Regelungstechnik Labor

Größe: px
Ab Seite anzeigen:

Download "Regelungstechnik Labor"

Transkript

1 Rgngstchn-Labor Rgngstchn Labor Dgta Smaton nr otorrgstrc Prof. Dr. Gs St 1 von 8

2 Rgngstchn-Labor Enführng Im Rahmn dss Laborvrschs wrd mtts dgtar Smaton dr systmatsch Entwrf nr Prozssrgng rprobt. D drt nstrng ds otors so drch dn PC mt Hf ds Programms DOR vorgnommn wrdn. Z ds Vrschs st dr anschßnd Vrgch dr Ergbnss mt dr Smaton, sow das Errnn ds Umgangs mt DOR. Prozss-Strtr nd Datn D nachfognd bbdng zgt schmatsch dn fba dr otorrgstrc. PC PC-IF Systm-IF mch. goppt magn. goppt D U br Stgd D U r Stgd otor Tacho Brms D U n Ftr Dr otor ann n zw ntrschdchn Btrbsartn btrbn wrdn. In dr ntrnn Btrbsart wrd d Drhzah übr d Strspannng am Systm-IF ngstt. In dr xtrnn Btrbsart ann dr otor übr dn PC angstrt wrdn. D Strspannng ntsprcht hrb n bdn Fän nm Drhzahbrch von ca bs /mn. D ngstt Drhzah wrd vom angschossnn Tachognrator gmssn. ftrtnd Störngn wrdn anschßnd drch n Sbgd hrasgftrt. Das daras gwonnn Sgna (Spannng) wrd n dr /D-Wandr-Kart m Rchnr dgtasrt. Das Brmsmomnt ann bnfas übr das Systm-IF n gchr Ws n- nd asgschatt wrdn. Prof. Dr. Gs St 2 von 8

3 Rgngstchn-Labor Tchnsch Datn Enganggröß sgangsgröß Stgd 0 V -_- 2,5 V - 5 V -24 V - 0 V V DC-otor -24 V 0 V V /mn /mn Tachognrator /mn /mn -9,91 V - 0V - +9,91 V Das Sbgd ann as Übrtragngsgd mt PT1 Vrhatn angnommn wrdn. D Paramtr snd: Ft. = 1 T Ft 0, 1s Enstmnt an dm Systm - Intrfac Drhzah ntrn übr Potntomtr m Brch von ca. +/ /mn nstbar xtrn übr Rchnr nstbar s. Tchnsch Datn Lastmomnt ntrn übr Schatr nstbar xtrn übr Rchnr nstbar s. Tchnsch Datn otorstrom übr Schatr 1-2 nstbar 1 Imot=2,66 2 Imot=6,66 Prof. Dr. Gs St 3 von 8

4 Rgngstchn-Labor D Paramtr sow d rt ds Übrtragngsvrhatns für d Strc önnn dr nachfogndn bbdng ntnommn wrdn. bbdng 1: Übrgangsfnton ds otors Vrschsdrchführng 1. Smaton 1. Entwcn S d Bocschatbdr dr nznn Komponntn (Stgd, otor, Tacho, Sbgd) sow drn Paramtr. 2. Entwrfn S das Bocschatbd dr ompttn Rgstrc znächst ohn Brücschtgng dr Brms. 3. Stn S d DGL nd d Frqnzgangfnton dr Rgstrc af. odrn nd paramtrrn S d Rgstrc n DOR 4. Nhmn S n Sprngantwort dr Smaton mt = 1,66 V af nd spchrn S d Ergbnss n n Dat. 5. Nhmn S n Sprngantwort dr ran Strc mt =1,66 V af. Dab son d Wrt as dr Smaton zm Vrgch mt afgzchnt wrdn. 6. Erärn S d bwchngn. Prof. Dr. Gs St 4 von 8

5 Rgngstchn-Labor HINWEIS: Vor dm rstn ran Laf mss m Boc anaogr sgang das Fd tztn Wrt dr Smaton hatn atvrt sn. Wtrhn st daraf z achtn, dass m nü Smaton dr nüpnt Echtzt atvrt st. Startn S d Programmasführng nd stn S anschßnd dn Schatr am Systm - Intrfac af xtrn. nrrs dr Gchstrommaschn R U = + + r U r L = L d = n d U = () t R + L + n vrnachässgt Σ = 0 m + j = m = () t j d = J ω = 2 π J dn () t = + dn π J 2 () t = 2π + J dn dn U = + J R + 2π n 2π J R dn + n = U R T m n0 n mt J = 3 2 8,78 10 gm 1 = 2,167 Vs = 0, 0708 Nm V R = 3, 62 wrd T ot = 6, 1s Prof. Dr. Gs St 5 von 8

6 Rgngstchn-Labor Knnnn dr Wrbstrombrms s dn Knnnn st d qadratsch bhänggt ds Brmsmomnts von dr Engangsspannng dr Brms rschtch. Im Brch 1500<n<3000 st das Brmsmomnt nährngsws nabhängg von n. Dshab wrd ( U ) 2 br = gstzt. 1 br Nm Für 1 wrd as dr Knnn U br = 1V n gmtttr Wrt von 0,016 2 angnommn. V Prof. Dr. Gs St 6 von 8

7 Rgngstchn-Labor Bocschatbd dr Strc mt Lastmomnt U br br st - Tot mss Ft TFt U + U n Das Lastmomnt wrt hr as Vrrngrng dr otorspannng. U = n mt R n = nd ( ) 2 br = 1 Ubr = wrd R U = mt ( U ) 2 1 br br R = 1 wrd U = ( ) 2 br U br 1 br = 0.82 V n n1 n2 U br U Prof. Dr. Gs St 7 von 8

8 Rgngstchn-Labor 2. fstn ds Rgrss 1. Entwrfn S das Bocschatbd für dn Führngs- nd Störfa dr Rgstrc ntr Brücschtgng ds Lastmomnts (Brms). 2. Führn S anschßnd d Smaton znächst mt nm P-Rgr drch nd rmttn S d optman Rgnstngn. Drcn S hr Ergbns as nd bwrtn S s. 3. Vrwndn S m nächstn Schrtt nn PI-Rgr nd rmttn S ach hr d Rgrparamtr. 4. Führn S n Optmrng dr Paramtr nach dm IE-Gütrtrm drch nd vrgchn S hr Rgrparamtr mt dn optmrtn Paramtrn. 5. Domntrn S Ihr Ergbnss. HINWEIS: In dn Rgrparamtrn st n Bgrnzng von ±2,5V nzstn, da d /D-Wandrart nr Spannngn zwschn ±2,5V vrarbtn ann. Schatng zr fnahm dr ran Sprngantwort Dat: rastrcotor.en Prof. Dr. Gs St 8 von 8

Checkliste Wärmebrücken

Checkliste Wärmebrücken Enrg Chcklst Wärmbrückn Gmnd / Bavorhabn (Bzchnng nd Adrss) Projktvrfassng (Nam nd Adrss) Ort, Datm, Untrschrft > all bm Bavorhabn vorhandnn Wärmbrückn snd n dr Übrscht angkrzt ja nn > bm Enzlbatlnachws

Mehr

4. Berechnung von Transistorverstärkerschaltungen

4. Berechnung von Transistorverstärkerschaltungen Prof. Dr.-ng. W.-P. Bchwald 4. Brchnng on Transistorrstärkrschaltngn 4. Arbitspnktinstllng Grndorasstzng für dn Entwrf inr Transistorrstärkrstf ist di alisirng ins Arbitspnkts, m dn hrm im Knnlininfld

Mehr

Wärmebrücken bei Gebäudemodernisierungen. Ratgeber für Baufachleute

Wärmebrücken bei Gebäudemodernisierungen. Ratgeber für Baufachleute Wärmbrückn b Gbädmodrnsrngn Ratgbr für Bafachlt Dsr Ratgbr ntrstützt Fachlt dab, d Wärmbrückn von Fassadndämmngn nzschätzn nd gt Lösngn z plann nd aszführn. Er nthält nfach Rchnwrt, sow Asführngsmpfhlngn

Mehr

Erläuterungen zu Leitlinien zum Umgang mit Markt- und Gegenparteirisikopositionen in der Standardformel

Erläuterungen zu Leitlinien zum Umgang mit Markt- und Gegenparteirisikopositionen in der Standardformel Erläutrungn zu Ltlnn zum Umgang mt Markt- und Ggnpartrskopostonn n dr Standardforml D nachfolgndn Ausführungn n dutschr Sprach solln d EIOPA- Ltlnn rläutrn. Währnd d Ltlnn auf Vranlassung von EIOPA n alln

Mehr

Bundesministerium für Verkehr, Bau und Stadtentwicklung. Bekanntmachung der Regeln für Energieverbrauchskennwerte im Wohngebäudebestand

Bundesministerium für Verkehr, Bau und Stadtentwicklung. Bekanntmachung der Regeln für Energieverbrauchskennwerte im Wohngebäudebestand Bundsmnstrum für Vrkhr, Bau und Stadtntwcklung Bkanntmachung dr Rgln für nrgvrbrauchsknnwrt m Wohngbäudbstand Vom 30. Jul 2009 Im nvrnhmn mt dm Bundsmnstrum für Wrtschaft und Tchnolog wrdn folgnd Rgln

Mehr

Vorschlag (Endstand) für Normentext zur Berechnung der Lüftungswärmeverluste in EN 12831 (deutsch)

Vorschlag (Endstand) für Normentext zur Berechnung der Lüftungswärmeverluste in EN 12831 (deutsch) Insttut für Tchnsch Gbäudausrüstung Drsdn Forschung und nwndung GmbH Prof. Oschat - Dr. Hartmann - Dr. Wrdn - Prof. Flsmann Vorschlag (Endstand) für Normntxt ur Brchnung dr Lüftungswärmvrlust n EN 12831

Mehr

Das Ziel ist das Ziel

Das Ziel ist das Ziel l tn-wc Tl 2 Das Zl st das Zl (c) 2013 Kathrn Pohnk/ tn-wcl - Slbst-Coachng & Mhr / Das Zl st das Zl / 1 l tn-wc Inhalt Tl 1 1. Enltung 2. Im Rückwärtsgang 3. Schrtt 1 Tl 2 1. Prsonal-Kanban - was st dnn

Mehr

zu den 100 wichtigsten deutschen Wörtern

zu den 100 wichtigsten deutschen Wörtern K Rchtschrbkrt z d 100 wchtgst dtsch Wörtr Ss Schäfr www.zbrms.d 2013 Ds 100 Wörtr kmm dtsch Txt bsdrs häfg vr: d d ch dr s r wr s ds d wr d st f mt cht ht z d br m sgt hb s dm sch m hb htt d ch m km sd

Mehr

chemisches Fortgeschrittenenpraktikum SS 2000

chemisches Fortgeschrittenenpraktikum SS 2000 Physikalisch-chmischs chmischs Fortgschrittnnpraktikum SS Vrsuch F- 3: UV/VIS-Spktroskopi Vrsuchstag: 7.6. Svn Entrlin Grupp 3 18 97 36 174 Vrsuch F-3: UV/VIS-Spktroskopi PC-Fortgschrittnnpraktikum Glidrung:

Mehr

Otoskopie. Subjektiven Verfahren 18.08.2013. ORL Probleme in der Pädiatrie Praxis. Audiometrie. Objektiven Verfahren

Otoskopie. Subjektiven Verfahren 18.08.2013. ORL Probleme in der Pädiatrie Praxis. Audiometrie. Objektiven Verfahren ORL Prolm n dr Pädatr Praxs Krsaal Brn 13.9.2013 Praxsrlants zr pädatrschn Otolog T. Stojan, Zg & Lzrn E. Brch, Lzrn Otoskop Rotaton odr Zg dr Ohrmschl ggn hntn on zr Strckng ds Ghörgangs möglchst wtr

Mehr

Moderne Mietwohnungen Zentral leben im Gallusviertel Frankfurt am Main

Moderne Mietwohnungen Zentral leben im Gallusviertel Frankfurt am Main Modrn Mtwohnungn Zntrl lbn m Gllusvrtl Frnkfurt m Mn Mn Frnkfurt, mn Gllus, Mn Zuhus. Enfch wundrbr Wohnn. 108 Mtwohnungn, provsonsfr 02/03 Wllkommn Hrzlch wllkommn Klyrstrß 39 43, Frnkfurt m Mn Mn FrnkFurt

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Die Normalverteilung. Die Normal- oder Gauß-Verteilung ist die am häufigsten vorkommende Verteilung.

Die Normalverteilung. Die Normal- oder Gauß-Verteilung ist die am häufigsten vorkommende Verteilung. D Normalvrtlung D Normal- odr Gauß-Vrtlung st d am häufgstn vorkommnd Vrtlung. S rd bschrbn durch folgndn funktonaln Zusammnhang G ( ) π S rd durch z Paramtr bschrbn: und Dr Zusammnhang zur nomal-vrtlung

Mehr

1.3.9 Ko- und kontravariante Darstellung vektoriell betrachtet

1.3.9 Ko- und kontravariante Darstellung vektoriell betrachtet 4..9 Ko- und ontravarant Darstun vtor btrachtt Mt H dr Bass aus Gchun.. schrbn wr ür nn bbn Vtor :... ndrsts t auch:... so schßt an Vrch au:..4 d.h. n dr Darstun snd d tatsächch as d ontravarantn Koponntn

Mehr

a) Wie können die Fließeigenschaften kohäsiver Schüttgüter gemessen werden?

a) Wie können die Fließeigenschaften kohäsiver Schüttgüter gemessen werden? Smnar: Flßvrhaltn von Shüttgütrn drholung: a) könnn d Flßgnshaftn kohäsvr Shüttgütr gmssn wrdn? D Flßgnshaftn kohäsvr Shüttgütr snd mt Hlf dr Ergbnss von Shrtsts haraktrsrbar, z.b. mt dm Translatonsshrgrät

Mehr

SCHRITT 1. I - Allgemeine Informationen

SCHRITT 1. I - Allgemeine Informationen SCHRI 1 Am Ntzsbd für Pbc Accss WLAN/LAN D achfod Ntzsbd r d Ntz ds vo coova commcatos GmbH af dm Ara ds Mssztrms Sazbr btrb d vo coova commcatos GmbH d Mssztrm Sazbr GmbH abot WLAN/ LAN. I - Am Iformato

Mehr

Rostaufnahme / Höhenlinienkonstruktion / Flächenberechnung / Massenermittlung

Rostaufnahme / Höhenlinienkonstruktion / Flächenberechnung / Massenermittlung akultät IV partmnt Baungnurwsn Lrstul für raktsc Godäs und Gonformaton Un. rof. r. Ing. Monka Jarosc Rostaufnam / Hönlnnkonstrukton / läcnrcnung / Massnrmttlung Rostaufnam,0-79, - 0 7,9 0 9 0 -,7-0 7 0

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Das Phasendiagramm des 3-Zustands- Pottsmodells

Das Phasendiagramm des 3-Zustands- Pottsmodells Das Phasndagramm ds 3-Zustands- Pottsmodlls Das Potts-Modll n Erwtrung ds Isng-Modlls von ssca athj TU raunschwg WS 04/05 Inhaltsvrzchns. Enltung. Das Isng-Modll. spl. Das Modll 3 3. Das Potts-Modll 5.

Mehr

Vorlesung: Grundlagen und Prozesse der Verfahrenstechnik Seminar: Elektrochemische Doppelschichten

Vorlesung: Grundlagen und Prozesse der Verfahrenstechnik Seminar: Elektrochemische Doppelschichten Volsung: Gundlagn und Pozss d Vfahnstchnk Smna: lktochmsch Dopplschchtn Wdholung: 1. W st d lktochmsch Dopplschcht um n Patkl aufgbaut? Das Modll d lktochmschn Dopplschcht bschbt dn ufbau d onnchn Schcht,

Mehr

Totalrevision Geldspielgesetz: Aktueller Stand und Perspektiven Swiss Sport Forum, Zürich, 29. Januar 2015

Totalrevision Geldspielgesetz: Aktueller Stand und Perspektiven Swiss Sport Forum, Zürich, 29. Januar 2015 Ednössschs Justz- und Pozdpartmnt EJPD Bundsamt für Justz BJ Drkton Totarvson Gdspstz: Aktur Stand und Prspktvn Swss Sport Forum, Zürch, 29. Januar 2015 Mch Bsson, Bundsamt für Justz Ednössschs Justz-

Mehr

= G. 2.1 Beschreibung linearer Systeme im Zeitbereich. 24 Beschreibung linearer Systeme im Zeitbereich. Parallelschaltung mit gemeinsamem Eingang G 1

= G. 2.1 Beschreibung linearer Systeme im Zeitbereich. 24 Beschreibung linearer Systeme im Zeitbereich. Parallelschaltung mit gemeinsamem Eingang G 1 4 Bschrbng lnrr ysm m Zbrch Prlllschlng m gmnsmm ngng x + x ± x ± x x ± x gnrlllschlng ücführschlng x x m rlgn ns rzwgngsns vor nn Bloc / rlgn ns rzwgngsns hnr nn Bloc + - + - rlgn nr Mschsll hnr nn Bloc.

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Käufer.

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Käufer. Ohn Spakass fht was: * Ih Immobnpatn. Fü Käuf. UMFASSEND: UNSER SERVICE FÜR IMMOBILIEN-KÄUFER! In dn vgangnn fünf Jahn habn w und 900 Immobn an zufdn Käuf vmttt. D Spakass Zonab st damt d gößt Immobnvmtt

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem Übngsafgaben Mathematik III MST Lösngen z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Z a) Klassifizieren Sie folgende Differentialgleichngen nach folgenden Kriterien: -Ordnng der Differentialgleichng

Mehr

5. Das Finite-Element und die Formfunktion

5. Das Finite-Element und die Formfunktion 5. Ds Fnte-lement nd de Formfnkton Prof. Dr.-Ing. Uwe Renert Fcherech Prof. Dr.-Ing. Mschnen Uwe Renert telng Mschnen HOCHSCHU BRMN 5. Bespel des ensetg engespnnten nd f Zg ensprchten Blkenelements Bestmmng

Mehr

Modulare TK-Anlagen für ISDN- und Internettelefonie

Modulare TK-Anlagen für ISDN- und Internettelefonie Kurzbdnunsanltun Modular TK-nlan für IDN- und Intrnttlfon COMmandr 6000 COMmandr 6000R COMmandr 6000RX Inhaltsvrzchns Inhaltsvrzchns Wcht Informatonn... 3 Vrwndt ymbol und nalwörtr... 3 chrhtshnws... 3

Mehr

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28).

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28). 21 Si solltn nach Möglichkit immr di aktullstn Vrsionn intzn, bvor Si dn ELO-Support kontaktirn. Oft sind Prlm bi inm nun Updat schon bhn. 21.1 ELOoffic Downloads und Programmaktualisirungn Kostnlon Zugriff

Mehr

Waagbalkenuhr BUCO 1320

Waagbalkenuhr BUCO 1320 Waagbalkenhr BUCO 130 Waagbalkenhr BUCO 130 Berechnng - 1 - Waagbalkenhr BUCO 130 1 INHALTVERZEICHNIS 1 Inhaltverzeichnis... Einleitng...3 3 Berechnngen...4 3.1 Drehbewegng des Waagbalkens...4 1. Schwingngsamplitde...4

Mehr

1 Aufgaben Messen Sie mit dem Oberflächensperrschichtzähler die Elektronen-Spektren der 207 Bi- und

1 Aufgaben Messen Sie mit dem Oberflächensperrschichtzähler die Elektronen-Spektren der 207 Bi- und Bta-Spktroskop Anltung zur Auswrtung ds Bta-Spktroskop-Vrsuch ds rnphyskalsch Praktkums (3.Nov.6,. Hubr, S. Schpprs Vrson 5.Jan.7 Aufgabn... Bstmmung dr Multpolordnung dr 37 Ba-66-kV-Ln.... onvrsonslktronn....

Mehr

Notenblätter. Christof Fankhauser Hofmattstrasse 41a 4950 Huttwil 062 /

Notenblätter. Christof Fankhauser Hofmattstrasse 41a 4950 Huttwil 062 / Ntnblättr hrf Fnkhusr Hfmttstrss 41 4950 Huttwl 062 / 965 43 16 ml@chrffnkhusrch wwwfnkhusrchrfch O fröhlch ( Nr 2 und 11) trdtnll, us Szln Q \ \ #! ch #! O O O fröh fröh fröh l l l ch ch s s s l l l Q

Mehr

1 Pythagoräische Zahlentripel

1 Pythagoräische Zahlentripel 1 Pythagoräische Zahlentripel Wir fragen ns nn, welche natürlichen Zahlen die Gleichng 2 + y 2 = 2 lösen. Übng 1 Finden Sie Zahlentripel (; y; ) 2 N 3, mit 1 ; y < ; welche die Gleichng 2 + y 2 = 2 lösen.

Mehr

Grundlagen Hubstapler

Grundlagen Hubstapler Thoms Wittich Grndlgn Hbstplr ch wnn ds Fhrn mit Hbstplrn inf ch rschint, mss dis Tätigkit mit großr Sorgf lt sgübt wrdn, d Fhlr grvirnd Folgn mit sich zihn kö nnn G mäß Fchknntnisnchwis-Vrordnng ist f

Mehr

Spiel Abgefahrene Vögel

Spiel Abgefahrene Vögel PDF Lernzirkel_Wintergaeste_Abgefahrene_Voegel Spiel Abgefahrene Vögel Dieses Spiel ist konzipiert für den Lernzirkel Wintergäste af dem Ammersee (vgl. PDF Lernzirkel_Wintergaeste_Projektbeschreibng),

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT

Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT Zu Aufgab 0) Folgnd Mssdatn wurdn von inr sttign Glichvrtilung R([a,b]) rhobn: 3,5,4, 5, 4, 3, 3, 5 Gbn Si in Schätzung für di Grnzn a und b nach dr Momntnmthod an! sih Vorlsung. Zu Aufgab ) Es wurd übr

Mehr

7. Zusammengesetzte Beanspruchung

7. Zusammengesetzte Beanspruchung 7. Zsammengesetzte Beanspchng Biegng / Tosion ellen, ei denen gleichzeitig ein Biegemoment (Nomalspannngen) nd ein Tosionsmoment (Schspannngen) aftitt. Biegespannngen (Ode ach Nomalspannngen stehen echtwinklig

Mehr

Analyse der Panelmortalität mit der Logistischen Regression

Analyse der Panelmortalität mit der Logistischen Regression Ptr von dr Lpp (Novmbr 3) Analys dr Panlmortaltät mt dr Logstschn Rgrsson Dr folgnd Txt war ursprünglch onzprt für n Untrrchtung m Rahmn ds wss. Brats ds ZPP (Praxspanl ds Zntralnsttuts für d assnärztlch

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Labor Messtechnik Versuch 5 Operationsverstärker

Labor Messtechnik Versuch 5 Operationsverstärker HS oblnz FB Ingnirwsn F Mschinnb Prof. Dr. röbr Lbor Msstchnik rsch 5 Oprtionsvrstärkr Sit von 5 rsch 5: Oprtionsvrstärkr. rschsfb.. Umfng ds rschs Im rsch wrdn folgnd Thmnkris bhndlt: - Nichtinvrtirndr

Mehr

Raychem-Schaltanlagen für Regelung, Überwachung und Stromverteilung

Raychem-Schaltanlagen für Regelung, Überwachung und Stromverteilung Raychm-Schaltanlagn für Rglng, Übrwachng nd Stromvrtilng rodktübrblick Raychm-Schaltanlagn wrdn pzill für di Stromvrorgng, Rglng nd Übrwachng lktrichr Hizkri ntwicklt. Da Sytm bitt all gängign Standardkonfigrationn,

Mehr

Herleitung und Umstellung der allgemeinen Zinseszinsformel

Herleitung und Umstellung der allgemeinen Zinseszinsformel Hrlung und Usllung dr allgnn Znssznsforl. Hrlung dr Znssznsforl Ggbn s n apal von, das zu Znssaz anglg wrd. Nach wls n Jahr wrdn d Znsn d apal zugschlagn. W hoch s das apal nach Jahrn? Jährlch Znsn wrdn

Mehr

Kurse und Renditen von Anleihen. Ein Wörterbuch der Anleihenmärkte. Finanzmärkte und Erwartungen 6-1

Kurse und Renditen von Anleihen. Ein Wörterbuch der Anleihenmärkte. Finanzmärkte und Erwartungen 6-1 K I T E L 6 Fnanzmärk und Erwarungn 6- Kurs und Rndn von nlhn nlhn unrschdn sch n zw wsnlchn Dmnsonn:. dm usfallrsko: Rsko, dass dr Emn dr nlh d vrsprochn Rückzahlung dr nlh nch n vollm Umfang lsn kann.

Mehr

Chemische Bindung - Grundprinzipien der Valenztheorie

Chemische Bindung - Grundprinzipien der Valenztheorie Chmsh ndung - Gundpnzpn d Valnztho Fagn: Waum bldn manh tom und and nht? Waum fndt man dfnt Popotonn (C 4 anstatt C 5 )? kläung von ndungslängn, -wnkln, -ngn t.. Klasssh lktostatsh Tho shwah Üblappung

Mehr

Inhalt. Beschreibung von DNA- Sequenzen als Markov-Ketten. DNA-Sequenz. Markov-Ketten. X: Stochastische Sequenz. P(X): Wahrscheinlichkeit der Sequenz

Inhalt. Beschreibung von DNA- Sequenzen als Markov-Ketten. DNA-Sequenz. Markov-Ketten. X: Stochastische Sequenz. P(X): Wahrscheinlichkeit der Sequenz shrbung von D- Sunzn ls Mrkov-Kttn En Enführung Inhlt Mrkov-Kttn für -Islnds Hddn Mrkov Modls HMM für - Islnds usblk Uw Mnzl Rudbk bortory Usl Unvrsty D-Sunz D Rhnfolg dr sn m D -Molkül bstmmt dn uln ns

Mehr

2 Addition, Subtraktion und Skalar-Multiplikation von Vektoren

2 Addition, Subtraktion und Skalar-Multiplikation von Vektoren 2 Addition, Sbtrktion nd Sklr-Mltipliktion on Vektoren 2 Addition, Sbtrktion nd Sklr-Mltipliktion on Vektoren 2.1 Addition on Vektoren An die Spitze des Vektors des 1. Smmnden ird der Fß des Vektors des

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

zur Freiwilligenarbeit im Alter

zur Freiwilligenarbeit im Alter 12 0 2 r o A s r v r k G ü f hr d J s h ch zwsc s pä rä o r Eu d o S d u r A h k m S c F b F & r g D rw F r zu D & Fk zur Frwgrb m Ar V är ud Msch s wchg Bräg für d Gsschf. Ds rch vo dr Arb urschdchs Vr

Mehr

Landeswerbung Schweiz

Landeswerbung Schweiz S w P r n c Swtzrland Promoton Tourm Marktng S w L o c a t o n Landwrbung Schwz Roadmap zur Umtzung dr Moton WAK-Nr.-06.3008 Autor: Thoma Aur Inhalt Po. Thma St 1 Auganglag 2 1.1. Fordrung dr dg. Rät 2

Mehr

Labor Messtechnik Versuch 7 Drehmomentenmessung

Labor Messtechnik Versuch 7 Drehmomentenmessung F Ingenierwesen F Maschinenba Prof. r. Kröber Versch 7 rehmomentenmessng Seite 1 von 6 Versch 7: rehmomentenmessng, Gleichspannngsmessverstärker 1. Verschsafba 1.1. Umfang des Versches Im Versch werden

Mehr

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1)

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1) Dr Arnlf Schönli, Logistischs Wchstm in dr Prxis Logistischs Wchstm in dr Prxis Für Wchstmsrozss, di nch dm logistischn Wchstmsmodll lfn, gilt: ( ( t ( Drin sind (t zw di Polionn z dn Zitnktn t zw t, nd

Mehr

mental-aktiv Übungsprogramm Gib dir einen Ruck und tu wieder was für dein Gedächtnis, hab ich mir gesagt. Für Einsteiger April 2017 Thema Gedächtnis

mental-aktiv Übungsprogramm Gib dir einen Ruck und tu wieder was für dein Gedächtnis, hab ich mir gesagt. Für Einsteiger April 2017 Thema Gedächtnis Gib dir einen Ruck und tu wieder was für dein Gedächtnis, hab ich mir gesagt. Für Einsteiger April 2017 mental-aktiv Übungsprogramm 1 Mit dieser Übung stärken Sie Ihr Kurzzeitgedächtnis. Symbole einprägen

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

Aufgabensammlung zur Systemtheorie und Regelungstechnik

Aufgabensammlung zur Systemtheorie und Regelungstechnik Afgabensammlng zr Systemtheorie nd egelngstechnik Dr. S. Krase Prof. Dr. B. Fapel 3. Jni 206 Wiederholng nd Grndlagen. Berechnen Sie (ohne Taschenrechner) die folgenden Asdrücke. Es bezeichne lg = log

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Das dine&shine KOnzept für Anlässe mit nachhaltiger Wirkung

Das dine&shine KOnzept für Anlässe mit nachhaltiger Wirkung Das &sh KOzt für Aläss mt achhaltgr Wrkug Lass S us gmsam guts Tu. catrg solutos a r o v b y & s h a r o v b y & s h Usr acht Ltsätz Um usr Abscht kokrt lb u mss zu kö, hab wr acht Ltsätz frt. Ds Ltsätz

Mehr

d Beweis. Knoten 1 den Grad k hat.

d Beweis. Knoten 1 den Grad k hat. 4 Bäum un Mnmlrüst Dnton 4.. Es n G = (V, E n zusmmnännr Grp. H = (V, E ßt Grüst von G w. wnn H n Bum st un E E lt. Bmrkun 4.. En Grüst st lso n zusmmnännr, zyklnrr, uspnnnr Untrrp von G. Bspl 4.. Gr üst

Mehr

Netzgeführte Stromrichterschaltungen

Netzgeführte Stromrichterschaltungen 4 Netzgeführte Stromrichterschaltngen In netzgeführten Stromrichtern wird die Wechselspannng des speisenden Netzes nicht nr zr Spannngsbildng af der Asgangsseite bentzt, sondern sie dient ach als treibende

Mehr

Einheitliche Heizwert- und Energiekennzahlenberechnung. der Schweizer KVA nach europäischem Standardverfahren. Resultate 2012

Einheitliche Heizwert- und Energiekennzahlenberechnung. der Schweizer KVA nach europäischem Standardverfahren. Resultate 2012 Eidgnössischs Dpartmnt für Umwlt, Vrkhr, Enrgi und Kommunikation UVEK Bundsamt für Umwlt BAFU Bundsamt für Enrgi BFE Rsultat 26. April 213 Sit 2 von 12 EINLEITUNG Im Rahmn ds Projkts Einhitlich Hu- und

Mehr

Erstes Kirchhoffsches Gesetz

Erstes Kirchhoffsches Gesetz Amaterfnkkrs Landesverband Wen m ÖVSV Erstellt: 2010-2011 Letzte Bearbetng: 20. Febrar 2016 Themen 1 2 3 4 5 Erstes s Gesetz 3 2 1 4 5 2 + 3 + 5 =? Erstes s Gesetz 3 2 1 4 5 2 + 3 + 5 = 1 + 4 Zwetes s

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-

Mehr

Abb. 1 : Regelkreis und OP

Abb. 1 : Regelkreis und OP Theorie In der Technik werden häfig egelkreise zr Einstellng von sgangsgrößen (Weg, Temperatr, Kraft sw) eingesetzt, bei denen ein Teil des erreichten Ist-Wertes zrückgeführt nd mit einem Soll- Wert verglichen

Mehr

2 0. t ld D h t ff nb r d rb t n r d t d t ff n t n n t, n l r B ld d r V rh ltn z b n, d r n n r r n V rbr t n n r hr h r d n V r h t r l n f rn h lt

2 0. t ld D h t ff nb r d rb t n r d t d t ff n t n n t, n l r B ld d r V rh ltn z b n, d r n n r r n V rbr t n n r hr h r d n V r h t r l n f rn h lt t d n ¼b r d B ld n nd ndl n f t r rp r.. bh ndl n : b r tt n nd b r ltn. V n. t ld. ( t 6 F r n T xt. n V r nl n d r bf n n r p t l n L hrb h d r ll n n h h b h hr r b r t b nnt V r h b z ¼ l h d r B

Mehr

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2 Inhalsverzeichnis Eperimenelle Enwrfsverfahren für recken mi Asleich.... mmenzeiverfahren nach hn.... erfahren nach Chien, Hrones nd eswick... 4.3 erfahren nach Zieler nd ichols... 6.4 Eperimenelles Einsellverfahren

Mehr

Franziskusmesse. 1. Von Gott gerufen. Eingangslied. Text: Raymund Weber Musik: Klaus Wallrath 2012/13. q. = 72

Franziskusmesse. 1. Von Gott gerufen. Eingangslied. Text: Raymund Weber Musik: Klaus Wallrath 2012/13. q. = 72 Franzskusmss 1. Von Gott grun Tromt I (ad lb.) q. = 7 8 m Engangsld Txt: Raym Wbr Musk: Klaus Wallrath 01/1 Tromt II (ad lb.) 8 m Posaun I (ad lb.) 8 m Posaun II (ad lb.) 8 m Chor unsono q. = 7 8 m (SA)

Mehr

Radiometrische Kalibrierung

Radiometrische Kalibrierung Radomtrsch Kalbrrung Tradtonllr Ansatz Kalbrrung aus mhrrn Bldrn Bhandlung von übrsturtn Bldrn 509 Zwck Das Antwortvrhaltn ds Systms Kamra Framgrabbr st ncht mmr lnar rauwrt snd ncht proportonal zur Enrg,

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol.

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol. Einführng in FEM Motivationsbeispiel Berechnngsbeispiel COMSO Mltiphysics: Elastizitätsberechnng eines F Frontflügels. www.comsol.de Originalgeometrie CAD-Modell mit Berechnngsgitter FEM Ergebnis der Aslenkng

Mehr

Quellen und Senken als Feldursachen

Quellen und Senken als Feldursachen Kapitel 2 Qellen nd Senken als Feldrsachen Wir sprechen von Qellenfeldern nd Wirbelfeldern. Beide nterscheiden sich grndlegend voneinander. Wir wollen deswegen beide Feldarten getrennt besprechen, m deren

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Kontrolle Physik-Leistungskurs Klasse 11 Widerstände

Kontrolle Physik-Leistungskurs Klasse 11 Widerstände Kontroe hysik-eistngskrs Kasse 11 Widerstände..016 1. Es stehen zwei Gühapen 6 V/1,5 W nd V/1,5 W sowie eine Spannngsqee 9 V zr Verfügng. Was passiert, wenn an die beiden Gühapen nd die Spannngsqee in

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Universität Stuttgart. Bild Prof. Dr.-Ing. J. Roth-Stielow

Institut für Leistungselektronik und Elektrische Antriebe. Universität Stuttgart. Bild Prof. Dr.-Ing. J. Roth-Stielow niversität Stttgart Institt für Leistngselektronik nd lektrische Antriebe rof. Dr.-Ing. J. Roth-Stielo K + K M M M K + M + I A D HC H? I J? I J 8 A H> H= K? D A H Bild -3. nterlagen zr Vorlesng Leistngselektronik

Mehr

Gillen s Backstube. Kostenlos für Sie zum Mitnehmen! DAS KUNDENMAGAZIN. Kunz Restaurant Mode trifft Genuss Schulstarter.

Gillen s Backstube. Kostenlos für Sie zum Mitnehmen! DAS KUNDENMAGAZIN. Kunz Restaurant Mode trifft Genuss Schulstarter. DAS KUNDENMAGAZIN Kostnos für S zum Mtnhmn! Gn s Backstub Ausgab 03/2014 Kunz Rstaurant Mod trfft Gnuss Schustartr Bäckr Gn GmbH - Gwrbgbt Hungrtha - 66606 B Vorwort Hrbstfrudn Marco Gn Lb Lsrnnn und Lsr,

Mehr