1.2.2 Gravitationsgesetz
|
|
|
- Anna Brodbeck
- vor 9 Jahren
- Abrufe
Transkript
1 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene Fahstahl übesteicht in gleichen Zeiten gleiche Flächen 3. Die Quadtate de Umlaufzeit vehalten sich wie die ditte Potenz de goßen Halbachsen ihe Bahnellipsen. Keple ( ) Veeinfachung: Annahme eine Keisbewegung T = const. (1.-6) 3
2 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz (Fotsetzung) Aus Lex secunda fü Keisbewegung F = -m ω (1.-7) (aus 1.-3 & 1.1-6) Mit 1..6 und ω=π/t F = -m ((π) /Τ ) = -const. m/ e (1.-8) Aus Lex tetia Anziehungskaft F = F(m 1, m ) F~m 1 und F~m
3 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Seien m 1 und m die jeweiligen Massen de beiden Köpe, so ist die Anziehungskaft gegeben duch m m G 1 F G = (1.-5) Gavitationskonstante G = 6, Nm /kg (1.-6) Zum esten Mal 1798 von H.Cavendish ( ) mit Gavitaionswaage bestimmt
4 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz (Fotsetzung) Beispiel: Gewicht eines Menschen Nomaleweise mit Fedewaage gemessen Auslenkung x popotional zu Kaft F F=-k x (1..11) Kaft und nicht Masse wid gemessen!
5 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz (Fotsetzung) Tipp zum Abnehmen neue Wohnot Mond m Ede = 5, kg =6, m m Mond = 0, kg =1, m g = mg (1.-1) g m G m Ede s = = Ede m G m s Mond g = = = Mond g Ede (1.-1a) (1.-1b) Ede 75kg Mond 1kg
6 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz (Fotsetzung) Edlösung zum Abnehmen ungenügend mg Fallbeschleunigung in Höhe h aus g = (1.-1) g( h) R ( R + h) = g (1.-13) g = kg m/s fü Höhe R = 6, m Höhe h des Mount Eveest ca. 9 km g M. Eveest = g 74,8kg 75kg
7 1..3 Potentielle Enegie Abeit (diffeentiell) A=F s (1.-4) A= Fds Abeit (1.-5) Veschiebungsabeit Wenn Kaft de Bewegung entgegenwikt, so ist fü Veschiebung ohne Beschleunigung eine entgegengesetzt gleich goße Kaft -F efodelich Beispiel: Abeit gegen die Schwekaft A= Fds = m g h cos(π ) = m g h (1.-14) F N VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) h Auf allen Bahnkuven wid die gleiche Abeit W=m g h veichtet!
8 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1..3 Potentielle Enegie (Fotsetzung) Konsevative Käfte Käfte, bei denen die gegen sie geichtete Abeit nu von Anfang und Endpunkt de Bewegung abhängt, d.h. unabhängig vom Weg ist. Gespeichete Abeit potentielle Enegie Enegie: Enegie kennzeichnet das in einem System von Teilchen enthaltene Abeitsvemögen
9 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1..3 Potentielle Enegie (Fotsetzung) Potentielle Enegie (1.-15) E Pot = E( ) E( ) = Fds E( ) = E( ) 1 1 Pot Pot o o Fds Beispiel: Potentielle Enegie in Höhe h Sei E( 1 =0) = 0 dann ist (Benutzung von 1.-14) E h) Pot = m g h ( (1.-16)
10 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1..4 Leistung und kinetische Enegie Leistung Die Ändeung de Enegie po Zeiteinheit P = de dt (1..17) [P] = 1 J/s = 1 W (Watt) Kinetische Enegie Mutipliziee (1.-3) mit d/dt. F & = m & & = d dt 1 m & kinetische Enegie E kin 1 m & 1 m v = = (1.-18)
11 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1..5 Mechanische Enegieehaltungssatz In einem konsevativen System bleibt die Gesamtenegie (mechanische Enegie) E g =E kin +E pot (1.-19) konstant. Gesamtenegie ist Ehaltungsgöße
12 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1..6 Nichtkonsevative Käfte: Reibung Reibungskäfte (Beispiele) Coulombeibung (tockene Reibung) F RH =µ 0 F N (Hafteibung, 1.-0) F RG =µf N (Gleiteibung, 1.-1) Newton Reibung F RH =1/ c w ρ A v (1.-) Queschnitt des Köpes A, Widestandskoeffzient c w Geschwindigkeit v, Dichte ρ = Masse/Volumen (1.-3)
13 1.3 Systeme von Massepunkten VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) Impulsehaltung: Wenn keine äußeen Käfte anliegen, so bleibt de Gesamtimpuls ehalten p ges = p = m i i i i v i = 0 Beispiel Stoß zweie Teilchen v m v = m v + m v m1 1vo vo 1 1nach nach (1.3-1) + (1.3-) Selbst bei Kenntnis alle Anfangswete ( vo ) noch zwei Unbekannte v 1nach & v nach!
14 1.3 Systeme von Massepunkten Fotsetzung (1.3-3) Enegiebilanz: m ( v ) + m ( v ) = m ( v ) + m ( v ) + 1 1vo vo 1 1nach nach Q wähend des Stosses in innee Enegie (z.b. duch Vefomung) umgewandelte Anteil Q = 0 elastische Stoß Beispiel: Unelastische Stoß zweie Teilchen v 1nach = v nach = v nach Q > 0 m v + m v = ( m + m ) v (1.3-4) 1 1vo vo 1 nach VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) Q
15 1.3 Systeme von Massepunkten Fotsetzung Beispiel: Schiefe elastische Stoß eines Teilchen auf ein uhendes Teilchen mit gleiche Masse Aus 1.3- folgt mit gleiche Masse und v vo =0 v = v + v 1vo 1nach nach (1.3-5) Aus folgt mit gleiche Masse und v vo =0 sowie Q=0 (elastisch) ( v ) = ( v ) + ( v ) 1 vo 1nach nach (1.3-6) v 1nach v nach v 1vo v 1nach senkecht zu v nach VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug )
16 VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) Dehbewegungen Kinetische Enegie eines Massenpunktes bei gleichfömige Keisbewegung m v = m ω = Jω ( ) (1.3-7) mit Massentägheitsmoment J = m [J]=1 kg m (1.3-8) Bei vielen Massepunkten m i gilt entspechend J = Σ m i i = dm (1.3-9) Rotationsenegieändeung (nutze 1.1-1d & 1.-5) de = F d =F (dφx) = (xf) dφ (1.3-10) M = (xf) (1.3-11) Dehmoment
17 1.3.1 Dehbewegungen Leistung P (nach 1.-18) de d 1 P = = Jω = dt dt J & ωω (1.3-1) Andeeseits (nach mit ) de P = = Mω dt (1.3-13) Bewegungsgleichung fü otieende Köpe M d = J & ω = ( Jω) = dt L& (1.3-14) mit Dehimpuls L = Jω (1.3 15) Fü L gilt entspechend Dehimpulsehaltungssatz VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug )
18 Tabelle mit jeweils analogen Gößen: Tanslation Länge L Rotation Winkel ϕ Masse m Tägheitsmoment J (auch Θ) Geschwindigkeit v Impuls p=m v Kaft F Bewegungsgleichung F=dp/dt (. Newtonsches Axiom) Winkelgeschwindigkeit ω Dehimpuls L=J ω Dehmoment M= F Bewegungsgleichung M=dL/dt kinetische Enegie E kin =1/ m v Rotationsenegie E ot =1/ J ω VAK , WS03/04 J.L. Vehey, (CvO Univesität Oldenbug )
Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!
De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem
Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.
Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung
6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:
6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes
Wichtige Begriffe der Vorlesung:
Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu
EP WS 2009/10 Dünnweber/Faessler
6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes
5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation
Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls
5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße
5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,
Physik für Nicht-Physikerinnen und Nicht-Physiker
FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de
(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:
f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt
I)Mechanik: 1.Kinematik, 2.Dynamik
3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und
I)Mechanik: 1.Kinematik, 2.Dynamik
3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen
{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.
Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)
Physik für Pharmazeuten MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen
Physik fü Phamazeuten MECHANIK II Abeit, Enegie, Leistung Impuls Rotationen Mechanik II 1.3 Abeit, Enegie, Leistung mechanische Abeit W = F Einheit [ W] = Nm = kgm s = J (Joule) Abeit ist Skala (Zahl),
Wichtige Begriffe dieser Vorlesung:
Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de
I)Mechanik: 1.Kinematik, 2.Dynamik
3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen
e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.
Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung
Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler
Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives
Physik A VL6 ( )
Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete
Physik für Pharmazeuten und Biologen MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen
Physik fü Phamazeuten und Biologen MECHANIK II Abeit, Enegie, Leistung Impuls Rotationen Mechanik II 1.3 Abeit, Enegie, Leistung mechanische Abeit W = F Einheit 2 2 [ W] = Nm = kgm s = J (Joule) Abeit
{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)
Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2
Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf
Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft
b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum:
b) Dehimpuls De Bewegungszustand eines otieenden Köpes wid duch seinen Dehimpuls L beschieben. Analog zum Dehmoment nimmt de Dehimpuls mit dem Impuls p und dem Bahnadius zu. Fü Massenpunkt auf Keisbahn:
Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1
Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu
Einführung in die Physik
Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00
Zusammenfassung der Vorlesung PPh (Einführung in die Physik für Pharmazeuten und Biologen) ohne Garantie auf Vollständigkeit
Zusammenfassung de Volesung PPh (Einfühung in die Physik fü Phamazeuten und Biologen) ohne Gaantie auf Vollständigkeit Inhalt: -Mechanik -Hydodynamik -Themodynamik -Elektizitätslehe -Optik Mechanik allgemein
Mechanik. I.3 Erhaltungssätze. Impuls, Drehimpuls, Energie
Mechanik I.3 Ehaltungssätze Impuls, Dehimpuls, Enegie De Impuls Eine Masse m, die sich mit de Geschwindigkeit v bewegt, hat den Impuls p p m v p De Impuls ist eine Vektogöße; die Einheit des Impulses ist
Mehrkörperproblem & Gezeitenkräfte
508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf
6 Die Gesetze von Kepler
6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de
Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1
Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln
Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.
Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig
Inhalt der Vorlesung Experimentalphysik I
Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende
6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km
00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf
Übungsaufgaben zum Thema Kreisbewegung Lösungen
Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine
Dynamik. 4.Vorlesung EP
4.Volesung EP I) Mechanik. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft Vesuche: Raketenvesuche: Impulsehaltung
Bewegungen im Zentralfeld
Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle
Experimentalphysik E1
Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html
5 Gleichförmige Rotation (Kreisbewegung)
-IC5-5 Gleichfömige Rotation (Keisbewegung) 5 Definitionen zu Kinematik de Rotation 5 Bahngeschwindigkeit und Winkelgeschwindigkeit Die bei de Rotationsbewegung (Abb) geltenden Gesetze sind analog definiet
Die gleichförmig beschleunigte Bewegung. a ( t ) = a. [ s]
a [ m ] s Die gleichfömig beschleunigte Bewegung a a ( t ) a [ m s ] t[ s] ( t ) t 0 a dt ( t ) a t + 0 s 0 [ m ] s 0 t t [ s] [ s] t ( a t ) s ( t ) + 0 dt a s + ( t ) t + 0 t s 0 0 Einfühung in die Expeimentalphysik
KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6
KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ
Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.
Gavitation Massen zeihen sich gegenseitig an. Aus astonomischen Beobachtungen de Planetenbewegungen kann das Gavitationsgesetz abgeleitet weden. Von 1573-1601 sammelte Tycho Bahe mit bloßem Auge (ohne
MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen
MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein [email protected] Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls
Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)
Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, [email protected] 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
4.2 Allgemeine ebene Bewegung. Lösungen
4. Allgemeine ebene Bewegung Lösungen Aufgabe 1: a) Massentägheitsmoment: Fü das Massentägheitsmoment eine homogenen Kugel gilt: J= 5 m Zahlenwet: J= 5 8 kg 0,115 m =0,0405 kgm b) Gleitstecke: Schwepunktsatz:
Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie
Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
Experimentalphysik E1
Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.
Zusammenfassung Θ Θ. 1 Iω KER = = vt. R a rad. Trägheitsmoment. Kinematik. Rotation. Tennis First service Andre Agassi rpm (165 km/h),
9b otation Zusammenfassung Winkel (ad) & Θ Θ ω Auguste odin La main de Dieu ω Winkelgeschwindigkeit (ad/s) v ω & ω Winkelbeschleunigung (ad/s²) α α a a Tägheitsmoment n i tan α + tan a ad m i dm i a ad
Inhalt der Vorlesung A1
PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:
Lösung V Veröentlicht:
1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2
Drehbewegung Der Drehimpuls Definition des Drehimpulses
Kapitel 10 Dehbewegung 10.1 De Dehimpuls Bei de Behandlung de Bewegung eines Teilchens haben wi den Impuls eines Teilchens definiet (Siehe Kap..). Diese Gösse wa seh hilfeich, wegen de Ehaltung des Gesamtimpulses
1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung
1.3. Statik 1.3.1. Käfte Zug- und Duckfede, Expande, Kaftmesse: Je göße die Kaft, desto göße die Vefomung mit Kaftmesse an OHP-Pojekto, Stuhl, ode Pesente ziehen Je göße die Kaft, desto göße die Beschleunigung.
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
Einführung in die Physik I. Elektromagnetismus 1
infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften
Ferienkurs Experimentalphysik Übung 1-Musterlösung
Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen
Allgemeine Bewegungsgleichung
Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
7.1 Schwerkraft oder Gewichtskraft 7.2 Gravitation Massenanziehung 7.3 Federkraft elastische Verformung 7.4 Reibungskräfte
Inhalt 1 7 Veschiedene Käfte 7.1 Schwekaft ode Gewichtskaft 7. Gavitation Massenanziehung 7.3 Fedekaft elastische Vefomung 7.4 Reibungskäfte 7.4.1 Äußee Reibung zwischen Festköpeobeflächen 7.4.1.1 Haftung
Grundwissen Physik 10. Klasse
Chistoph-Jacob-Teu-Gymnasium Lauf Juni 9 Gundwissen Physik 1. Klasse Geozentisches Weltbild Aistoteles (384-3 v. Ch.), 1. Astonomische Weltbilde und Keplesche Gesetze Im Mittelpunkt de Welt befindet sich
Magnetismus EM 63. fh-pw
Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von
9. Der starre Körper; Rotation I
Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch
Dynamik der Rotationsbewegung g III. Kreiselbewegungen
Physik A VL3 (08..202) Dynamik de Rotationsbewegung g III Keiselbewegungen Keiselbewegungen De Zusammenhang zwischen Dehimpuls und Dehmoment wid beim Keisel deutlich Definition eines Keisels: Keisel =
Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:
Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016
Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,
. De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
