1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung

Größe: px
Ab Seite anzeigen:

Download "1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung"

Transkript

1 Physikalische Chemie II Lösung 5 6. Oktober 25 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Für c = c B =... = c gilt c (t) = c B (t) =... = c(t) und das Geschwindigkeitsgesetz lautet dc(t) = kc m cm B B... = kcm () Man erhält nach Trennung der Variablen und Integration (für m ) (m ) c(t) m (m ) c m Für t = t + t /2 ist c(t) = c /2 und damit 2 m (m ) c m (m ) c m woraus sich Gl. (2.46) des Skriptes ergibt: t /2 = 2 m k (m ) c m = k (t t ) (2) = kt /2 (3) Die Lösung für m = erhält man aus der Grenzwertbetrachtung lim m. Dazu kann der Satz von L Hospital-Bernoulli verwendet werden: d ( t /2 (m = ) = 2 k lim m ) dm m d ( ) (5) (m ) c m dm nwendung der Ketten- und Produktregeln beim bleiten ergibt nach Vereinfachung: t /2 (m = ) = ( k lim 2 m ) ln 2 m c m + (m ) c m = ln 2 (6) ln c k Dasselbe Ergebnis erhält man durch die Reihenentwicklung der Exponentialfunktion für kleine x = m : 2 x = e x ln 2 = + x ln 2 +, (7) wenn man diese nach dem zweiten Glied abbricht und in Gl. (4) einsetzt. Nach Logarithmieren von Gl. (4), erhält man wobei ln(t /2 (c )) = ln a + ( m) ln c, (8) (4) a = (2m ) k(m ). (9) Diese Beziehung, zusammen mit der Methode der kleinsten Fehlerquadrate, erlaubt die npassung einer Geraden der Steigung ( m) an experimentelle Daten, wodurch der Wert von m bestimmt werden kann. Diese Gleichung ist in Kap ausführlich diskutiert.

2 Physikalische Chemie II Lösung 5 6. Oktober 25 2 Trimolekulare Reaktionen a) Es gilt die Wahrscheinlichkeit einer trimolekularen Reaktion + B + M B + M () mit der Wahrscheinlichkeit eines alternativen Mechanismus über zwei bimolekulare Reaktionsschritte + B B, () B + M B + M (2) miteinander zu vergleichen. Gemäss Kap ist die Wahrscheinlichkeit für einen Zweierstoss um den Faktor 3/(C δv ) grösser als für den Dreierstoss (C ist die Teilchenkonzentration und δv entspricht grob dem Volumen der stossenden Teilchen, s. Gl. (2.2) im Skript). Wenn wir z.b. ein Volumen von nm 3 und eine Teilchenkonzentration von 5 cm 3 annehmen, berechnen wir einen Faktor von 3 6. Das heisst also, dass der blauf über den Mechanismus aus () und (2) sehr viel wahrscheinlicher ist als über die trimolekulare Reaktion (). Nur wenn für B die Rückreaktion () sehr schnell ist und das angeregte Produkt deshalb nicht langlebig genug ist, um eine bimolekulare Reaktion mit M auszuführen, ist der trimolekulare Reaktionsablauf dominierend. Dies ist der Fall, wenn und B tome sind, denn dann ist die durchschnittliche Lebensdauer des energiereichen, zweiatomigen Moleküls B nur eine Schwingungsperiode, also etwa 4 s. Ist B ein vielatomiges Molekül, so ist dessen Lebensdauer deutlich länger, z.b. 8 s, da es stabilisiert wird, indem durch Schwingungsenergieumverteilung die Stossenergie auf die übrigen Schwingungsfreiheitsgrade verteilt wird (die ein zweiatomiges B eben nicht hat). b) Ein Beispiel einer trimolekularen Reaktion scheinbar erster Ordnung ist die tomrekombination von Cl- und I-Radikalen, wobei die I-Radikale photochemisch in hohem Überschuss erzeugt werden können. Die Reaktion läuft in nwesenheit eines Inertgases, beispielsweise rgon, nach folgendem Prozess ab Cl + I + r ClI + r. (3) c) Das Geschwindigkeitsgesetz für die tomrekombination lautet v c = d[cl] = d[i] = d[cli] = k[cl][i][r]. (4) Wenn die Iodatome und rgon im Überschuss vorhanden sind, folgt das Geschwindigkeitsgesetz einer scheinbar ersten Ordnung v c = d[cl] = d[i] = d[cli] = k eff [Cl] (5) mit der effektiven Geschwindigkeitskonstanten k eff = k[i][r]. Die Dimensionen der Geschwindigkeitskonstanten sind [k] = Konzentration 2 Zeit, (6) [k eff ] = Zeit, (7) 2

3 Physikalische Chemie II Lösung 5 6. Oktober 25 und mögliche Einheiten sind [k] = [ cm 6 mol 2 s ], (8) [k eff ] = [ s ]. (9) d) Die Geschwindigkeitskonstante k eff = k[i][r] ist linear abhängig von [I] und [r] und unabhängig von [Cl] und [ClI]. 3 Rekombinations- und Dissoziationskinetik für das Methylradikal a) Da die dem Gleichgewicht vorgelagerte Zerfallsreaktion von zomethan sehr schnell abläuft, kann sie zur Bestimmung der Reaktionsgeschwindigkeit vernachlässigt werden. Geschwindigkeitsbestimmend sind nur die Rekombination und Dissoziation der Methylradikale. b) Die Temperaturabhängigkeit der Gleichgewichtskonstante ist durch die van t Hoff-Gleichung (siehe Thermodynamik) gegeben, d dt ln (K c) = U RT 2 d ln (K c) d(/t ) = U R. (2) welche einen linearen Zusammenhang zwischen der reziproken Temperatur und dem natürlichen Logarithmus der Gleichgewichtskonstante voraussagt ( U ist die innere Standardenergie). Die uftragung von ln [ K c /(mol cm 3 ) ] gegen /T zeigt tatsächlich ein nahezu lineares Verhalten (d.h. U ist im betrachteten Temperaturbereich ungefähr konstant). Die in bbildung graphisch dargestellte lineare Regression liefert U = ± 3.7 kj mol. Im Gleichgewicht gilt (wobei die Startkonzentration von C 2 H 6 als null angenommen wird): K c = [CH 3] 2 eq [C 2 H 6 ] eq = [CH 3 ] 2 eq (/2) ([CH 3 ] [CH 3 ] eq ). (2) Die Rückreaktion darf in erster Näherung vernachlässigt werden, falls die Gleichgewichtskonstante K c. Man setzt z.b. [CH 3 ] eq = [CH 3 ] / als genügend klein an. Einsetzen in Gl. (2) ergibt: K c = ([CH 3 ] /) 2 (/2) ([CH 3 ] ([CH 3 ] /)) = 2 9 [CH 3] (22) Mit der angegebenen Startkonzentration erhält man K c = 4.44 mol cm 3 und somit ln [ K c /(mol cm 3 ) ] = us bbildung kann man die zur Gleichgewichtskonstanten gehörende Temperatur von T 4 K ablesen. Oberhalb von ca. 5 K muss die Rückreaktion also berücksichtigt werden, während sie unterhalb von ca. 4 K vernachlässigt werden kann. Man beachte, dass eine andere Wahl der Bedingung für die Vernachlässigbarkeit ein leicht abweichendes Ergebnis aufweist. 3

4 Physikalische Chemie II Lösung 5 6. Oktober T =6K - 22 ln(k c /mol cm - 3 ) - 24 T =4 K K/T bbildung : uftragung von ln [ K c /(mol cm 3 ) ] gegen /T. nalog dazu kann die Temperatur bestimmt werden, bei der die Gleichgewichtskonzentration der Methylradikale der Hälfte der Startkonzentration entspricht ([CH 3 ] eq = 2 [CH 3] = 9 mol cm 3 ): K c = (/4)[CH 3] 2 (/4)[CH 3 ] = [CH 3 ] = 2 9 mol cm 3 ln [ K c /(mol cm 3 ) ] = 2.3 (23) us der graphischen Darstellung entnimmt man T 6 K. Bei diesen Bedingungen kann die Rückreaktion nicht vernachlässigt werden. c) Da es sich um eine vollständige Rekombination handelt, kann die Rückreaktion vernachlässigt werden. us der Rekombination k 2CH r 3 C2 H 6 (24) folgt für das Zeitgesetz dc 2 = k rc 2, (25) wobei c die Konzentration von CH 3 bezeichnet. Daraus folgt für die Halbwertszeit t /2 die Beziehung t /2 = (2k r c ). (26) Man beachte den stöchiometrischen Faktor 2 und die bhängigkeit von der nfangskonzentration c. Mit k r = cm 3 mol s ergibt sich [CH 3 ] /(mol cm 3 ) t /2 /s

5 4 Zusammenfassung der Geschwindigkeitsgesetze Kap. Mechanismus aus Stöchiometrie Differentialgleichung integriertes Zeitgesetz lin. Darstellung Dimension ein oder zwei Ele- y = a x + b [k] mentarreaktionen 2. Unimolekular Produkte = Produkte dc = kc c = c exp [ k(t t )] y = ln(c /c ), x = t t, [s ] a = k, b = Unimolekular mit Rückreaktion B = B dc = dc B =kac k b c B ln ( c c eq ) c = (k a + k b )(t t ) ceq y = ln[ ( c c eq ) ( / c c eq ) ], [ka]=[kb ]= B x = t t, a = (k a + k b ) [s ] b = 2.3 Bimolekular Produkte 2 = Produkte 2 dc = kc 2 = c c + 2k(t t ) y = /c, x = t t, [cm 3 mol s ] a = 2k, b = /c B Produkte +B = Produkte mit c B = c mit c B c dc dc = kc 2 = dc B ( cb = kc c B ln c = c c + k(t t ) y = /c, x = t t, [cm 3 mol s ] a = k, b = /c ) ln ( ) c B c =(c B c )k(t t ) ( ) cb y = ln, x = t t, [cm 3 mol s ] c a = k(c ( B ) c ), c B mit c B c ( ) dc c = kc B ln = k eff (t t ) c y = ln(c /c ), x = t t, [k eff ]=[s ] scheinbar = k eff c a = k eff, b = [k]=. Ordnung mit k eff = kc B [cm 3 mol s ] b = ln c

6 Kap. Mechanismus aus Stöchiometrie Differentialgleichung integriertes Zeitgesetz lin. Darstellung Dimension ein oder zwei Ele- y = a x + b [k] mentarreaktionen 2.4 Bimolekular mit 2.4. unimolekularer Rückreaktion Rekombination 2 = 2 dc 2 = dc [( )( )] ( ) 2 x ye xe x ln =k a(4c x x e y ye ) y = ln, e x x e [k a]= + 2 = k ac 2 k bc 2 x = t t, [cm 3 mol s ] Dissoziation mit x = (c c )/2 = c 2 c 2 a = k a(4c + K 8xe), 2 + y e = c + K ( ) 4 xe, K = k ye b/k a b = ln [k b ]=[s ] x e x e = c 2 + K 8 6K(c c /2) + K Bimolekulare Hin- +B = C+D dc = dc B und Rückreaktion x x = dc C = dc D a ln + a 2 a x =2k a( K)a 2 (t t ) y = ln + a 2 x a a 2 a a 2 +B C+D = k ac c B k b c C c D mit x = (c i c i )/ν i, K = k b /k a, x = t t [k a]=[k b ]= C+D +B a = c + c B + K(c C + c D ), a = 2k a( K)a 2 [cm 3 mol s ] 2( K) [ a 2 = a 2 c c B ] /2 Kc C c D b = K tomrekomb = 2 dc = kc M c 2 = 2 c c + 2k eff (t t ) y = /c, x = t t, [k eff ]= ++M 2 +M = k eff c 2 a = 2k eff, b = /c [mol cm 3 s ] ) = 2k(t t ) y = /c 2, x = t t, [mol 2 cm 6 s ] tomrekomb. 3 2 = 2 ( dc = kc 3 2 = kc3 2 c 2 c a = 4k, b = /c 2 tomrekomb. 3 mit Rückreaktion 2 = 2 dc = k ac 3 2 k bc 2 c 2 siehe Übung Reaktion dc = k, gilt nur für c = c k(t t ), gilt nur für kurze Zeiten t y = c, x = t t, [mol cm 3 s ]. Ordnung kurze Zeiten t a = k, b = c

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Lösungen 10 (Kinetik)

Lösungen 10 (Kinetik) Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen

Mehr

Einführung in die Chemische Kinetik (Formale Reaktionskinetik)

Einführung in die Chemische Kinetik (Formale Reaktionskinetik) Einführung in die Chemische Kinetik (Formale Reaktionskinetik) 1 Einführung 2 Formale Reaktionskinetik einfacher Reaktionen 2.1 Reaktionsgeschwindigkeit einfacher Reaktionen 2.2 Bestimmung des Geschwindigkeitsgesetzes

Mehr

1 Michaelis-Menten-Kinetik

1 Michaelis-Menten-Kinetik Physikalische Chemie II Lösung 2 9. Dezember 206 Michaelis-Menten-Kinetik. Das Geschwindigkeitsgesetz für die zeitliche Änderung der ES-Konzentration ist durch folgendes Geschwindigkeitsgesetz beschrieben:

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Kapitel 1 Grundlagen der Kinetik In diesem Kapitel werden die folgenden Themen kurz wiederholt: Die differenziellen und integralen Geschwindigkeitsgesetze von irreversiblen Reaktionen., 1., und. Ordnung

Mehr

5 Teilchen treffen Teilchen: Reaktionskinetik

5 Teilchen treffen Teilchen: Reaktionskinetik 5 Teilchen treffen Teilchen: Reaktionskinetik 5.1 Elementarreaktionen und Mehrschritt-Reaktionen Wassergasreaktion: H 2 O + CO CO 2 + H 2 Dies ist lediglich der makroskopisch sichtbare Ablauf der Reaktion.

Mehr

Physikalische Chemie II

Physikalische Chemie II Physikalische Chemie II Kinetik und Struktur Kapitel 2 Kinetik Reaktionsordnungen, Elementarreaktionen, Temperaturabhängigkeit Kapitel 3: zusammengesetzte Reaktionen, Quasistationarität, Atmosphärenchemie,

Mehr

Physikalische Chemie II

Physikalische Chemie II Physikalische Chemie II Kinetik und Struktur Kapitel 2 Kinetik Reaktionsordnungen, Elementarreaktionen, Temperaturabhängigkeit Kapitel 3: zusammengesetzte Reaktionen, Quasistationarität, Atmosphärenchemie,

Mehr

1 Aufwärmen nach den Ferien

1 Aufwärmen nach den Ferien Physikalische Chemie II Lösung 23. September 206 Aufwärmen nach den Ferien. Ermitteln Sie die folgenden Integrale. Partielle Integration mit der Anwendung der generellen Regel f g = fg fg (in diesem Fall

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Uniersität Freiburg Lösungen zum 11. Übungsblatt zur Vorlesung Physikalische Chemie I SS 214 Prof. Dr. Bartsch 11.1 L a) Die Bildungsgeschwindigkeit on

Mehr

Übungen PC - Kinetik - Seite 1 (von 5)

Übungen PC - Kinetik - Seite 1 (von 5) Übungsaufgaben PC: Kinetik 1) Für die Umlagerung von cis- in trans-dichlorethylen wurde die Halbwertszeit 245 min gefunden; die Reaktion gehorcht einem Geschwindigkeitsgesetz erster Ordnung. Wie viel g

Mehr

Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie

Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie H S G= H-T S Prozeß 1. (-) (+) (-) immer exergonisch, erfolgt spontan bei allen Temperaturen

Mehr

Reaktionskinetik. Geschwindigkeitsgesetze

Reaktionskinetik. Geschwindigkeitsgesetze Reaktionskinetik Geschwindigkeitsgesetze Lernziele: Thermodynamische Beschreibung chemischer Reaktionen Berechnen und Beschreiben von Reaktionsordnungen Kinetische Beschreibung von Reaktionsmechanismen

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Gegenstand der letzten Vorlesung Reaktionsgeschwindigkeit Reaktionsordnung Molekularität Reaktion 0., 1.,. Ordnung Reaktion pseudo-erster Ordnung Aktivierungsenergie Temperaturabhängigkeit der Geschwindigkeitskonstanten

Mehr

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K.

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. A 31 Zersetzung von Diacetonalkohol Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. Grundlagen: Diacetonalkohol (ρ (20 C) = 0,931 g/cm 3 ) zerfällt

Mehr

-Reaktionsordnung- Referat zur Vorlesung Reaktionsdynamik. 31. Oktober 2012 Nils Wilharm Reaktionsordnung Seite 1

-Reaktionsordnung- Referat zur Vorlesung Reaktionsdynamik. 31. Oktober 2012 Nils Wilharm Reaktionsordnung Seite 1 -Reaktionsordnung- Referat zur Vorlesung Reaktionsdynamik 31. Oktober 2012 Nils Wilharm Reaktionsordnung Seite 1 Reaktionsordnung Allgemeines Reaktionsgeschwindigkeit/-ordnung 0. Ordnung 1. Ordnung 2.

Mehr

endotherme Reaktionen

endotherme Reaktionen Exotherme/endotherme endotherme Reaktionen Edukte - H Produkte Exotherme Reaktion Edukte Produkte + H Endotherme Reaktion 101 Das Massenwirkungsgesetz Das Massenwirkungsgesetz Gleichgewicht chemischer

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

Kapitel 4. Die Grundlagen der Kinetik

Kapitel 4. Die Grundlagen der Kinetik Kapitel 4. Die Grundlagen der Kinetik Monomolekulare Reaktion erster rdnung A Produkte; v = k [A] (S N 1) bimolekulare Reaktion zweiter rdnung (S N 2) A + B Produkte; v = k [A] [B] Einfluss der Aktivierungsbarrieren

Mehr

Chemische Oszillationen

Chemische Oszillationen Ludwig Pohlmann Thermodynamik offener Systeme und Selbstorganisationsphänomene SS 007 Chemische Oszillationen. Chemische (Formal-)Kinetik Die chemische Kinetik untersucht die Geschwindigkeit und den Mechanismus

Mehr

Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten

Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten 1. Grundlagen 1.1. Vorkenntnisse Informieren Sie sich vor Durchführung

Mehr

Alexander Riegel.

Alexander Riegel. Alexander Riegel riegel@uni-bonn.de 2 9 10 Ordinatenachse ( y-achse ) f x Gerade Ordinatenabschnitt f x = 0 Ursprungsgerade Nullstelle f x = x 0 = 0 0 Ursprung (0 0) Abszissenachse ( x-achse ) x f(x 1

Mehr

Elementarreaktionen und einfache Geschwindigkeitsgesetze

Elementarreaktionen und einfache Geschwindigkeitsgesetze Kapitel 2 Elementarreaktionen und einfache Geschwindigkeitsgesetze Ziel dieses Kapitels ist das Verständnis und die genaue begriffliche Formulierung der einfachsten chemischen Reaktionen auf molekularer

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 10. Temperaturabhängigkeit der Reaktionsgeschwindigkeit: Arrhenius-Beziehung Thema In diesem Versuch

Mehr

Grundlagen der Chemie Chemisches Gleichgewicht

Grundlagen der Chemie Chemisches Gleichgewicht Chemisches Gleichgewicht Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Das Massenwirkungsgesetz Wenn Substanzen

Mehr

Zerlegung der Gesamtreaktion in eine Folge von elementaren Einzelreaktionen

Zerlegung der Gesamtreaktion in eine Folge von elementaren Einzelreaktionen Mikrokinetik egriffe, Definitionen Reaktionsgeschwindigkeit Reaktionskinetik Differentialgleichungen Ordnung Mechanismus Parallele Reaktionen Sequentielle Reaktionen Stationärer Zwischenzustand Geschwindigkeitsbestimmender

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Reaktion von Marmor mit Salzsäure (Reaktionskinetik)

Reaktion von Marmor mit Salzsäure (Reaktionskinetik) Prinzip Marmor reagiert mit Salzsäure. Das dabei entweichende Kohlenstoffdioxid führt zu einem Massenverlust, der über eine bestimmte Zeit verfolgt und unter reaktionskinetischen Aspekten ausgewertet wird.

Mehr

Fragen zum Versuch Kinetik:

Fragen zum Versuch Kinetik: Fragen zum Versuch Kinetik: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen von Rohrzucker im Wasser

Mehr

Physikalische Chemie I

Physikalische Chemie I Skript zur Vorlesung Physikalische Chemie I für Studierende der Biochemie, Biologie und des Lehramts (3. Semester) von PD Dr. Stephan A. Bäurle Skript erstellt von M. Bernhardt, M. Hammer, M. Knorn WS

Mehr

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg.

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg. Studienvorbereitung Chemie EinFaCh 2 Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik tu-freiberg.de tu-freiberg.de/fakultaet2/einfach Was bedeutet Chemische Reaktionskinetik?

Mehr

Thermodynamik. Thermodynamik

Thermodynamik. Thermodynamik Geschlossenes System: Energieaustausch, aber kein Materieaustausch mit der Umgebung. Innere Energie: Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert: die innere Energie U. U 1 = innere

Mehr

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion:

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen

Mehr

Arbeitskreis Kappenberg Reaktion von Marmor mit Salzsäure H 02 Computer im Chemieunterricht (Reaktionskinetik) Gravimetrie

Arbeitskreis Kappenberg Reaktion von Marmor mit Salzsäure H 02 Computer im Chemieunterricht (Reaktionskinetik) Gravimetrie Computer im Chemieunterricht (Reaktionskinetik) Gravimetrie Prinzip: Marmor reagiert mit Salzsäure. Das dabei entweichende Kohlenstoffdioxid führt zu einem Massenverlust, der über eine bestimmte Zeit verfolgt

Mehr

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd 5. Reationsineti 96 5. Reationsineti 5. Die Geschwindigeit chemischer Reationen Die Umsatzgeschwindigeit ω ist definiert als: dλ ω = [mol s - ] mit λ = Umsatzvariable (Gleichung 86) Für eine allgemeine

Mehr

Chemie Protokoll. Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung. Stuttgart, Sommersemester 2012

Chemie Protokoll. Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung. Stuttgart, Sommersemester 2012 Chemie Protokoll Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung Stuttgart, Sommersemester 202 Gruppe 0 Jan Schnabel Maximilian Möckel Henri Menke Assistent: Durmus 20. Mai 202 Inhaltsverzeichnis Theorie

Mehr

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom Physikalische Chemie II (für Biol./Pharm. Wiss.) S 207 Lösung 7 Musterlösung zum Übungsblatt 7 vom 0.04.207 Diffusionspotential. Zu dieser Teilaufgabe vgl. Adam, Läuger, Stark, S. 326/327 und Skript I.3.3.

Mehr

3. Photochemie und Reaktionskinetik 3.1 Allgemeine Grundlagen

3. Photochemie und Reaktionskinetik 3.1 Allgemeine Grundlagen . Photochemie und Reaktionskinetik.1 Allgemeine Grundlagen In Molekülen sind Atome durch chemische Kräfte gebunden. Manche Moleküle sind reaktiver (z.b. Stickoxide) als andere (z.b. Kohlendioxid). Welche

Mehr

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k Versuche des Kapitel 7 Reaktionskinetik Einleitung Die Reaktion von Piperidin mit Dinitrochlorbenzol zum gelben Dinitrophenylpiperidin soll auf die Geschwindigkeitskonstante und die Arrheniusparameter

Mehr

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus:

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus: A 35: Zersetzung von Ameisensäure Aufgabe: Für die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure sind die Geschwindigkeitskonstante bei 30 und 40 C sowie der präexponentielle Faktor und die

Mehr

Seminar zur. Chemischen Kinetik. für Biologen SS Universität Kassel. Till Spehr

Seminar zur. Chemischen Kinetik. für Biologen SS Universität Kassel. Till Spehr Seminar zur Chemischen Kinetik für Biologen SS 00 Universität Kassel Till Spehr Empirische Reaktionskinetik: 3 Geschwindigkeitsgesetze:...3 Experimentelle Bestimmung von Geschwindigkeitsgesetzen:...4 3

Mehr

Versuch: Inversion von Saccharose

Versuch: Inversion von Saccharose Versuch: Inversion von Saccharose Die Geschwindigkeit einer chemischen Reaktion (gemessen z. B. durch die zeitliche Abnahme der Konzentration des Ausgangsstoffes A) hängt allgemein vom Produkt der Konzentrationen

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 34 Lambert Beer sches Gesetz - Zerfall des Manganoxalations Aufgabe: 1. Bestimmen Sie die Wellenlänge maximaler Absorbanz λ max eines

Mehr

Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit

Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit Allgemeine Gaskonstante R 8,31 J mol -1 K -1 Elementarladung e 1,60 10-19 C Faradaykonstante

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Klausur PC 2 Kinetik und Struktur

Klausur PC 2 Kinetik und Struktur Klausur PC 2 Kinetik und Struktur Wintersemester 2016, 19. ebruar 2016 Beachten Sie bitte: Ich bin mit Veröffentlichung der Ergebnisse im Internet unter Angabe der Matr-Nr. (NICHT des Namens) einverstanden

Mehr

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus.

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. 1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. kann mit der Umgebung Energie austauschen. kann mit der Umgebung Entropie

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten -

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1 ersuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1. Theorie Befindet sich eine Flüssigkeit in einem abgeschlossenen Gefäß, so stellt sich zwischen der Gasphase

Mehr

Physikalische Chemie I-B: Kinetik

Physikalische Chemie I-B: Kinetik Physikalische Chemie I-B: Kinetik Marcus Elstner, Patrick Weis 11. Februar 2011 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einführung 6 1.1 Thermodynamik vs. Kinetik................... 6 1.2 Zeitskalen

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel für Rohrzucker für

Mehr

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1.

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1. Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel α für Rohrzucker für

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen 3.5 Die chemische Produktionsdichte Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen und mit folgt Die rechte Seite der Gleichung wird als chemische Produktionsdichte bezeichnet: Sie

Mehr

K1: Lambert-Beer`sches Gesetz

K1: Lambert-Beer`sches Gesetz K1: Lambert-Beer`sches Gesetz Einleitung In diesem Versuch soll die Entfärbung von Kristallviolett durch atronlauge mittels der Absorptionsspektroskopie untersucht werden. Sowohl die Reaktionskinetik als

Mehr

Lehrstuhl für Technische Chemie 2 Übung 4 zur Vorlesung Katalyse und Reaktionstechnik im SS2010 (S. Maier, D. Hartmann, M. Salzinger, O.C.

Lehrstuhl für Technische Chemie 2 Übung 4 zur Vorlesung Katalyse und Reaktionstechnik im SS2010 (S. Maier, D. Hartmann, M. Salzinger, O.C. Lehrstuhl für Technische Chemie 2 Übung 4 zur Vorlesung Katalyse und Reaktionstechnik im SS2010 (S. Maier, D. Hartmann, M. Salzinger, O.C. Gobin) 1. ufgabe: ufstellen eines kinetischen Geschwindigkeitsansatzes

Mehr

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie Bachelorstudiengang CBI / LSE - Teil Physikalische Chemie SS10 - Blatt 1 / 15 Klausur Bachelorstudiengang CBI / LSE Physikalische Chemie 27.09.2010 Name: Vorname: geb. am: in: Studienfach: Matrikelnummer:

Mehr

Das chemische Gleichgewicht

Das chemische Gleichgewicht Das chemische Gleichgewicht Modell: Geschlossenes Gefäß mit Flüssigkeit, die verdampft ( T=const ) Moleküle treten über in die Dampfphase H 2 O (l) H 2 O (g) H 2 O (g) Dampfdruck p H 2 O (l) T = const.

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

Anhang 1: Einige mathematische Grundlagen

Anhang 1: Einige mathematische Grundlagen Prof. Dr. H.-H. Kohler, WS 4/5 PC Anhang Anhang- Anhang : Einige mathematische Grundlagen. Funktion, Ableitung, Differential, Integral,. Näherung Wir schreiben eine Funktion f ( ) vereinfacht in der Form:

Mehr

Versuch 2. Hydrolyse eines Esters

Versuch 2. Hydrolyse eines Esters Grundpraktikum Physikalische Chemie Versuch 2 Hydrolyse eines Esters Reaktionskinetik Überarbeitetes Versuchsskript, 27.11.2014 Kolloquiumsthemen Reaktionskinetik der Hydrolyse von Essigsäureethylester

Mehr

Modellierung biologischer und molekularer Systeme. Enzymkinetik. Dr. Ingo Röder, IMISE, Universität Leipzig Folie 181

Modellierung biologischer und molekularer Systeme. Enzymkinetik. Dr. Ingo Röder, IMISE, Universität Leipzig Folie 181 Dr. Ingo Röder, IMISE, Universität Leipzig Folie 181 Einführung (1) Größe Symbol Einheit Chemische Substanz z.b. A, B, S i Menge z.b. A, B, S i mol (1 mol eines Stoffes enthält ca. 6 10 23 Teilchen (6.022

Mehr

Lösungsvorschlag zu Übung 9

Lösungsvorschlag zu Übung 9 PC II Chemische Reaktionskinetik M. Quack HS 202 Lösungsvorschlag zu Übung 9 (20. November 202) 9. Exemplarische Fragen:.) Was ist der Unterschied zwischen Absorbanz und Absorption? Zunächst einmal sollte

Mehr

Kettenreaktionen. Kapitel 2. In diesem Kapitel sollen die folgenden Fragen beantwortet werden:

Kettenreaktionen. Kapitel 2. In diesem Kapitel sollen die folgenden Fragen beantwortet werden: Kapitel 2 Kettenreaktionen In diesem Kapitel sollen die folgenden Fragen beantwortet werden: Was versteht man unter einer Kettenreaktion? Welches sind die verschiedenen Typen von Reaktionsschritten, die

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört

Mehr

1) Ein geschlossenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus.

1) Ein geschlossenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. 1) Ein geschlossenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. kann mit der Umgebung Energie austauschen. kann mit der Umgebung

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Bioenergetik www.icbm.de/pmbio Energieformen Von Lebewesen verwertete Energieformen o Energie ist etwas, das Arbeit ermöglicht. o Lebewesen nutzen nur zwei Formen: -- Licht --

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Klausur zur Vorlesung "Allgemeine Chemie " am

Klausur zur Vorlesung Allgemeine Chemie  am 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Σ Klausur zur Vorlesung "Allgemeine Chemie " am 08.02.2007 Name: Vorname: Matr.-Nr. Studiengang: Platz.-Nr. Hinweise für die Bearbeitung der Aufgaben 1) Hilfsmittel außer

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - SS07 - Blatt 1 / 16 Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik Teil

Mehr

Versuchsprotokoll K1-1 Reduktiver Zerfall von Kaliumtrioxalatomanganat(III)

Versuchsprotokoll K1-1 Reduktiver Zerfall von Kaliumtrioxalatomanganat(III) Dieses Werk steht unter der Creative-Commons-Lizenz CC BY-NC 3.0 1 Physikalische Chemie I Versuchsprotokoll K1-1 Reduktiver Zerfall von Kaliumtrioxalatomanganat(III) Inhaltsverzeichnis 1 Ziel 3 2 Grundlagen

Mehr

1 Massenwirkungsgesetz

1 Massenwirkungsgesetz 1 Massenwirkungsgesetz Zeige: Bei konstantem Druck und konstanter emperatur gilt für chemische Reaktionen der Art a 1 A 1 + a A + : : : a L A L b 1 B 1 + b B + : : : b R B R : K c (A i ) ai c (B j ) bj

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser (links) und Ethanol (rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Physikalische Chemie V

Physikalische Chemie V Skript zur Kinetik-Vorlesung Physikalische Chemie V für Studierende der Chemie (6. Semester) von PD Dr. Stephan A. Bäurle SS 2011 Eine wirklich gute Idee erkennt man daran, dass ihre Verwirklichung von

Mehr

Vorlesung Allgemeine Chemie Teil Physikalische Chemie WS 2009/10

Vorlesung Allgemeine Chemie Teil Physikalische Chemie WS 2009/10 Vorlesung Allgemeine Chemie Teil Physikalische Chemie WS 2009/10 Dr. Lars Birlenbach Physikalische Chemie, Universität Siegen Raum AR-F0102 Tel.: 0271 740 2817 email: birlenbach@chemie.uni-siegen.de Lars

Mehr

Bestimmung der Reaktionsgeschwindigkeitskonstante der alkalischen Hydrolyse von Essigsäureethylester

Bestimmung der Reaktionsgeschwindigkeitskonstante der alkalischen Hydrolyse von Essigsäureethylester W-lkalische Esterhydrolyse_Bsc Erstelldatum 25.9.27 Übungen in physikalischer Chemie für B.Sc.-Studierende Versuch Nr.: W Version 27 (887) Kurzbezeichnung: lkalische Esterhydrolyse Bestimmung der Reaktionsgeschwindigkeitskonstante

Mehr

Atmosphärenchemie WS 2005/06 Dr. R. Tuckermann. Chemische Reaktionen

Atmosphärenchemie WS 2005/06 Dr. R. Tuckermann. Chemische Reaktionen Chemische Reaktionen Chemische Reaktionen spielen eine wichtige Rolle in der Atmosphäre. So führt z.b. die Photolyse von Sauerstoff und der darauffolgende Reaktionszyklus (Chapman-Zyklus) zur Bildung einer

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Harnstoffsynthese in der Kaskade

Harnstoffsynthese in der Kaskade Harnstoffsynthese in der Kaskade Bericht für das Praktikum Chemieingenieurwesen I WS06/07 Studenten: Francisco José Guerra Millán fguerram@student.ethz.ch Andrea Michel michela@student.ethz.ch Assistent:

Mehr

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - WS0809 - Blatt 1 / 16 Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik Teil 1: Physikalische Chemie

Mehr

Bitte beachten Sie folgende Hinweise:

Bitte beachten Sie folgende Hinweise: Institut für Physikalische und Theoretische Chemie Klausur zur Vorlesung Physikalische Chemie für BiologInnen, PharmazeutInnen und GeoökologInnen apl. Prof. Dr. Uwe Hohm Hans-Sommer-Straße 10 D-38106 Braunschweig

Mehr

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R Tutor: Martin Friesen, martin.friesen@gm.de Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 1. Man berechne alle Lösungen der Differentialgleichung: (t) = t(t), t R Wir benutzten hier den

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

Verfahrenstechnisches Praktikum

Verfahrenstechnisches Praktikum Engler-Bunte-Institut Lehrstuhl für Wasserchemie und Wassertechnologie Leiter: Prof. Dr. Harald Horn Verfahrenstechnisches Praktikum 22999 Kinetik der Eisen(II)-Oxidation Engler-Bunte-Institut, Bereich

Mehr

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von Aufgabe 1: Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H O von 0 C bis zum Siedepunkt (100 C) zu erwärmen. Die spezifische Wärmekapazität von Wasser c = 4.18 J K - 1 g -1. Lösung

Mehr

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve. Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)

Mehr

Übungsaufgaben Physikalische Chemie

Übungsaufgaben Physikalische Chemie Gleichgewichte: Übungsaufgaben Physikalische Chemie F1. Stellen Sie die Ausdrücke für die Gleichgewichtskonstanten folgender Reaktionen auf: a) CO (g) + Cl 2 (g) COCl (g) + Cl(g) b) 2 SO 2 (g) + O 2 (g)

Mehr

Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung

Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung Versuchsprotokoll: Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung Gruppe 10 29.06.2013 Patrik Wolfram TId:20 Alina Heidbüchel TId:19 1 Inhaltsverzeichnis 1 Einleitung... 3 2 Theorie...

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht Das Chemische Gleichgewicht a A + b B c C + d D r r r r Für r G = 0 gilt: Q = K r G G E D r G = dg dx

Mehr