Erstes Kirchhoffsches Gesetz
|
|
|
- Sophie Müller
- vor 9 Jahren
- Abrufe
Transkript
1 Amaterfnkkrs Landesverband Wen m ÖVSV Erstellt: Letzte Bearbetng: 20. Febrar 2016 Themen
2 Erstes s Gesetz =? Erstes s Gesetz = 1 + 4
3 Zwetes s Gesetz =? Zwetes s Gesetz = = 5
4 De Smme der enem Knoten zflessenden Ströme st glech der von hm abfleßenden Ströme. (Kene Ladngsspecherng m Knoten.) De Spannng zwschen zwe belebgen Knoten enes Netzwerkes st glech der Smme der Telspannngen, nabhängg vom gewählten Weg. Dese gelten für belebge Netzwerke. Parallelschaltng von Wderständen Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C 1 R 1 2 R 2 = 1 + 2, 1. s Gesetz verwendet. = R 1 + R 2, Ohmsches Gesetz verwendet. = 1 R R 2 = 1 R Merke: Der Gesamtwderstand st klener als jeder der Enzelwderstände.
5 Serenschaltng von Wderständen Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C R 1 1 R 2 2 = 1 + 2, 2. s Gesetz verwendet. = R 1 + R 2, Ohmsches Gesetz verwendet. = R 1 + R 2 = R Merke: Der Gesamtwderstand st größer als jeder der Enzelwderstände. Parallelschaltng von Sple nd Kondensator Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C Verwendng der Formel für de Parallelschaltng: 1 X = 1 X X 2 Freqenzabhängger Wderstand für L: X = 2 π f L Daras folgt: 1 L = 1 L L 2 Merke: Parallelschalten von L ernedrgt de Gesamtndktvtät. Freqenzabhängger Wderstand für C: X = 1 2 π f C Daras folgt: C = C 1 + C 2 Merke: Parallelschalten von C erhöht de Gesamtkapaztät.
6 Serenschaltng von Sple nd Kondensator Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C Verwendng der Formel für de Serenschaltng: X = X 1 + X 2 Freqenzabhängger Wderstand für L: X = 2 π f L Daras folgt: L = L 1 + L 2 Merke: Serenschalten von L erhöht de Gesamtndktvtät. Freqenzabhängger Wderstand für C: X = 1 2 π f C Daras folgt: 1 C = 1 C C 2 Merke: Serenschalten von C ernedrgt de Gesamtkapaztät. Seren nd Parallelschaltng von R,L,C Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C R n Sere erhöht den Gesamtwderstand L n Sere erhöht de Gesamtndktvtät C n Sere ernedrgt de Gesamtkapaztät R parallel ernedrgt den Gesamtwderstand L parallel ernedrgt de Gesamtndktvtät C parallel erhöht de Gesamtkapaztät
7 Strommessng mt Amperemeter R A R A A R A Strom Spannng = R + A = R A + R A A A = R+R A Je klener R A desto wenger wrd de Strommessng verfälscht. Strommessng mt klenem Innenwderstand! Spannngsmessng mt Voltmeter R 1 R 2 R V V V Strom Spannng R 2 V = R 2 +R 1 (1+ R 2 ) R V Je größer R V desto wenger wrd de Spannngsmessng verfälscht. Spannngsmessng mt großem Innenwderstand!
8 Der Black Box R Es glt mmer: = R. Was passert wenn wr R mmer klener machen? Rchtg: Das hängt davon ab was n der Black Box st. Spannng blebt konstant: Strom wächst über alle Grenzen! Spannng geht af Nll zrück: Es fleßt der strom. Der Gbt es en spezelles Schaltsymbol für enen Wderstand mt 0 Ω? Verbndngsdraht Was bedetet:? Rchtg: Wderstand st zwecklos.
9 : N.1 In welchem Zsammenhang stehen de Größen Strom - Spannng - Wderstand n enem Stromkres? C.31 Messng von Spannng nd Strom am Bespel enes vorgegebenen Stromkreses C.1 Ohmsches nd s Gesetz? N.2 Was versteht man nter enem Krzschlss - we entsteht er? C.11 Seren- nd Parallelschaltng von R, L nd C? c Creatve Commons c Dese Präsentaton st nter ener Creatve Commons Lzenz veröffentlcht. Se dürfen: s das Werk vervelfältgen, verbreten nd öffentlch zgänglch machen, r Bearbetngen des Werkes anfertgen. Unter folgenden Bedngngen: b Namensnennng Se müssen den Namen des Ators/Rechtenhabers n der von hm festgelegten Wese nennen. a Wetergabe nter glechen Bedngngen Wenn Se deses Werk bearbeten oder n anderer Wese mgestalten, verändern oder als Grndlage für en anderes Werk verwenden, dürfen Se das ne entstandene Werk nr nter Verwendng von Lzenzbedngngen wetergeben, de mt denen deses Lzenzvertrages dentsch oder verglechbar snd.
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb
S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von
Stationäre Ströme URI. Physik AG Andreas Hasenohr
Statonäre Ströme 6.06.0 Andreas Hasenohr Elektrscher Strom und ohmsches Gesetz Wderstand und ohmsches Gesetz Wderstand Formelzechen: Enhet: Formel: Letwert Formelzechen: [Ω] (Ohm) S-Enhet G Enhet: [S]
Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage
Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften
Widerstandsnetzwerke Berechnung einfacher Netzwerke
Berechnung enfacher Netzwerke Ersatzspannungsuelle Überlagerungsverfahren Maschenstromverfahren ers - PEG-Vorlesung W/ - nsttut für nformatk - F Berln Berechnung auf Bass ener Ersatzspannungsuelle Ene
Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 2
Physk T Dortmund SS28 Götz hrg Shaukat Khan Kaptel 2 Drftgeschwndgket der Elektronen n enem Draht Elektronen bewegen sch unter dem Enfluss enes elektrschen Felds durch en Metall, wobe se oft Stöße mt Atomen
Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen
Versuch : Messung von Glechspannung und Glechstrom mt Multmetern 1. Aufgabenstellung Messung von Glechspannung u. Glechstrom mt analogen und dgtalen Messgeräten Verglech verschedener Messgeräte, Messgenaugket
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)
2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis
27 2 Glechstromtechnk 2.1 Der unverzwegte Stromkres 2.1.1 Der Grundstromkres n unverzwegter Stromkres st de geschlossene Hnterenanderschaltung verschedener Schaltelemente: Spannungsquellen, Wderstände
Konkave und Konvexe Funktionen
Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage
Elektrischer Strom. Elektrische Netzwerke
Elektrscher Strom. Elektrscher Strom als Ladungstransport. Wrkungen des elektrschen Stromes 3. Mkroskopsche Betrachtung des Stroms, elektrscher Wderstand, Ohmsches Gesetz. Drftgeschwndgket und Stromdchte.
Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4
Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären
1.1 Grundbegriffe und Grundgesetze 29
1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld
18. Vorlesung Sommersemester
8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten
Grundgedanke der Regressionsanalyse
Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden
Lösung Aufgabe NuS I-1: Nutzleistung und Wirkungsgrad
Schnelltest HS 008 Musterlösung Aufgabe Nr. Thema Punkte max. Punkte Vsum Vsum NuS I- Nutzlestung und Wrkungsgrad 0 ösung Aufgabe NuS I-: Nutzlestung und Wrkungsgrad Fg..: Netzwerk mt Stromquelle a) De
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen
Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen
4. Musterlösung. Problem 1: Kreuzende Schnitte **
Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,
Weitere NP-vollständige Probleme
Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,
18. Dynamisches Programmieren
8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
3. Lineare Algebra (Teil 2)
Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw
Schriftliche Prüfung aus Systemtechnik am
U Graz, Insttt Regelngs- nd Atomatserngstechnk Schrftlche Prüfng as Sstemtechnk am 3.. Name / Vorname(n): Matrkel-Nmmer: Bonspnkte as den MALAB-Übngen: O ja O nen 3 4 errechbare Pnkte 5 6 6 4 errechte
Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen:
De molekulare Zustandssumme βε = e mt β = De kanonsche Zustandssumme (System) und hr Zusammenhang mt der molekularen Zustandssumme (Enzelmolekül) unterschedbare elchen: Q = ununterschedbareelchen Q : =!
Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny
eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung
Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie
8 Elektroenergeversorgng nd cherhet von Betrebsmtteln gewährlesten ernstaton: Ene echtstofflampe an Wechselspannng nterschen Ihr Betreb soll n ener chle de veraltete Deckenbelechtng enger Unterrchtsräme
Lösungen der Aufgaben zu Kapitel 2
Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n
Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket
Protokoll: Labor: Analogelektronik. Versuch: Transistorgrundschaltungen. Alexander Böhme Matthias Pätzold
Protokoll: Labor: Analogelektronk Versch: Transstorgrndschaltngen Von: Alexander Böhme Matthas Pätzold Te1 Grndschaltngen mt bpolaren Transstoren. 1.1 Nachwes der thermschen Stablserng des Arbetspnktes.
Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung
am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall
MECHATRONISCHE NETZWERKE
MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore
Physik A VL11 ( )
Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung
Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für
Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen
Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:
nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen
arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree
Streuungs-, Schiefe und Wölbungsmaße
aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen
3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung
. Glechstrom und Glechspannung Glechstrom essung elektrscher Größen. Glechstrom und Glechspannung. Wechselstrom und Wechselspannung. essung von mpedanzen. essverstärker.5 Darstellung des etverlaufs elektrscher
-70- Anhang: -Lineare Regression-
-70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de
1 - Prüfungsvorbereitungsseminar
1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
Induktive Strombegrenzung für AC-gespeiste SGTC mit netzsynchroner rotierender Funkenstrecke
Induktve Strombegrenung für AC-gespeste SGTC mt netsynchroner roterender Funkenstrecke Es wrd von ener SGTC ausgegangen, welche mt ener 5 H-netfrequen-synchron roterenden prmären Funkenstrecke ausgestattet
ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz
Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung
ETG-Labor 1.Sem Spannungsquelle. Spannungsquelle R L
Spannungsquelle 1 Lernzel: Nach Durchführung der Übung kann der Studerende: De Kenngrößen ener realen Spannungsquelle benennen und dese messtechnsch erfassen Mt Hlfe der Spannungskompensatonsmethode klenste
Boost-Schaltwandler für Blitzgeräte
[email protected] 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler
Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.
Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve
Die Dreieckschaltung
De Dreeckschaltung Handrechung zur Präsentaton Raphael Denert 5. Oktober 2016 Inhaltsverzechns 1 Wederholung: Knoten- und Maschenregel 1 1.1 Maschenregel.............................. 1 1.1.1 Bespel Maschenregel.....................
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen
Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus
Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I
Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"
Elemente der Mathematik - Sommer 2016
Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s
4.2 Grundlagen der Testtheorie
4.2 Grundlagen der Testtheore Wntersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabrele Helga Franke Deskrptve Statstk 4-1 bs 4-2 1 GHF m WSe 2008 / 2009 an der HS MD-SDL(FH) m
29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T.
hermodynamsche resonse -unktonen: 9 zwete Abletungen der thermodynamschen Potentale sezfsche Wärme (thermscher resonse) E C S be konstantem olumen (sochor):,,, be konstantem Druck (sobar): C S Komressbltät
1 Mehrdimensionale Analysis
1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus
Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme
Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert [email protected] Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce
e dt (Gaußsches Fehlerintegral)
Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)
NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.
PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs
Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.
Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet
Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken!
SEMINARPROGRAMME Abenteuer Führung Der Survval Gude für den ersten Führungsjob De erste Führungsaufgabe st ken Zuckerschlecken! Junge Hgh Potentals erkennen das schnell. Her taucht ene unangenehme Überraschung
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
Potenzen einer komplexen Zahl
Potenzen ener komplexen Zahl 1-E1 1-E Abraham cc de Movre Abraham de Movre (17 175) französscher Mathematker Abraham de Movre der als Emgrant n London lebte glt als ener der Ponere der Wahrschenlchketsrechnung.
LITECOM infinity Infinity-Modus
LITECOM nfnty Infnty-Modus nfnty Rechtlche Hnwese Copyrght Copyrght Zumtobel Lghtng GmbH Alle Rechte vorbehalten. Hersteller Zumtobel Lghtng GmbH Schwezerstrasse 30 6850 Dornbrn AUSTRIA Tel. +43-(0)5572-390-0
Hydrosystemanalyse: Finite-Elemente-Methode (FEM)
Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf
4.6 Das Pumping-Lemma für reguläre Sprachen:
Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma
Die Transzendenz der Eulerschen Zahl e
De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen
