Erstes Kirchhoffsches Gesetz

Größe: px
Ab Seite anzeigen:

Download "Erstes Kirchhoffsches Gesetz"

Transkript

1 Amaterfnkkrs Landesverband Wen m ÖVSV Erstellt: Letzte Bearbetng: 20. Febrar 2016 Themen

2 Erstes s Gesetz =? Erstes s Gesetz = 1 + 4

3 Zwetes s Gesetz =? Zwetes s Gesetz = = 5

4 De Smme der enem Knoten zflessenden Ströme st glech der von hm abfleßenden Ströme. (Kene Ladngsspecherng m Knoten.) De Spannng zwschen zwe belebgen Knoten enes Netzwerkes st glech der Smme der Telspannngen, nabhängg vom gewählten Weg. Dese gelten für belebge Netzwerke. Parallelschaltng von Wderständen Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C 1 R 1 2 R 2 = 1 + 2, 1. s Gesetz verwendet. = R 1 + R 2, Ohmsches Gesetz verwendet. = 1 R R 2 = 1 R Merke: Der Gesamtwderstand st klener als jeder der Enzelwderstände.

5 Serenschaltng von Wderständen Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C R 1 1 R 2 2 = 1 + 2, 2. s Gesetz verwendet. = R 1 + R 2, Ohmsches Gesetz verwendet. = R 1 + R 2 = R Merke: Der Gesamtwderstand st größer als jeder der Enzelwderstände. Parallelschaltng von Sple nd Kondensator Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C Verwendng der Formel für de Parallelschaltng: 1 X = 1 X X 2 Freqenzabhängger Wderstand für L: X = 2 π f L Daras folgt: 1 L = 1 L L 2 Merke: Parallelschalten von L ernedrgt de Gesamtndktvtät. Freqenzabhängger Wderstand für C: X = 1 2 π f C Daras folgt: C = C 1 + C 2 Merke: Parallelschalten von C erhöht de Gesamtkapaztät.

6 Serenschaltng von Sple nd Kondensator Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C Verwendng der Formel für de Serenschaltng: X = X 1 + X 2 Freqenzabhängger Wderstand für L: X = 2 π f L Daras folgt: L = L 1 + L 2 Merke: Serenschalten von L erhöht de Gesamtndktvtät. Freqenzabhängger Wderstand für C: X = 1 2 π f C Daras folgt: 1 C = 1 C C 2 Merke: Serenschalten von C ernedrgt de Gesamtkapaztät. Seren nd Parallelschaltng von R,L,C Parallelschaltng von R Serenschaltng von R Parallelschaltng von L. C Serenschaltng von L. C R n Sere erhöht den Gesamtwderstand L n Sere erhöht de Gesamtndktvtät C n Sere ernedrgt de Gesamtkapaztät R parallel ernedrgt den Gesamtwderstand L parallel ernedrgt de Gesamtndktvtät C parallel erhöht de Gesamtkapaztät

7 Strommessng mt Amperemeter R A R A A R A Strom Spannng = R + A = R A + R A A A = R+R A Je klener R A desto wenger wrd de Strommessng verfälscht. Strommessng mt klenem Innenwderstand! Spannngsmessng mt Voltmeter R 1 R 2 R V V V Strom Spannng R 2 V = R 2 +R 1 (1+ R 2 ) R V Je größer R V desto wenger wrd de Spannngsmessng verfälscht. Spannngsmessng mt großem Innenwderstand!

8 Der Black Box R Es glt mmer: = R. Was passert wenn wr R mmer klener machen? Rchtg: Das hängt davon ab was n der Black Box st. Spannng blebt konstant: Strom wächst über alle Grenzen! Spannng geht af Nll zrück: Es fleßt der strom. Der Gbt es en spezelles Schaltsymbol für enen Wderstand mt 0 Ω? Verbndngsdraht Was bedetet:? Rchtg: Wderstand st zwecklos.

9 : N.1 In welchem Zsammenhang stehen de Größen Strom - Spannng - Wderstand n enem Stromkres? C.31 Messng von Spannng nd Strom am Bespel enes vorgegebenen Stromkreses C.1 Ohmsches nd s Gesetz? N.2 Was versteht man nter enem Krzschlss - we entsteht er? C.11 Seren- nd Parallelschaltng von R, L nd C? c Creatve Commons c Dese Präsentaton st nter ener Creatve Commons Lzenz veröffentlcht. Se dürfen: s das Werk vervelfältgen, verbreten nd öffentlch zgänglch machen, r Bearbetngen des Werkes anfertgen. Unter folgenden Bedngngen: b Namensnennng Se müssen den Namen des Ators/Rechtenhabers n der von hm festgelegten Wese nennen. a Wetergabe nter glechen Bedngngen Wenn Se deses Werk bearbeten oder n anderer Wese mgestalten, verändern oder als Grndlage für en anderes Werk verwenden, dürfen Se das ne entstandene Werk nr nter Verwendng von Lzenzbedngngen wetergeben, de mt denen deses Lzenzvertrages dentsch oder verglechbar snd.

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Stationäre Ströme URI. Physik AG Andreas Hasenohr

Stationäre Ströme URI. Physik AG Andreas Hasenohr Statonäre Ströme 6.06.0 Andreas Hasenohr Elektrscher Strom und ohmsches Gesetz Wderstand und ohmsches Gesetz Wderstand Formelzechen: Enhet: Formel: Letwert Formelzechen: [Ω] (Ohm) S-Enhet G Enhet: [S]

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Widerstandsnetzwerke Berechnung einfacher Netzwerke

Widerstandsnetzwerke Berechnung einfacher Netzwerke Berechnung enfacher Netzwerke Ersatzspannungsuelle Überlagerungsverfahren Maschenstromverfahren ers - PEG-Vorlesung W/ - nsttut für nformatk - F Berln Berechnung auf Bass ener Ersatzspannungsuelle Ene

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 2

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 2 Physk T Dortmund SS28 Götz hrg Shaukat Khan Kaptel 2 Drftgeschwndgket der Elektronen n enem Draht Elektronen bewegen sch unter dem Enfluss enes elektrschen Felds durch en Metall, wobe se oft Stöße mt Atomen

Mehr

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Versuch : Messung von Glechspannung und Glechstrom mt Multmetern 1. Aufgabenstellung Messung von Glechspannung u. Glechstrom mt analogen und dgtalen Messgeräten Verglech verschedener Messgeräte, Messgenaugket

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis

2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis 27 2 Glechstromtechnk 2.1 Der unverzwegte Stromkres 2.1.1 Der Grundstromkres n unverzwegter Stromkres st de geschlossene Hnterenanderschaltung verschedener Schaltelemente: Spannungsquellen, Wderstände

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Elektrischer Strom. Elektrische Netzwerke

Elektrischer Strom. Elektrische Netzwerke Elektrscher Strom. Elektrscher Strom als Ladungstransport. Wrkungen des elektrschen Stromes 3. Mkroskopsche Betrachtung des Stroms, elektrscher Wderstand, Ohmsches Gesetz. Drftgeschwndgket und Stromdchte.

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Lösung Aufgabe NuS I-1: Nutzleistung und Wirkungsgrad

Lösung Aufgabe NuS I-1: Nutzleistung und Wirkungsgrad Schnelltest HS 008 Musterlösung Aufgabe Nr. Thema Punkte max. Punkte Vsum Vsum NuS I- Nutzlestung und Wrkungsgrad 0 ösung Aufgabe NuS I-: Nutzlestung und Wrkungsgrad Fg..: Netzwerk mt Stromquelle a) De

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am U Graz, Insttt Regelngs- nd Atomatserngstechnk Schrftlche Prüfng as Sstemtechnk am 3.. Name / Vorname(n): Matrkel-Nmmer: Bonspnkte as den MALAB-Übngen: O ja O nen 3 4 errechbare Pnkte 5 6 6 4 errechte

Mehr

Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen:

Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen: De molekulare Zustandssumme βε = e mt β = De kanonsche Zustandssumme (System) und hr Zusammenhang mt der molekularen Zustandssumme (Enzelmolekül) unterschedbare elchen: Q = ununterschedbareelchen Q : =!

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie 8 Elektroenergeversorgng nd cherhet von Betrebsmtteln gewährlesten ernstaton: Ene echtstofflampe an Wechselspannng nterschen Ihr Betreb soll n ener chle de veraltete Deckenbelechtng enger Unterrchtsräme

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Protokoll: Labor: Analogelektronik. Versuch: Transistorgrundschaltungen. Alexander Böhme Matthias Pätzold

Protokoll: Labor: Analogelektronik. Versuch: Transistorgrundschaltungen. Alexander Böhme Matthias Pätzold Protokoll: Labor: Analogelektronk Versch: Transstorgrndschaltngen Von: Alexander Böhme Matthas Pätzold Te1 Grndschaltngen mt bpolaren Transstoren. 1.1 Nachwes der thermschen Stablserng des Arbetspnktes.

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

MECHATRONISCHE NETZWERKE

MECHATRONISCHE NETZWERKE MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung . Glechstrom und Glechspannung Glechstrom essung elektrscher Größen. Glechstrom und Glechspannung. Wechselstrom und Wechselspannung. essung von mpedanzen. essverstärker.5 Darstellung des etverlaufs elektrscher

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Induktive Strombegrenzung für AC-gespeiste SGTC mit netzsynchroner rotierender Funkenstrecke

Induktive Strombegrenzung für AC-gespeiste SGTC mit netzsynchroner rotierender Funkenstrecke Induktve Strombegrenung für AC-gespeste SGTC mt netsynchroner roterender Funkenstrecke Es wrd von ener SGTC ausgegangen, welche mt ener 5 H-netfrequen-synchron roterenden prmären Funkenstrecke ausgestattet

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

ETG-Labor 1.Sem Spannungsquelle. Spannungsquelle R L

ETG-Labor 1.Sem Spannungsquelle. Spannungsquelle R L Spannungsquelle 1 Lernzel: Nach Durchführung der Übung kann der Studerende: De Kenngrößen ener realen Spannungsquelle benennen und dese messtechnsch erfassen Mt Hlfe der Spannungskompensatonsmethode klenste

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte [email protected] 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Die Dreieckschaltung

Die Dreieckschaltung De Dreeckschaltung Handrechung zur Präsentaton Raphael Denert 5. Oktober 2016 Inhaltsverzechns 1 Wederholung: Knoten- und Maschenregel 1 1.1 Maschenregel.............................. 1 1.1.1 Bespel Maschenregel.....................

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheore Wntersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabrele Helga Franke Deskrptve Statstk 4-1 bs 4-2 1 GHF m WSe 2008 / 2009 an der HS MD-SDL(FH) m

Mehr

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T.

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T. hermodynamsche resonse -unktonen: 9 zwete Abletungen der thermodynamschen Potentale sezfsche Wärme (thermscher resonse) E C S be konstantem olumen (sochor):,,, be konstantem Druck (sobar): C S Komressbltät

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert [email protected] Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken!

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken! SEMINARPROGRAMME Abenteuer Führung Der Survval Gude für den ersten Führungsjob De erste Führungsaufgabe st ken Zuckerschlecken! Junge Hgh Potentals erkennen das schnell. Her taucht ene unangenehme Überraschung

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Potenzen einer komplexen Zahl

Potenzen einer komplexen Zahl Potenzen ener komplexen Zahl 1-E1 1-E Abraham cc de Movre Abraham de Movre (17 175) französscher Mathematker Abraham de Movre der als Emgrant n London lebte glt als ener der Ponere der Wahrschenlchketsrechnung.

Mehr

LITECOM infinity Infinity-Modus

LITECOM infinity Infinity-Modus LITECOM nfnty Infnty-Modus nfnty Rechtlche Hnwese Copyrght Copyrght Zumtobel Lghtng GmbH Alle Rechte vorbehalten. Hersteller Zumtobel Lghtng GmbH Schwezerstrasse 30 6850 Dornbrn AUSTRIA Tel. +43-(0)5572-390-0

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr