Welle-Teilchen-Dualismus
|
|
|
- Dirk Sauer
- vor 9 Jahren
- Abrufe
Transkript
1 Welle-Teilchen-Dualismus Andreas Pfeifer Proseminar, 2013 Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
2 Gliederung 1 Lichttheorie, -definition Newtons Korpuskulatortheorie Huygen s Undulationstheorie Maxwell 2 Photoeffekt 3 DeBroglie 4 Elektronenbeugungsröhre 5 Comptoneffekt 6 Quellenangaben Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
3 Newtons Korpuskulatortheorie Licht besteht aus einem Strom kleiner Teilchen, Emission von der Lichtquelle Farben verschiedene Größe bzw. verschiedene Masse gradlinige Ausbreitung Brechung,Reflexion Kräfte auf die Teilchen Problematisch bei Grenzflächen oder Beugung Licht ist schneller im Medium Ablenkung von Licht durch Schwerkraft, Vorreiter des schwarzen Lochs (1796) Berechnung der Ablenkung war halb so groß wie von Einstein in der allg. Relativitätstheorie Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
4 Huygen s Undulationstheorie Licht ist eine Welle kugelförmige Ausbreitung Brechung, Reflexion Huygensche Prinzip, Snellius Gesetz, Fermatsche Prinzip Beugung, Interferenz Superpositionsprinzip der Amplituden Medium? Äther Newtons Theorie war der Favorit durch seine höhere Aufmerksamkeit Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
5 Maxwell Licht als elektromagnetische Welle im Vakuum Herleitung aus den Maxwell-Gleichungen Benötigt kein Medium Erklärung von Dispersion und Spektralfarben Fresnel erklärt Polarisation durch transversale Wellen Doppelspaltexperiment 19 Jhr Messung der Lichtgeschwindigkeit im Medium Das Aus der Korpuskulartheorie Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
6 Photoeffekt Licht auf Platte z.b. Caesium, Rubidium beobachtet Elektronenfluss bei hinreichend großer Frequenz und nicht bei höherer Intensität Einstein deutet Licht als Teilchen, Photonen, mit Energie E = h f m = e U f = h E ph = h f + E Einstein war der erste, der Planck s Formel E = h f ernst nahm 1921 Nobelpreis Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
7 DeBroglie 1924 veröffentlicht DeBroglie in seiner Doktorarbeit den Welle-Teilchen-Dualismus Photon=Teilchen Teilchen=Welle E = h f pc = E 2 (m 0 c 2 ) 2 λ ν = c λ = h c = hc pc λ = c ν = hc hc E λ = E 2 (m 0 c 2 ) 2 Teilchen konnten Wellenlängen zugeordnet werden Für Licht gilt m 0 = Nobelpreis Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
8 Elektronenbeugungsröhre Wellenlänge eines Elektron λ = h mv = h ; 2mEkin E kin = U e Elektronenstrahl auf polykristalline Graphitschicht gerichtet 2d sin(θ)! = nλ für Interferenz (Bragg Gleichung) 3, 74keV 0, 2nm; 1MeV 0, 871nm Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
9 Comptoneffekt Beim Durchgang von Materie beobachtet Arthur Holly Compton, dass Röntgenstrahlung nicht nur absorbiert, sondern unter Energieverlust gestreut wird, Wellenlänge wird länger. Wenn beim Stoß von Photonen mit Elektronen wie bei einem elastischen Stoß Energie und Impuls übertragen werden, haben die Photonen im Anschluss eine größere Wellenlänge. λ = h m 0 e c (1 cos(φ)) λ 90 = λ C = 2, 43pm Compton-Wellenlänge Deutung des Experiments: Licht besitzt Teilchencharakter oder Elektron besitzt Wellencharakter Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
10 Quellenangaben /photoeffekt/anordnung.png Page/vsc/de/ch/13/pc/spektroskopie/theorie/dispersion/disp5.vscml.html yorks/pro13/v3.pdf Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April / 10
Einführung in die Quantenphysik
Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische
27. Wärmestrahlung. rmestrahlung, Quantenmechanik
25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz
9.3 Der Compton Effekt
9.3 Der Compton Effekt Im Kapitel Photoelektrischer Effekt wurde die Wechselwirkung von Licht mit Materie untersucht. Dabei wird Licht einer bestimmten Wellenlänge beim Auftreffen auf eine lichtempfindliche
1.2 Grenzen der klassischen Physik Michael Buballa 1
1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:
Vorlesung 3: Das Photon
Vorlesung 3: Das Photon Roter Faden: Eigenschaften des Photons Photoeffekt Comptonstreuung ->VL3 Gravitation Plancksche Temperaturstrahlung ->VL4 Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/
14 Teilchen und Wellen
14 Teilchen und Wellen 14.1 Teilchencharakter von elektromagnetischen Wellen 1411 14.1.1 Strahlung schwarzer Körper 14.1.2 Der Photoeffekt 14.1.3 Technische Anwendungen 14.2 Wellencharakter von Teilchen
22. Wärmestrahlung. rmestrahlung, Quantenmechanik
22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von
27. Wärmestrahlung. rmestrahlung, Quantenmechanik
24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung
Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?
Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova
14. Teilchen und Wellen
Inhalt 14.1 Strahlung schwarzer Körper 14.2 Der Photoeffekt 14.3 Der Comptoneffekt 14.4 Materiewellen 14.5 Interpretation von Teilchenwellen 14.6 Die Schrödingergleichung 14.7 Heisenberg sche Unschärferelation
Physik IV Einführung in die Atomistik und die Struktur der Materie
Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH
Optik und Wellenmechanik (WS 2011/ physik311) Stefan Linden Physikalisches Institut Universität Bonn
Optik und Wellenmechanik (WS 2011/2012 - physik311) Stefan Linden Physikalisches Institut Universität Bonn Leistungspunkte physik311 : 7 LP Nachweis: Erfolgreiche Teilnahme an Übungen und Klausur Zulassung
Der Welle-Teilchen-Dualismus
Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.
23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik
23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie
Moderne Physik. Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte. LC-Kreis - Schwingkreis. Sinusoszillator (HF-Generator)
LC-Kreis - Schwingkreis Moderne Physik Kondensator (C Kapazität) Spule (L Induktivität) Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte I max I max U max U max Elektromagnetische
= 6,63 10 J s 8. (die Plancksche Konstante):
35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese
I. Geschichte der Röntgenstrahlen
I. Geschichte der Röntgenstrahlen Entdeckung durch Wilhelm Conrad Röntgen 1895 (erhält dafür 1. Nobelpreis 1901): Auslöser der (zufälligen) Entdeckung waren die zu dieser Zeit besonders intensiven Untersuchungen
3. Kapitel Der Compton Effekt
3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen
Optik Licht als elektromagnetische Welle
Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor
3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus
3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus Albert Einstein 1879-1955, im Jahr 1912 Einstein war der erste, der die Quanten Plancks und die Formel E = h ν für die
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 Inhaltsverzeichnis 1 Photoeffekt 1 2 Comptoneffekt 3 3 Bragg Streuung 4 4 Strahlungsgesetze 5 1 Photoeffekt Der Photoeffekt wurde erstmals 1839
Elektromagnetische Wellen und Optik E3/E3p
Elektromagnetische Wellen und Optik E3/E3p Vorlesung: Mo 8:20-9:50 Do 12:15-13:45 mit Pause Joachim Rädler Bert Nickel Christian Hundschell www.physik.uni-muenchen.de/lehre/vorlesungen/wise_18_19/e3-optik
Im folgenden Kapitel soll nun die Teilcheneigenschaften des Lichts untersucht werden.
9. Quantenphysik Albert Einstein entwickelte Anfang des 20. Jahrhunderts seine spezielle und allgemeine Relativitätstheorie für die er bis heute bekannt ist. Zur gleichen Zeit leistete Einstein jedoch
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode
Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik
Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation eine Einführung in die Quantenmechanik 1) Die Hohlraumstrahlung: Geburt der Quantenmechanik Die kosmische Hintergrundstrahlung
Von der Kerze zum Laser: Die Physik der Lichtquanten
Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen
Stundenprotokoll vom : Compton Effekt
Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend
ÜBER KURZE UND LANGE PHOTONEN. Oder was ist Licht überhaupt Thomas Feurer Uni Bern
ÜBER KURZE UND LANGE PHOTONEN Oder was ist Licht überhaupt Thomas Feurer Uni Bern Albert Einstein 1916: WAS MEINT EIN GENIE DAZU... Für den Rest meines Lebens will ich nachdenken, was Licht ist.... Albert
Der photoelektrische Effekt
Der photoelektrische Effekt h ν I ph Abnahme der negativen Ladung auf einer Platte bei Beleuchtung mit UV-Strahlung. Lichtinduzierte Elektronenemission (Lenard, 1902). Erklärung durch A. Einstein (1905)
Physik für Naturwissenschaften. Dr. Andreas Reichert
Physik für Naturwissenschaften Dr. Andreas Reichert Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Termine Klausur: 5. Februar?, 12-14 Uhr,
Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze
Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden
Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell
Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.7 - Photoeffekt Durchgeführt am 29.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer [email protected]
Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.
Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei
Quantenmechanik I. Jens Kortus TU Bergakademie Freiberg
Quantenmechanik I Jens Kortus [email protected] TU Bergakademie Freiberg Literatur: Fließbach, Quantenmechanik, Spektrum Akademischer Verlag Nolting, Grundkurs Theoretische Physik, Quantenmechanik
Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler
Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen
OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Die
Quantenphänomene und Strahlungsgesetze
Quantenphänomene und Strahlungsgesetze Ludwig Prade, Armin Regler, Pascal Wittlich 17.03.2011 Inhaltsverzeichnis 1 Quantenphänomene 2 1.1 Ursprünge....................................... 2 1.2 Photoeffekt......................................
Einleitung: Experimentelle Hinweise auf die Quantentheorie
Kapitel 1 Einleitung: Experimentelle Hinweise auf die Quantentheorie c Copyright 2012 Friederike Schmid 1 1.1 Historische Experimente ( historisch : Aus der Zeit, in der die Quantentheorie entwickelt wurde)
Wellen als Naturerscheinung
Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.
Radiologie Modul I. Teil 1 Grundlagen Röntgen
Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE
Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung
Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:
Physik auf grundlegendem Niveau. Kurs Ph
Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden
1 Mechanik geradlinige gleichförmige Kinematik. Bewegung
1 Mechanik geradlinige gleichförmige Kinematik Bewegung 2 Mechanik Durchschnittsgeschwindigkeit/Intervallgeschwindigkeit Kinematik 3 Mechanik geradlinig gleichmäßig Kinematik beschleunigte Bewegung 4 Mechanik
Klassische Physik - Quantenpysik
Klassische Physik - Quantenpysik Elektronenfalle aus 40 Eisen- Atomen auf einer Kupfer Oberfläche www.almaden.ibm.com Klassische Physik um 1900 Teilchen und Wellen Rastertunnelmikroskop Wechselwirkungsfreie
Materiewellen und Welle-Teilchen-Dualismus
Materiewellen und Welle-Teilchen-Dualismus Vortrag zur Vorlesung Nanostrukturphysik Saarbrücken, den Vortragender: Tobias Baur > Welle-Teilchen-Dualismus Quantenobjekte sind gleichzeitig Wellen und Teilchen
Photonen in Astronomie und Astrophysik Sommersemester 2015
Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend I. EIGENSCHAFTEN VON PHOTONEN I.1 Photonen als elektro-magnetische Wellen I.3 Wechselwirkung mit Materie I.3.1 Streuprozesse
Grundlagen der Quantentheorie
Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische
5. Kapitel Die De-Broglie-Wellenlänge
5. Kapitel Die De-Broglie-Wellenlänge 5.1 Lernziele Sie können die De-Broglie-Wellenlänge nachvollziehen und anwenden. Sie kennen den experimentellen Nachweis einer Materiewelle. Sie wissen, dass das Experiment
Doppelspaltexperiment. Katarzyna Huzar Angela Streit
Doppelspaltexperiment Katarzyna Huzar Angela Streit Überblick Thomas Young Wellen-Teilchen-Dualismus Doppelspalt mit Maschinengewehr Beugung und Interferenz Doppelspalt mit Licht Vergleich klassische Physik
Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik. Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen
Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen Inhalt 1. Was ist Licht? 2. Was ist Farbe? 3. Prisma und Regenbogen 4.
Physik III. Mit 154 Bildern und 13 Tabellen
Physik III Optik, Quantenphänomene und Aufbau der Atome Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Wolfgang Zinth und Hans-Joachim Körner 2., verbesserte Auflage Mit
43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung
43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-
Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)
Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16
Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik
MECHANIK I SCHWERPUNKT & GLEICHGEWICHT, IMPULS- & ENERGIEERHALTUNG MITTWOCH 26.10.16 UND 02.11.16 GRUPPE C (VORGABE) Schwerpunkt (stabiles, labiles und indifferentes Gleichgewicht), Hebelgesetze, Drehmoment,
2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)
2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender
Lloydscher Spiegelversuch
1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,
Curriculum Fach: Klasse: Hölderlin-Gymnasium Nürtingen. Physik
Kursstufe (4-stündig) Curriculum Fach: Klasse: Physik Kerncurriculum Standard Inhalte Zeit Methoden Bemerkungen (Bildungsstandards nach S. 191, BP 2004) Das elektrische Feld (Elektrostatik) elektrische
1 Versuchsbeschreibung Versuchsvorbereitung Versuch: Wellennatur des Elektrons... 3
Versuch: EB Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: M. Kreller i.a. Dr. Escher Bearbeitet: A. Otto Aktualisiert: am 24. 02. 2011 Elektronenbeugung Inhaltsverzeichnis 1 Versuchsbeschreibung
Quantenobjekte. M. Jakob. 16. September Gymnasium Pegnitz
Quantenobjekte M. Jakob Gymnasium Pegnitz 16. September 2015 Inhaltsverzeichnis 1 Wellen- und Teilchencharakter des Lichts (6 Std.) Wellencharakter Teilchencharakter Photonen Das Planck sche Wirkungsquantum
Vom Doppelspalt zum Quantencomputer
Vom Doppelspalt zum Quantencomputer Aktuelle Physik in der Schule Herbert Rubin Aufbau der Lerneinheit Vorstellungen von Licht Huygens Newton Young 1704 1678 1804 Linienspektren Äusserer Photoeffekt Hallwachs-Effekt
Welleneigenschaften von Elektronen
Seite 1 von 7 Welleneigenschaften von Elektronen Nachdem Robert Millikan 1911 die Ladung des Elektrons bestimmte, konnte bald auch seine Ruhemasse gemessen werden. Zahlreiche Experimente mit Elektronenstrahlen
Ein schwarzer Körper und seine Strahlung
Quantenphysik 1. Hohlraumstrahlung und Lichtquanten 2. Max Planck Leben und Persönlichkeit 3. Das Bohrsche Atommodell 4. Niels Bohr Leben und Persönlichkeit 5. Wellenmechanik 6. Doppelspaltexperiment mit
PS3 - PL11. Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012
PS3 - PL11 Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012 Inhaltsverzeichnis 1 Szintillationskristall NaJ(Tl) 1 1 1 Szintillationskristall NaJ(Tl) 1 Szintillationskristall
I GEOMETRISCHE OPTIK. Physik PHB3/4 (Schwingungen, Wellen, Optik) 1 Grundlagen und Grundbegriffe
0_GeomOptikEinf1_BA.doc - 1/8 I GEOMETRISCHE OPTIK 1 Grundlagen und Grundbegriffe Optik ist die Lehre von der Ausbreitung elektromagnetischer Wellen (üblicherweise beschränkt auf den sichtbaren Bereich)
Klausur -Informationen
Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25
Die Teilchenstrahlung
GoBack Die Teilchenstrahlung c Markus Baur October 19, 2010 1 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle, deren Bestandteil Photonen sind. 2 2 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle,
Eigenschaften des Photons
Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben
PeP Physik erfahren im ForschungsPraktikum
Physik erfahren im ForschungsPraktikum Vom Kerzenlicht zum Laser Kurs für die. Klasse, Gymnasium, Mainz.2004 Daniel Klein, Klaus Wendt Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz
3. Klausur in K2 am
Name: Punkte: Note: Ø: Profilfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am 4.3. 05 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h =
Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik
Welle-Teilchen- Dualismus Miguel Muñoz Rojo Seminar zur Quantenphysik I. Korpuskelcharakter von Wellen Gesetz von Planck Lichtelektrische Effekt Compton Effekt Gesetz von Planck Die Energie von einem Oszillator
Kälter als der Weltraum Mit Licht zum Temperaturnullpunkt
Universität Hamburg Institut für Laser-Physik Andreas Hemmerich Kälter als der Weltraum Mit Licht zum Temperaturnullpunkt Was ist Wärme? Warmes und kaltes Licht Kühlen mit Licht Gase am absoluten Nullpunkt:
Der Photoelektrische Effekt
Vanessa Peinhart, Robert Strohmaier, Arnold Berger, Andreas Deisl, Dieter Hasenleithner, Roland Krenn Der Photoelektrische Effekt Elektronen können aus einem Metall befreit werden, indem man seine Oberfläche
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen
Inhalt. Didaktische und Methodische Hinweise. Kompetenzen. Kontext: Erforschung des Lichts
Kontext: Erforschung des Lichts Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden? liche Schwerpunkte: Die Erforschung des Lichts als Grundlage zur Beschreibung mittels Modellvorstellungen
Lösungen zur Experimentalphysik III
Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem
7.Lichtquanten. Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte.
7.1 Der Photoeffekt 7.Lichtquanten Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte. Hg Lampe Zn Platte Elektroskop Ist die
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov [email protected] Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2
Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt
Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Andreas Kellerer (BSG Memmingen) Prof. Dr. Reinhold Rückl (Universität Würzburg) Die Rahmenbedingungen: Unterrichtsprojekt für den Kurs
Der Fotoeffekt seine Bedeutung für die Beschreibung des Lichts VORANSICHT
5. Der Fotoeffekt 1 von 22 Der Fotoeffekt seine Bedeutung für die Beschreibung des Lichts Doris Walkowiak, Görlitz Was ist das Licht? Diese einfache Frage lässt sich nur schwer beantworten. Bekannte Wissenschaftler,
5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment
5.9.4 ****** 1 Motivation Ein mit Kohlendioxid gefüllter Luftballon wirkt für Schallwellen als Sammellinse, während ein mit Wasserstoff gefüllter Ballon eine Zerstreuungslinse ergibt. Experiment Abbildung
2. Wellenoptik Interferenz
. Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher
Äußerer lichtelektrischer Effekt Übungsaufgaben
Lösung: LB S.66/1 Ein Modell ist ein Ersatzobjekt für ein Original. Es stimmt in einigen Eigenschaftenmit dem Original überein, in anderen nicht. Einsolches Modell kann ideel (in Form eines Aussagesystems)
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert A02 Photoeffekt (Pr_PhII_A02_Photoeffekt_7, 24.10.2015) 1. 2. Name Matr. Nr. Gruppe Team
Klausurtermin: Nächster Klausurtermin: September :15-11:15
Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: [email protected] direkt oder im Tutorium
