d.h. wenn ich sie von ein System in ein anderes überführe, bleiben sie gleich) und natürlich zeitlich veränderlich. Bei den seltsamen Attraktoren ist es wieder der Fall, dass wir keine gerade Dimensionen vorfinden. Der sogenannte Lorenz-Attraktor

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis Die Chaostheorie a) Geschichtliche Betrachtung i. Das mechanistische Naturbild ii. Zweikörperproblem iii. Dreikörperproblem iv. Lagrange-Punkte v. Entdeckung des Chaos b) Die Chaostheorie i. Eigenschaften

Mehr

Achtung Nebel! Ein Komplexitäts-Crashkurs für Projektmanager*innen

Achtung Nebel! Ein Komplexitäts-Crashkurs für Projektmanager*innen complexity-research.com Achtung Nebel! Ein Komplexitäts-Crashkurs für Projektmanager*innen Priv.-Doz. Dr. Dr. Dipl.-Psych. Guido Strunk guido.strunk@complexity-research.com www.complexity-research.com

Mehr

Wie lang ist die Küste Großbritanniens?

Wie lang ist die Küste Großbritanniens? Wie lang ist die Küste Großbritanniens? Vortrag am 16.01.2009 Fach: Physik Deterministisches Chaos Ein Vortrag von Tina Rosner und Florian Sachs Werner-von-Siemens-Gymnasium Magdeburg Gliederung 1 Das

Mehr

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen 18a Temperatur 1 Thermodynamik Thermodynamik ist eine phänomenologische Wissenschaft Sie beschreibt die Wechselwirkung von Systemen mit ihrer Umgebung Aus der Erfahrung und durch zahllose Beobachtungen

Mehr

Chaotische Systeme. ViLab. Marian Panten

Chaotische Systeme. ViLab. Marian Panten Chaotische Systeme ViLab Marian Panten Einleitung Geschichte Übersicht Merkmale und Eigenschaften Beispiele und Anwendungen Schluss 26. November 2003 - = Marian Panten - Chaotische Systeme = - 2 Einleitung

Mehr

8. Deterministisches Chaos

8. Deterministisches Chaos 8. Deterministisches Chaos Widerspruch: deterministisch chaotisch Schmetterlingseffekt: Der Flügelschlag eines Schmetterlings entscheidet über die Entwicklung eines Sturms. Allgemein: kleinste Änderungen

Mehr

Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014

Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014 Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014 Grundfrage und Gliederung Gibt es einen echten Zufall, oder wissen wir einfach nicht genug für eine exakte Vorhersage?

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

Quantenmechanik& Wahrscheinlichkeit. Der liebe Gott würfelt nicht! Albert Einstein um 1923

Quantenmechanik& Wahrscheinlichkeit. Der liebe Gott würfelt nicht! Albert Einstein um 1923 Quantenmechanik& Wahrscheinlichkeit Der liebe Gott würfelt nicht! Albert Einstein um 1923 Quantenmechanik& Wahrscheinlichkeit Der liebe Gott würfelt nicht! Albert Einstein um 1923 Mit diesem Ausspruch

Mehr

Zufall ein Auslaufmodell?

Zufall ein Auslaufmodell? Zufall ein Auslaufmodell? SGMI-Club 13.4.2018 Markus Hertle Zufall (Wikipedia) Von Zufall spricht man dann, wenn für ein einzelnes Ereignis oder das Zusammentreffen mehrere Ereignisse keine kausale Erklärung

Mehr

Grenzen der Klassischen Mechanik

Grenzen der Klassischen Mechanik Grenzen der Klassischen Mechanik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Kausalität Die Fundamente der Klassischen Physik Kritik an der Klassischen Mechanik Zusammenbruch der

Mehr

Bedeutende Theorien des 20. Jahrhunderts

Bedeutende Theorien des 20. Jahrhunderts Bedeutende Theorien des 20. Jahrhunderts Ein Vorstoß zu den Grenzen von Berechenbarkeit und Erkenntnis Quantenmechanik - Relativitätstheorie - Gravitation - Kosmologie - Chaostheorie - Prädikatenlogik

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Würfelt Gott oder würfelt er nicht? p.1/35

Würfelt Gott oder würfelt er nicht? p.1/35 Würfelt Gott oder würfelt er nicht? Die Rolle des Zufalls im Weltbild der Physik Claus Grupen Universität Siegen Dortmund, den 21. Mai 2005 Würfelt Gott oder würfelt er nicht? p.1/35 Eine uralte Frage...

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Gewöhnliche Differentialgleichungen: Einleitung

Gewöhnliche Differentialgleichungen: Einleitung Gewöhnliche Differentialgleichungen: Einleitung Die Sprache des Universums ist die Sprache der Differentialgleichungen. 1-E1 Faszinierender Anwendungsreichtum cc 1-E2 Wie verstanden die Alten das Naturgesetz?

Mehr

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten

Mehr

Zur Philosophie der Quantenmechanik

Zur Philosophie der Quantenmechanik Zur Philosophie der Quantenmechanik Vortrag in der Q12 am Gymnasium Geretsried Tobias Jung Lehrstuhl für Philosophie und Wissenschaftstheorie Technische Universität München (TUM) 18. Dezember 2012 Tobias

Mehr

Durch Simulation dynamische Systeme entdecken Labor 6

Durch Simulation dynamische Systeme entdecken Labor 6 Institut für Automatik D-ITET, 2. Sem. ETH Zürich Dr. F. J. Kraus 28. Mai 2004 Durch Simulation dynamische Systeme entdecken Labor 6 In diesem Labor wollen wir einen kleinen Einblick in die Chaostheorie

Mehr

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Ausarbeitung zum Vortrag im Rahmen des Hauptseminars Big Data Science in und außerhalb der Physik an der Fakultät für Physik am Karlsruher Institut

Mehr

Chaos im getriebenen nicht-linearen Pendel

Chaos im getriebenen nicht-linearen Pendel Chaos im getriebenen nicht-linearen Pendel Alle drei Ingredienzen: Nichtlinearität, Reibung, treibende Kraft 2 d θ g dθ = sinθ q + F sin 2 dt L dt ( t) D Ω D Das ist ein so genanntes physikalisches Pendel

Mehr

Alles kein Zufall? DI Dr. techn. Robert Pucher. Beeinflussung des Zufalls? Untersuchungen zur willentlichen Beeinflussung von zufälligen Ereignissen

Alles kein Zufall? DI Dr. techn. Robert Pucher. Beeinflussung des Zufalls? Untersuchungen zur willentlichen Beeinflussung von zufälligen Ereignissen Alles kein Zufall? DI Dr. techn. Robert Pucher Beeinflussung des Zufalls? Untersuchungen zur willentlichen Beeinflussung von zufälligen Ereignissen - PEAR-Experimente in Princeton, - aktuelle Versuchsplanung

Mehr

HARMONIK ZWISCHEN ORDNUNG UND CHAOS

HARMONIK ZWISCHEN ORDNUNG UND CHAOS HARMONIK ZWISCHEN ORDNUNG UND CHAOS Grundstrukturen der Natur und ihre Wahrnehmung durch den Hörenden Menschen Vortrag auf dem Harmonik-Symposion 2010 am 2. Mai 2010 Hans G. Weidinger 1. Was ist Harmonik?

Mehr

Die Darstellung nichtlinearer Bewegungsabläufe

Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung linearer Bewegungsabläufe Manchmal sind die Dinge mehr, als sie auf den ersten Blick zu sein scheinen. Auch chaotische Systeme offenbaren

Mehr

Fraktale und Beispiele aus der Physik

Fraktale und Beispiele aus der Physik Fraktale und Beispiele aus der Physik Anschauung Warum beschäftigen Fraktale (auch) Naturwissenschaftler? kurze Wiederholung Konkretes Beispiel: Magnetpendel Das Experiment Mathematische Beschreibung Trajektorien

Mehr

Gesetzesskeptisismus

Gesetzesskeptisismus Seminar über philosophische Aspekte der Physik: Was sind und warum gelten Naturgesetze? (oder gibt es überhaupt Naturgesetze?) Gesetzesskeptisismus Matthias Böcker Literatur: Ronald N Giere, The Skeptical

Mehr

1. Einleitung. 2. Zur Person

1. Einleitung. 2. Zur Person Moritz Schlick: Naturgesetze und Kausalität Seminar über philosophische Aspekte in der Physik WS 2007/08 Seminarleitung: Prof. Dr. G. Münster Dr. C. Suhm Vortragender: Johannes Greber 13. 11. 2007 1. Einleitung

Mehr

Aber gerade in diesem Punkt ist Newton besonders konsequent.

Aber gerade in diesem Punkt ist Newton besonders konsequent. 2.1.Lorentz-Transformationen Aus Einstein, Mein Weltbild 1.) Trotzdem man allenthalben das Streben Newtons bemerkt, sein Gedankensystem als durch die Erfahrung notwendig bedingt hinzustellen und möglichst

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

8 Dynamische Systeme. 1 Begriff und Anwendung

8 Dynamische Systeme. 1 Begriff und Anwendung 8 Dynamische Systeme Jörn Loviscach Versionsstand: 23. März 2013, 15:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop Mathematisches Kaleidoskop II Materialien Teil 3 Dr. Hermann Dürkop E-Mail: info@ermanus.de .3.3 Noch zwei Isomorphie-Beispiele Beispiel : Wir betrachten die Symmetrien eines nichtquadratischen Rechtecks.

Mehr

REFERAT FÜR INNOVATIVE ARCHIKETUREN

REFERAT FÜR INNOVATIVE ARCHIKETUREN REFERAT FÜR INNOVATIVE ARCHIKETUREN THEMA CHAOSTHEORIE REFERENTEN TIMO BÖLLINGER & DOMINIC ECKART DATUM 9. NOVEMBER 2004 FACHRICHTUNG INFORMATIONSTECHNIK NETZWERK UND SOFTWARETECHNIK AN DER BERUFSAKADEMIE

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme Diskretes dynamisches Chaos. Einleitung: Diskrete dynamische Systeme Verschiedene Problemstellungen können zu zeitlich diskreten Systemen (Differenzengleichungen) führen: Zinseszinsrechnung: x(n+) = x(n)

Mehr

Experimente, Ideen und Entwicklung der Chaostheorie

Experimente, Ideen und Entwicklung der Chaostheorie Experimente, Ideen und Entwicklung der Chaostheorie Stephan Lück Ursprünge der Chaostheorie Edward Lorenz (1917-2008) Meteorologe einfaches Atmosphärenmodell (ca. 1960) basierend auf Konvektion Modellexperiment

Mehr

Stringtheorie: Auf der Suche nach der Weltformel

Stringtheorie: Auf der Suche nach der Weltformel Stringtheorie: Auf der Suche nach der Weltformel Jan Louis Universität Hamburg Sylt, Juli 2005 2 Physik des 20. Jahrhunderts Quantentheorie (QT) Planck, Bohr, Heisenberg,... Physik von kleinen Skalen (Mikrokosmos)

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

Wie gesetzmäßig ist der Zufall? Barbara Drossel, TU Darmstadt

Wie gesetzmäßig ist der Zufall? Barbara Drossel, TU Darmstadt 1 Wie gesetzmäßig ist der Zufall? Barbara Drossel, TU Darmstadt 2 Zufall in der Physik Rechnen mit Wahrscheinlichkeiten Beispiel 1: Münzwurf 1001111010000 Zufall in der Physik 3 Zufall in der Physik 4

Mehr

Was sind Quantenobjekte?

Was sind Quantenobjekte? Quantenobjekte Was sind Quantenobjekte? Die Quantentheorie beschreibt das Verhalten von Quantenobjekten in Raum und Zeit. Als Quantenobjekte oder Mikroteilchen werden in der Physik Objekte bezeichnet,

Mehr

Mit Quanten kann gerechnet werden

Mit Quanten kann gerechnet werden Christina KRAUS Max-Planck-Institut für Quantentechnik 1 Einleitung Quantenmechanik ist ein Meilenstein der modernen Physik. Die Theorie, die in den letzten hundert Jahren unter anderem von Dirac und Heisenberg

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Wellencharakter der Atome

Wellencharakter der Atome Wellencharakter der Atome Sara: Also langsam habe ich den Eindruck, dass alle meine bisherigen Vorstellungen, was Temperatur, Kühlmethoden, Vakuum und anderes angeht, so ziemlich daneben liegen; aber wenn

Mehr

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos Dynamisches Chaos 1. Einleitung: Determinismus und Chaos In der üblichen Betrachtungsweise ist der Zufall nur auf dem Mikroniveau erlaubt: - das Boltzmannsche molekulare Chaos; - die quantenmechanischen

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

DAS VORHERGESAGTE CHAOS

DAS VORHERGESAGTE CHAOS DAS VORHERGESAGTE CHAOS Vorhersagen sind schwierig, besonders wenn sie die Zukunft betreffen, in erster Linie dann, wenn es sich um Wettervorhersagen handelt ein Zitat, das Berühmtheiten wie Nils Bohr

Mehr

Institut für Physik - Humboldt-Universität zu Berlin

Institut für Physik - Humboldt-Universität zu Berlin Institut für Physik - Humboldt-Universität zu Berlin Seminar: Grundlagen der Quantenmechanik Die Bell schen Ungleichungen Sebastian Beumler, Matr.Nr.: 509715 Betreuer: Dr. Alejandro Saenz 19. November

Mehr

Parabelfunktion in Mathematik und Physik im Fall des waagrechten

Parabelfunktion in Mathematik und Physik im Fall des waagrechten Parabelfunktion in Mathematik und Physik im Fall des waagrechten Wurfs Unterrichtsvorschlag, benötigtes Material und Arbeitsblätter Von der Physik aus betrachtet.. Einführendes Experiment Die Kinematik

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich?

Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich? Kapitel 1 Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich? Hier betrachten wir ein Gedankenexperiment, das bereits in unterschiedlichster Weise realisiert wurde, und uns

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

Bellsche Ungleichungen

Bellsche Ungleichungen Bellsche Ungleichungen Michael Legenstein und Matthias Kaiser 1 Einführung Als Einstein, Podolsky und Rosen 1927 in ihrem Paper die Unvollständigkeit der Quantenmechanik vorraussagten und somit die Existenz

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Newton'schen Axiome mit einer Farbfolie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Newton'schen Axiome mit einer Farbfolie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Newton'schen Axiome mit einer Farbfolie Das komplette Material finden Sie hier: Download bei School-Scout.de 14. Die Newton schen

Mehr

Zum Bahnbegriff eines Teilchens in der Physik

Zum Bahnbegriff eines Teilchens in der Physik 11. Februar 2009 Abschlussvorlesung Mathematik I für Physiker Kann man auch in der Quantenmechanik von der Bahn eines Teilchens sprechen? Zitate zum Bahnbegriff in der Quantenmechanik Das Wort Bahn hat

Mehr

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften Deutsche Ausgabe bearbeitet von Eckhard Rebhan Mit 110 Abbildungen T) Piper

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-regensburg.de/mathematik/mathematik-abels/aktuelles/index.html Schnupperstudium

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Meine mathematische Landschaft

Meine mathematische Landschaft Meine mathematische Landschaft Albert A. Gächter Wie ist die mathematische Landschaft Ihrer Schulzeit in Erinnerung geblieben? Gibt es da einige Oasen und rundherum ist Wüste? Ist die Gegend gefährlich

Mehr

Grenzen der Klassischen Mechanik

Grenzen der Klassischen Mechanik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis und deterministisches Denken im Alltag In diesem Abschnitt und deterministisches Denken im Alltag Galileo Galilei Das Experiment Abbildung

Mehr

Nichtlokalität das Rätsel der Verschränkung

Nichtlokalität das Rätsel der Verschränkung Nichtlokalität das Rätsel der Verschränkung Spezielle Relativitätstheorie (A. Einstein, 1905) Wirkungen / Informationen können zwischen zwei Orten maximal mit der Vakuumlichtgeschwindigkeit (~300000 km/s)

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Das Meßproblem in der Kopenhagener Deutung

Das Meßproblem in der Kopenhagener Deutung Das Meßproblem in der Kopenhagener Deutung Angenommen, ein quantenmechanisches System kann nur zwei Werte annehmen, z.b. Spin oben oder Spin unten... Dieses Teilchen wird in Bezug auf den Spin durch eine

Mehr

Die Barth-Sextik ein ewiger Weltrekord. 3D-Skulptur von Oliver Labs

Die Barth-Sextik ein ewiger Weltrekord. 3D-Skulptur von Oliver Labs Die Barth-Sextik ein ewiger Weltrekord 3D-Skulptur von Oliver Labs Auch in der Mathematik gibt es Weltrekorde und die Barth-Sextik, entdeckt um 1996 vom Erlanger Professor Wolf Barth, stellt einen solchen

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme 7. Systeme mit drei (und mehr) Spezies: chaotische Systeme Dies kann z.b. Ein System mit mehreren verschiedenen Räubern sein, die die selben Beutetiere jagen. Auch ein nicht autonomes System mit zwei Spezies

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

Chaostheorie - Niklas Luhmanns Systemtheorie und Soziale Arbeit

Chaostheorie - Niklas Luhmanns Systemtheorie und Soziale Arbeit Geisteswissenschaft Federica Tosi Chaostheorie - Niklas Luhmanns Systemtheorie und Soziale Arbeit Essay Inhaltsverzeichnis 1. Chaostheorie: Begriffklärung und Bedeutung für die Wissenschaft bis heute

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich?

Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich? Kapitel 1 Bellsche Ungleichungen oder existiert Einstein s spukhafte Fernwirkung wirklich? 1.1 Worum gehts? In vielen Experimenten mit verschiedensten Teilchen ist nun gezeigt worden, dass Verschränkung

Mehr

Die Fraktale als Erkenntnismechanismus

Die Fraktale als Erkenntnismechanismus Geisteswissenschaft Leidimar Pereira Murr Die Fraktale als Erkenntnismechanismus Wissenschaftlicher Aufsatz Leidimar Pereira Murr Die Zukunft der Bioethik ist unter einen Erkenntnismechanismus verborgen:

Mehr

Wir bauen eine Zeitmaschine

Wir bauen eine Zeitmaschine Zeitmaschinen Bis zum Anfang des 20. Jahrhunderts glaubten die Physiker, ein gutes Verständnis dafür zu haben, was Zeit ist: Sie verläuft kontinuierlich, in eine Richtung und ist absolut, also unabhängig

Mehr

Quantenmechanik, Paradoxien und Deutungen

Quantenmechanik, Paradoxien und Deutungen 8. März 2006 Es gibt keine Paradoxien in der Quantenmechanik! Die Wellenfunktion Messung und Unschärfe Verschränkung Die Wellenfunktion System wird durch Wellenfunktion beschrieben Diese kann man überlagern

Mehr

zum Thema Lissajous-Figuren

zum Thema Lissajous-Figuren Ratsgymnasium Rotenburg Gerberstraße 14 27356 Rotenburg Wümme Facharbeit im Leistungskurs Physik zum Thema Lissajous-Figuren Verfasser: Christoph Siemsen Fachlehrer: Herr Konrad Abgabetermin: 24.05.04

Mehr

Masse von Newton und Einstein zu Higgs und dunkler Materie

Masse von Newton und Einstein zu Higgs und dunkler Materie von Newton und Einstein zu Higgs und dunkler Materie Institut f. Kern- und Teilchenphysik Dresden, 13.11.2008 Inhalt 1 Einleitung 2 Newton träge und schwere 3 Einstein bewegte und Ruhemasse 4 Higgs Ruhemasse

Mehr

Theoretische Physik fürs Lehramt: L2

Theoretische Physik fürs Lehramt: L2 Theoretische Physik fürs Lehramt: L2 Beatrix C. Hiesmayr Faculty of Physics, University Vienna Beatrix.Hiesmayr@univie.ac.at WS 2015 Kapitel 1 Bellsche Ungleichungen oder existiert Einstein s spukhafte

Mehr

Lösung IV Veröffentlicht:

Lösung IV Veröffentlicht: Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine

Mehr

Physik eine empirische Wissenschaft

Physik eine empirische Wissenschaft Experimentalphysik A 1. Einleitung Physik eine empirische Wissenschaft Die Naturerscheinungen laufen nicht regellos ab, sondern sie werden durch Naturgesetze gesteuert. Die Physik befaßt sich mit der Erforschung

Mehr

Physik. Carl-von-Ossietzky-Gymnasium Bonn Schulinternes Curriculum. Jahrgangstufe 6. Jahrgangsstufe 8. Materialhinweise: Unterrichtsvorhaben:

Physik. Carl-von-Ossietzky-Gymnasium Bonn Schulinternes Curriculum. Jahrgangstufe 6. Jahrgangsstufe 8. Materialhinweise: Unterrichtsvorhaben: Jahrgangsstufe 8 Jahrgangstufe 6 Einführung in die Grundlagen des Faches Das Licht und der Schatten Temperatur und Energie Elektrische Stromkreise UV 5: Schall Impulse 1 (Klett-Verlag, Stuttgart) SchwerpunkteSach-,

Mehr

Einstein-Wellen-Mobil

Einstein-Wellen-Mobil Relativistische Fahrradfahrt Bebachten Sie die Szenerie beim Anfahren und Beschleunigen. Bewegen Sie sich tatsächlich zunächst rückwärts? Wie können Sie das feststellen? Wie kommt der beobachtete Effekt

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos Wintersemester 2018/19 22.01.2019 M. Zaks hintergrund Kontext: Wettervorhersage. Entstehung von Luftbewegungen infolge der thermischen

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 2. Vorlesung Pawel Romanczuk WS 2017/18 1 Eine kurze Exkursion in die Wahrscheinlichkeitstheorie 2 Diskrete Variable Wahrscheinlichkeit Wert

Mehr